1
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
2
|
Zhou Y, Seo J, Tu S, Nanmo A, Kageyama T, Fukuda J. Exosomes for hair growth and regeneration. J Biosci Bioeng 2024; 137:1-8. [PMID: 37996318 DOI: 10.1016/j.jbiosc.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Exosomes are lipid bilayer vesicles, 30-200 nm in diameter, that are produced by cells and play essential roles in cell-cell communication. Exosomes have been studied in several medical fields including dermatology. Hair loss, a major disorder that affects people and sometimes causes mental stress, urgently requires more effective treatment. Because the growth and cycling of hair follicles are governed by interactions between hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs), a better understanding of the mechanisms responsible for hair growth and cycling through exosomes may provide new insights into novel treatments for hair loss. In this review, we focused on the comprehensive knowledge and recent studies on exosomes in the field of hair development and regeneration. We classified exosomes of several cellular origins for the treatment of hair loss. Exosomes and their components, such as microRNAs, are promising drugs for effective hair loss treatment.
Collapse
Affiliation(s)
- Yinghui Zhou
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Jieun Seo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Shan Tu
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Ayaka Nanmo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
3
|
Jia S, Wang J, Wang X, Liu X, Li S, Li Y, Li J, Wang J, Man S, Guo Z, Sun Y, Jia Z, Wang L, Li X. Genetically encoded in situ gelation redox-responsive collagen-like protein hydrogel for accelerating diabetic wound healing. Biomater Sci 2023; 11:7748-7758. [PMID: 37753880 DOI: 10.1039/d3bm01010d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Genetically encoded collagen-like protein-based hydrogels have demonstrated remarkable efficacy in promoting the healing process in diabetic patients. However, the current methods for preparing these hydrogels pose significant challenges due to harsh reaction conditions and the reliance on chemical crosslinkers. In this study, we present a genetically encoded approach that allows for the creation of protein hydrogels without the need for chemical additives. Our design involves the genetic encoding of paired-cysteine residues at the C- and N-terminals of a meticulously engineered collagen-like recombination protein. The protein-based hydrogel undergoes a gel-sol transition in response to redox stimulation, achieving a gel-sol transition. We provide evidence that the co-incubation of the protein hydrogel with 3T3 cells not only enhances cell viability but also promotes cell migration. Moreover, the application of the protein hydrogel significantly accelerates the healing of diabetic wounds by upregulating the expression of collagen-1α (COL-1α) and Cytokeratin 14 (CK-14), while simultaneously reducing oxidant stress in the wound microenvironment. Our study highlights a straightforward strategy for the preparation of redox-responsive protein hydrogels, removing the need for additional chemical agents. Importantly, our findings underscore the potential of this hydrogel system for effectively treating diabetic wounds, offering a promising avenue for future therapeutic applications.
Collapse
Affiliation(s)
- Shuang Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Jie Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Xiaojie Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Xing Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia people's Hospital, 20 Zhaowuda Road, Hohhot, 010021, Inner Mongolia, China
| | - Yimiao Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Jiaqi Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Jieqi Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Shad Man
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Zhao Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Yinan Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Liyao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Xinyu Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
- Institutes of Biomedical Sciences, Inner Mongolia University, Inner Mongolia University, Hohhot, 010020, PR China
| |
Collapse
|
4
|
Chen QQ, Liu QY, Wang P, Qian TM, Wang XH, Yi S, Li SY. Potential application of let-7a antagomir in injured peripheral nerve regeneration. Neural Regen Res 2023; 18:1584-1590. [PMID: 36571366 PMCID: PMC10075095 DOI: 10.4103/1673-5374.357914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neurotrophic factors, particularly nerve growth factor, enhance neuronal regeneration. However, the in vivo applications of nerve growth factor are largely limited by its intrinsic disadvantages, such as its short biological half-life, its contribution to pain response, and its inability to cross the blood-brain barrier. Considering that let-7 (human miRNA) targets and regulates nerve growth factor, and that let-7 is a core regulator in peripheral nerve regeneration, we evaluated the possibilities of let-7 application in nerve repair. In this study, anti-let-7a was identified as the most suitable let-7 family molecule by analyses of endogenous expression and regulatory relationship, and functional screening. Let-7a antagomir demonstrated biosafety based on the results of in vivo safety assessments and it entered into the main cell types of the sciatic nerve, including Schwann cells, fibroblasts and macrophages. Use of hydrogel effectively achieved controlled, localized, and sustained delivery of let-7a antagomir. Finally, let-7a antagomir was integrated into chitosan conduit to construct a chitosan-hydrogel scaffold tissue-engineered nerve graft, which promoted nerve regeneration and functional recovery in a rat model of sciatic nerve transection. Our study provides an experimental basis for potential in vivo application of let-7a.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Qian-Yan Liu
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Pan Wang
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Tian-Mei Qian
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xing-Hui Wang
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng Yi
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shi-Ying Li
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
5
|
Crouch DL, Hall PT, Stubbs C, Billings C, Pedersen AP, Burton B, Greenacre CB, Stephenson SM, Anderson DE. Feasibility of Implanting a Foot–Ankle Endoprosthesis within Skin in a Rabbit Model of Transtibial Amputation. Bioengineering (Basel) 2022; 9:bioengineering9080348. [PMID: 36004873 PMCID: PMC9405244 DOI: 10.3390/bioengineering9080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Prosthetic limbs that are completely implanted within skin (i.e., endoprostheses) could permit direct, physical muscle–prosthesis attachment to restore more natural sensorimotor function to people with amputation. The objective of our study was to test, in a rabbit model, the feasibility of replacing the lost foot after hindlimb transtibial amputation by implanting a novel rigid foot–ankle endoprosthesis that is fully covered with skin. We first conducted a pilot, non-survival surgery in two rabbits to determine the maximum size of the skin flap that could be made from the biological foot–ankle. The skin flap size was used to determine the dimensions of the endoprosthesis foot segment. Rigid foot–ankle endoprosthesis prototypes were successfully implanted in three rabbits. The skin incisions healed over a period of approximately 1 month after surgery, with extensive fur regrowth by the pre-defined study endpoint of approximately 2 months post surgery. Upon gross inspection, the skin surrounding the endoprosthesis appeared normal, but a substantial subdermal fibrous capsule had formed around the endoprosthesis. Histology indicated that the structure and thickness of the skin layers (epidermis and dermis) were similar between the operated and non-operated limbs. A layer of subdermal connective tissue representing the fibrous capsule surrounded the endoprosthesis. In the operated limb of one rabbit, the subdermal connective tissue layer was approximately twice as thick as the skin on the medial (skin = 0.43 mm, subdermal = 0.84 mm), ventral (skin = 0.80 mm, subdermal = 1.47 mm), and lateral (skin = 0.76 mm, subdermal = 1.42 mm) aspects of the endoprosthesis. Our results successfully demonstrated the feasibility of implanting a fully skin-covered rigid foot–ankle endoprosthesis to replace the lost tibia–foot segment of the lower limb. Concerns include the fibrotic capsule which could limit the range of motion of jointed endoprostheses. Future studies include testing of endoprosthetics, as well as materials and pharmacologic agents that may suppress fibrous encapsulation.
Collapse
Affiliation(s)
- Dustin L. Crouch
- Department of Mechanical, Aerospace & Biomedical Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996, USA; (P.T.H.); (C.S.)
- Correspondence:
| | - Patrick T. Hall
- Department of Mechanical, Aerospace & Biomedical Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996, USA; (P.T.H.); (C.S.)
- Exponent, Philadelphia, PA 19104, USA
| | - Caleb Stubbs
- Department of Mechanical, Aerospace & Biomedical Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996, USA; (P.T.H.); (C.S.)
| | - Caroline Billings
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (C.B.); (A.P.P.); (D.E.A.)
| | - Alisha P. Pedersen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (C.B.); (A.P.P.); (D.E.A.)
| | - Bryce Burton
- Office of Laboratory Animal Care, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Cheryl B. Greenacre
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Stacy M. Stephenson
- Graduate School of Medicine, University of Tennessee, Knoxville, TN 37920, USA;
| | - David E. Anderson
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (C.B.); (A.P.P.); (D.E.A.)
| |
Collapse
|
6
|
Kaur G, Narayanan G, Garg D, Sachdev A, Matai I. Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2069-2106. [PMID: 35451829 DOI: 10.1021/acsabm.2c00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin tissue wound healing proceeds through four major stages, including hematoma formation, inflammation, and neo-tissue formation, and culminates with tissue remodeling. These four steps significantly overlap with each other and are aided by various factors such as cells, cytokines (both anti- and pro-inflammatory), and growth factors that aid in the neo-tissue formation. In all these stages, advanced biomaterials provide several functional advantages, such as removing wound exudates, providing cover, transporting oxygen to the wound site, and preventing infection from microbes. In addition, advanced biomaterials serve as vehicles to carry proteins/drug molecules/growth factors and/or antimicrobial agents to the target wound site. In this review, we report recent advancements in biomaterials-based regenerative strategies that augment the skin tissue wound healing process. In conjunction with other medical sciences, designing nanoengineered biomaterials is gaining significant attention for providing numerous functionalities to trigger wound repair. In this regard, we highlight the advent of nanomaterial-based constructs for wound healing, especially those that are being evaluated in clinical settings. Herein, we also emphasize the competence and versatility of the three-dimensional (3D) bioprinting technique for advanced wound management. Finally, we discuss the challenges and clinical perspective of various biomaterial-based wound dressings, along with prospective future directions. With regenerative strategies that utilize a cocktail of cell sources, antimicrobial agents, drugs, and/or growth factors, it is expected that significant patient-specific strategies will be developed in the near future, resulting in complete wound healing with no scar tissue formation.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ganesh Narayanan
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Deepa Garg
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Abhay Sachdev
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ishita Matai
- Department of Biotechnology, School of Biological Sciences, Amity University Punjab, Mohali 140306, India
| |
Collapse
|
7
|
Cai B, Li M, Zheng Y, Yin Y, Jin F, Li X, Dong J, Jiao X, Liu X, Zhang K, Li D, Wang J, Yin G. MicroRNA-149-mediated MAPK1/ERK2 Suppression Attenuates Hair Follicle stem Cell Differentiation. Hum Gene Ther 2022; 33:625-637. [PMID: 35171714 DOI: 10.1089/hum.2021.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are responsible for hair growth and hair follicle (HF) regeneration. microRNAs (miRNAs) have been demonstrated to be involved in the differentiation of HFSCs. Thus, present study aimed to explore the potential role of miR-149 in the differentiation of HFSCs. The isolated HFSCs were identified by flow cytometric sorting. miR-149 expression was determined during differentiation of HFSCs. Gain- and loss-of-function approaches were conducted to explore the roles of miR-149, MAPK1/ERK2, and FGF2/c-MYC in colony formation and proliferation of HFSCs. Furthermore, in vivo assays were undertaken in miR-149 knockout mice to confirm their roles in HFSC differentiation. miR-149 was found to be down-regulated during HFSC differentiation, and overexpressed miR-149 restricted the proliferation and differentiation of HFSCs. miR-149 was confirmed to target and inhibit MAPK1/ERK2, which was highly expressed in and positively associated with HFSC differentiation. The MAPK1/ERK2 promotion in HFSC differentiation was achieved by augmenting expression of FGF2 and c-MYC. The in vitro effects of miR-149 were validated in in vivo experiments. Taken together, up-regulated miR-149 restricted HFSC differentiation and hair growth by targeting MAPK1/ERK2 to reduce expression of FGF2 and c-MYC, which sheds light on the underlying molecular mechanism on hair growth.
Collapse
Affiliation(s)
- Bingjie Cai
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;
| | - Min Li
- Hunan Provincial People's Hospital, 87803, Changsha, Hunan, China;
| | - Yunpeng Zheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China;
| | - Yakun Yin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;
| | - Fangcao Jin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China;
| | - Xuyang Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China;
| | - Juan Dong
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China;
| | - Xiaoyan Jiao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China;
| | - Xiaojun Liu
- Henan Province Medical Instrument Testing Institute, Zhengzhou, China;
| | - Kun Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China;
| | - Dongqin Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China;
| | - Junmin Wang
- College of Basic Medical Sciences, Zhengzhou University, College of Basic Medical Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou 450000, Henan Province, P. R. China, Zhengzhou, China, 450000;
| | - Guangwen Yin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China;
| |
Collapse
|
8
|
Yang M, Weng T, Zhang W, Zhang M, He X, Han C, Wang X. The Roles of Non-coding RNA in the Development and Regeneration of Hair Follicles: Current Status and Further Perspectives. Front Cell Dev Biol 2021; 9:720879. [PMID: 34708037 PMCID: PMC8542792 DOI: 10.3389/fcell.2021.720879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alopecia is a common problem that affects almost every age group and is considered to be an issue for cosmetic or psychiatric reasons. The loss of hair follicles (HFs) and hair caused by alopecia impairs self-esteem, thermoregulation, tactile sensation and protection from ultraviolet light. One strategy to solve this problem is HF regeneration. Many signalling pathways and molecules participate in the morphology and regeneration of HF, such as Wnt/β-catenin, Sonic hedgehog, bone morphogenetic protein and Notch. Non-coding RNAs (ncRNAs), especially microRNAs and long ncRNAs, have significant modulatory roles in HF development and regeneration via regulation of these signalling pathways. This review provides a comprehensive overview of the status and future prospects of ncRNAs in HF regeneration and could prompt novel ncRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Min Yang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Manjia Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojie He
- Department of General Practice, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern Wound Dressings: Hydrogel Dressings. Biomedicines 2021; 9:1235. [PMID: 34572421 PMCID: PMC8472341 DOI: 10.3390/biomedicines9091235] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic wounds do not progress through the wound healing process in a timely manner and are considered a burden for healthcare system; they are also the most common reason for decrease in patient quality of life. Traditional wound dressings e.g., bandages and gauzes, although highly absorbent and effective for dry to mild, exudating wounds, require regular application, which therefore can cause pain upon dressing change. In addition, they have poor adhesional properties and cannot provide enough drainage for the wound. In this regard, the normalization of the healing process in chronic wounds is an extremely urgent task of public health and requires the creation and implementation of affordable dressings for patients with chronic wounds. Modern wound dressings (WDs) are aimed to solve these issues. At the same time, hydrogels, unlike other types of modern WDs (foam, films, hydrocolloids), have positive degradation properties that makes them the perfect choice in applications where a targeted delivery of bioactive substances to the wound is required. This mini review is focused on different types of traditional and modern WDs with an emphasis on hydrogels. Advantages and disadvantages of traditional and modern WDs as well as their applicability to different chronic wounds are elucidated. Furthermore, an effectiveness comparison between hydrogel WDs and the some of the frequently used biotechnologies in the field of regenerative medicine (adipose-derived mesenchymal stem cells (ADMSCs), mesenchymal stem cells, conditioned media, platelet-rich plasma (PRP)) is provided.
Collapse
Affiliation(s)
| | - Tatiana Astrelina
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, 123098 Moscow, Russia; (V.B.); (T.M.); (A.S.)
| | | | | |
Collapse
|
10
|
Zhuang Y, Cui W. Biomaterial-based delivery of nucleic acids for tissue regeneration. Adv Drug Deliv Rev 2021; 176:113885. [PMID: 34324886 DOI: 10.1016/j.addr.2021.113885] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Gene therapy is a promising novel method of tissue regeneration by stimulating or inhibiting key signaling pathways. However, their therapeutic applications in vivo are largely limited by several physiological obstacles, such as degradation of nucleases, impermeability of cell membranes, and transport to the desired intracellular compartments. Biomaterial-based gene delivery systems can overcome the problems of stability and local drug delivery, and can temporarily control the overexpression of therapeutic genes, leading to the local production of physiologically relevant levels of regulatory factors. But the gene delivery of biomaterials for tissue regeneration relies on multi-factor design. This review aims to outline the impact of gene delivery methods, therapeutic genes and biomaterials selection on this strategy, emphatically introduce the latest developments in the design of gene delivery vehicles based on biomaterials, summarize the mechanism of nucleic acid for tissue regeneration, and explore the strategies of nucleic acid delivery vehicles for various tissue regeneration.
Collapse
Affiliation(s)
- Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
11
|
Kemski S, Molitor V, Steffens M, Nümm TJ, Herrmann N, Hornung T, Bieber T, Schumann C, Kächele V, Seufferlein T, Heinemann V, Scholl C, Stingl JC. Association between miRNA signatures in serum samples from epidermal growth factor inhibitor treated patients and skin toxicity. Oncotarget 2021; 12:982-995. [PMID: 34012511 PMCID: PMC8121613 DOI: 10.18632/oncotarget.27953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Epidermal growth factor receptor inhibitors (EGFRI) are used as targeted cancer therapy. On average 70% of patients treated with EGFRIs suffer from skin toxicity. Studies showed a correlation between overall survival and the appearance of a skin rash, which is used as a biomarker for therapy efficacy. Micro RNAs (miRNA) as tumor or resistance biomarkers for cancer therapy are also highly investigated. In our study, we searched for associations of miRNA expression profiles in serum, with the severity of skin rash, in order to identify tentative therapy predictive biomarkers. Materials and Methods: Five candidate miRNAs were selected, based on an earlier in vitro next-generation-sequencing-experiment and after literature search. MiR-21, miR-31, miR-17, miR-106b and miR-520e were investigated in serum samples from patients (n = 254) treated with EGFRI. The quantitative expression of miRNA was tested for association with the occurrence/severity of the rash. Results: In our cohort of patients treated with EGFR inhibiting monoclonal antibodies, miR-21 and miR-520e serum concentrations were negatively correlated with severity of skin rash (p-value 0.000582 and 1.53e-07 linear-trend-test) whereas for miR-31, a positive correlation was observed (p-value 9.01e-06 linear-trend-test). Conclusions: This suggests that miR-21, miR-31 and miR-520e expression might be a treatment dependent marker for EGFRI induced skin rash.
Collapse
Affiliation(s)
- Sarah Kemski
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.,Department of Dermatology and Allergy, Christine Kühne Center for Allergy Research and Education (CK-CARE), University Hospital-Bonn, Bonn, Germany
| | - Vivien Molitor
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Tim J Nümm
- Department of Dermatology and Allergy, Christine Kühne Center for Allergy Research and Education (CK-CARE), University Hospital-Bonn, Bonn, Germany
| | - Nadine Herrmann
- Department of Dermatology and Allergy, Christine Kühne Center for Allergy Research and Education (CK-CARE), University Hospital-Bonn, Bonn, Germany
| | - Thorsten Hornung
- Department of Dermatology and Allergy, Christine Kühne Center for Allergy Research and Education (CK-CARE), University Hospital-Bonn, Bonn, Germany
| | - Thomas Bieber
- Department of Dermatology and Allergy, Christine Kühne Center for Allergy Research and Education (CK-CARE), University Hospital-Bonn, Bonn, Germany
| | - Christian Schumann
- Department of Pulmonology, Thorax Oncology, Sleep and Respiration Medicine, Hospital Group Allgäu, Kempten, Germany
| | - Volker Kächele
- Medical Centre for Haematology and Oncology, Ulm, Germany
| | | | - Volker Heinemann
- Department of Internal Medicine III, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Julia Carolin Stingl
- Institute of Clinical Pharmacology, University Hospital of the RWTH Aachen, Aachen, Germany
| |
Collapse
|
12
|
Liu J, Qiu X, Lv Y, Zheng C, Dong Y, Dou G, Zhu B, Liu A, Wang W, Zhou J, Liu S, Liu S, Gao B, Jin Y. Apoptotic bodies derived from mesenchymal stem cells promote cutaneous wound healing via regulating the functions of macrophages. Stem Cell Res Ther 2020; 11:507. [PMID: 33246491 PMCID: PMC7694913 DOI: 10.1186/s13287-020-02014-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As the major interface between the body and the external environment, the skin is liable to various injuries. Skin injuries often lead to severe disability, and the exploration of promising therapeutic strategies is of great importance. Exogenous mesenchymal stem cell (MSC)-based therapy is a potential strategy due to the apparent therapeutic effects, while the underlying mechanism is still elusive. Interestingly, we observed the extensive apoptosis of exogenous bone marrow mesenchymal stem cells (BMMSCs) in a short time after transplantation in mouse skin wound healing models. Considering the roles of extracellular vesicles (EVs) in intercellular communication, we hypothesized that the numerous apoptotic bodies (ABs) released during apoptosis may partially contribute to the therapeutic effects. METHODS ABs derived from MSCs were extracted, characterized, and applied in mouse skin wound healing models, and the therapeutic effects were evaluated. Then, the target cells of ABs were explored, and the effects of ABs on macrophages were investigated in vitro. RESULTS We found ABs derived from MSCs promoted cutaneous wound healing via triggering the polarization of macrophages towards M2 phenotype. In addition, the functional converted macrophages further enhanced the migration and proliferation abilities of fibroblasts, which together facilitated the wound healing process. CONCLUSIONS Collectively, our study demonstrated that transplanted MSCs promoted cutaneous wound healing partially through releasing apoptotic bodies which could convert the macrophages towards an anti-inflammatory phenotype that plays a crucial role in the tissue repair process.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xinyu Qiu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yajie Lv
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Dermatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Chenxi Zheng
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yan Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Geng Dou
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Bin Zhu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Stomatology, General Hospital of Tibet Military Region, Lhasa, 850007, Tibet, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wei Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, Fourth Military Medical University, Xi'an, China
| | - Jun Zhou
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Siying Liu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Bo Gao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
13
|
Nour S, Imani R, Chaudhry GR, Sharifi AM. Skin wound healing assisted by angiogenic targeted tissue engineering: A comprehensive review of bioengineered approaches. J Biomed Mater Res A 2020; 109:453-478. [PMID: 32985051 DOI: 10.1002/jbm.a.37105] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022]
Abstract
Skin injuries and in particular, chronic wounds, are one of the major prevalent medical problems, worldwide. Due to the pivotal role of angiogenesis in tissue regeneration, impaired angiogenesis can cause several complications during the wound healing process and skin regeneration. Therefore, induction or promotion of angiogenesis can be considered as a promising approach to accelerate wound healing. This article presents a comprehensive overview of current and emerging angiogenesis induction methods applied in several studies for skin regeneration, which are classified into the cell, growth factor, scaffold, and biological/chemical compound-based strategies. In addition, the advantages and disadvantages of these angiogenic strategies along with related research examples are discussed in order to demonstrate their potential in the treatment of wounds.
Collapse
Affiliation(s)
- Shirin Nour
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - G Rasul Chaudhry
- OU-WB Institute for Stem Cell and Regenerative Medicine, Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Ali Mohammad Sharifi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Group (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
MicroRNA-141-3p and microRNA-200a-3p regulate α-melanocyte stimulating hormone-stimulated melanogenesis by directly targeting microphthalmia-associated transcription factor. Sci Rep 2020; 10:2149. [PMID: 32034251 PMCID: PMC7005774 DOI: 10.1038/s41598-020-58911-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
In recent years, it has been reported that non-coding RNAs, especially microRNAs (miRNAs) and long non-coding RNAs, act as melanogenesis-regulating molecules in melanocytes. We found that the expression levels of miR-141-3p and miR-200a-3p were decreased significantly by α-melanocyte-stimulating hormone (α-MSH) stimulation in mouse melanocyte B16-4A5 cells, as demonstrated by a miRNA array. Overexpression of miR-141-3p and miR-200a-3p in B16-4A5 cells suppressed melanogenesis and tyrosinase activity. Moreover, both miR-141-3p and miR-200a-3p showed direct targeting of microphthalmia-associated transcription factor using a luciferase reporter assay. Furthermore, topical transfection of miR-141-3p and miR-200a-3p to three-dimensional reconstructed human skin tissue inhibited α-MSH-stimulated melanin biosynthesis. Taken together, our findings indicate that downregulation of miR-141-3p and miR-200a-3p during the α-MSH-stimulated melanogenesis process acts as an important intrinsic signal. This result is expected to lead to the development of miRNA-based whitening therapeutics.
Collapse
|
15
|
Zhu Z, Zhang Y, Wu L, Hua K, Ding J. Regeneration-Related Functional Cargoes in Mesenchymal Stem Cell-Derived Small Extracellular Vesicles. Stem Cells Dev 2019; 29:15-24. [PMID: 31691632 DOI: 10.1089/scd.2019.0131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) are the primary effective source in stem cell-dependent regenerative medicine due to their preponderances over direct MSC implantation. An increasing number of studies have been carried out on MSC-sEV derived from different types of cells, and their function of accelerating tissue repair was proved. However, only a few researches were able to demonstrate the functional cargoes in MSC-sEV or their mechanisms in promoting tissue recovery. In this review, we present current achievements in discovering MSC-sEV-carried RNAs and proteins as promoters in tissue regeneration. Their therapeutic function includes modulating immune reactivity, promoting angiogenesis, and accelerating cell proliferation and migration through orchestrates of cell signaling pathways.
Collapse
Affiliation(s)
- Zhongyi Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yijing Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,Shanghai Ji Ai Genetics & IVF Institute, Shanghai, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jingxin Ding
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
16
|
Nour S, Baheiraei N, Imani R, Khodaei M, Alizadeh A, Rabiee N, Moazzeni SM. A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:120. [PMID: 31630272 DOI: 10.1007/s10856-019-6319-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/08/2019] [Indexed: 05/17/2023]
Abstract
Nowadays, due to a growing number of tissue injuries, in particular, skin wounds, induction and promotion of tissue healing responses can be considered as a crucial step towards a complete regeneration. Recently, biomaterial design has been oriented towards promoting a powerful, effective, and successful healing. Biomaterials with wound management abilities have been developed for different applications such as providing a native microenvironment and supportive matrices that induce the growth of tissue, creating physical obstacles against microbial contamination, and to be used as delivery systems for therapeutic reagents. Until now, numerous strategies aiming to accelerate the wound healing process have been utilized and studied with their own pros and cons. In this review, tissue remodeling phenomena, wound healing mechanisms, and their related factors will be discussed. In addition, different methods for induction and acceleration of healing via cell therapy, bioactive therapeutic delivery, and/or biomaterial-based approaches will be reviewed.
Collapse
Affiliation(s)
- Shirin Nour
- Department of Biomedical Engineering, Amirkabir University of Technology (polytechnic of Tehran), Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (polytechnic of Tehran), Tehran, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - S Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
17
|
Chouhan D, Dey N, Bhardwaj N, Mandal BB. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials 2019; 216:119267. [DOI: 10.1016/j.biomaterials.2019.119267] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/25/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022]
|
18
|
Kaur A, Midha S, Giri S, Mohanty S. Functional Skin Grafts: Where Biomaterials Meet Stem Cells. Stem Cells Int 2019; 2019:1286054. [PMID: 31354835 PMCID: PMC6636521 DOI: 10.1155/2019/1286054] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Skin tissue engineering has attained several clinical milestones making remarkable progress over the past decades. Skin is inhabited by a plethora of cells spatiotemporally arranged in a 3-dimensional (3D) matrix, creating a complex microenvironment of cell-matrix interactions. This complexity makes it difficult to mimic the native skin structure using conventional tissue engineering approaches. With the advent of newer fabrication strategies, the field is evolving rapidly. However, there is still a long way before an artificial skin substitute can fully mimic the functions and anatomical hierarchy of native human skin. The current focus of skin tissue engineers is primarily to develop a 3D construct that maintains the functionality of cultured cells in a guided manner over a period of time. While several natural and synthetic biopolymers have been translated, only partial clinical success is attained so far. Key challenges include the hierarchical complexity of skin anatomy; compositional mismatch in terms of material properties (stiffness, roughness, wettability) and degradation rate; biological complications like varied cell numbers, cell types, matrix gradients in each layer, varied immune responses, and varied methods of fabrication. In addition, with newer biomaterials being adopted for fabricating patient-specific skin substitutes, issues related to escalating processing costs, scalability, and stability of the constructs under in vivo conditions have raised some concerns. This review provides an overview of the field of skin regenerative medicine, existing clinical therapies, and limitations of the current techniques. We have further elaborated on the upcoming tissue engineering strategies that may serve as promising alternatives for generating functional skin substitutes, the pros and cons associated with each technique, and scope of their translational potential in the treatment of chronic skin ailments.
Collapse
Affiliation(s)
- Amtoj Kaur
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Swati Midha
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
The Role of Extracellular Vesicles in Cutaneous Remodeling and Hair Follicle Dynamics. Int J Mol Sci 2019; 20:ijms20112758. [PMID: 31195626 PMCID: PMC6600598 DOI: 10.3390/ijms20112758] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are cell-derived membranous structures that were originally catalogued as a way of releasing cellular waste products. Since the discovery of their function in intercellular communication as carriers of proteins, lipids, and DNA and RNA molecules, numerous therapeutic approaches have focused on the use of EVs, in part because of their minimized risk compared to cell-based therapies. The skin is the organ with the largest surface in the body. Besides the importance of its body barrier function, much attention has been paid to the skin in regenerative medicine because of its cosmetic aspect, which is closely related to disorders affecting pigmentation and the presence or absence of hair follicles. The use of exosomes in therapeutic approaches for cutaneous wound healing has been reported and is briefly reviewed here. However, less attention has been paid to emerging interest in the potential capacity of EVs as modulators of hair follicle dynamics. Hair follicles are skin appendices that mainly comprise an epidermal and a mesenchymal component, with the former including a major reservoir of epithelial stem cells but also melanocytes and other cell types. Hair follicles continuously cycle, undergoing consecutive phases of resting, growing, and regression. Many biomolecules carried by EVs have been involved in the control of the hair follicle cycle and stem cell function. Thus, investigating the role of either naturally produced or therapeutically delivered EVs as signaling vehicles potentially involved in skin homeostasis and hair cycling may be an important step in the attempt to design future strategies towards the efficient treatment of several skin disorders.
Collapse
|
20
|
Wound healing after cultured epithelial autografting in patients with massive burn injury: A cohort study. J Plast Reconstr Aesthet Surg 2019; 72:427-437. [DOI: 10.1016/j.bjps.2018.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/12/2018] [Accepted: 11/03/2018] [Indexed: 01/26/2023]
|
21
|
Bjørge IM, Kim SY, Mano JF, Kalionis B, Chrzanowski W. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine - a new paradigm for tissue repair. Biomater Sci 2018; 6:60-78. [PMID: 29184934 DOI: 10.1039/c7bm00479f] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue regeneration by stem cells is driven by the paracrine activity of shedding vesicles and exosomes, which deliver specific cargoes to the recipient cells. Proteins, RNA, cytokines and subsequent gene expression, orchestrate the regeneration process by improving the microenvironment to promote cell survival, controlling inflammation, repairing injury and enhancing the healing process. The action of microRNA is widely accepted as an essential driver of the regenerative process through its impact on multiple downstream biological pathways, and its ability to regulate the host immune response. Here, we present an overview of the recent potential uses of exosomes for regenerative medicine and tissue engineering. We also highlight the differences in composition between shedding vesicles and exosomes that depend on the various types of stem cells from which they are derived. The conditions that affect the production of exosomes in different cell types are deliberated. This review also presents the current status of candidate exosomal microRNAs for potential therapeutic use in regenerative medicine, and in applications involving widely studied organs and tissues such as heart, lung, cartilage and bone.
Collapse
Affiliation(s)
- I M Bjørge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | | | | | | | | |
Collapse
|
22
|
Long S, Zhao N, Ge L, Wang G, Ran X, Wang J, Su Y, Wang T. MiR-21 ameliorates age-associated skin wound healing defects in mice. J Gene Med 2018; 20:e3022. [DOI: 10.1002/jgm.3022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Shuang Long
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Military Medical University; Chongqing China
| | - Na Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Military Medical University; Chongqing China
| | - Lan Ge
- Department of Dermatology, Southwest Hospital; Army Military Medical University; Chongqing China
| | - Guojian Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Military Medical University; Chongqing China
| | - Xinze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Military Medical University; Chongqing China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Military Medical University; Chongqing China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Military Medical University; Chongqing China
| | - Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Military Medical University; Chongqing China
| |
Collapse
|
23
|
Dolbashid AS, Mokhtar MS, Muhamad F, Ibrahim F. Potential applications of human artificial skin and electronic skin (e-skin): a review. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.17.00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Asdani Saifullah Dolbashid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mas Sahidayana Mokhtar
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Curtin CM, Castaño IM, O'Brien FJ. Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer. Adv Healthc Mater 2018; 7. [PMID: 29068566 DOI: 10.1002/adhm.201700695] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/21/2017] [Indexed: 12/17/2022]
Abstract
microRNA-based therapies are an advantageous strategy with applications in both regenerative medicine (RM) and cancer treatments. microRNAs (miRNAs) are an evolutionary conserved class of small RNA molecules that modulate up to one third of the human nonprotein coding genome. Thus, synthetic miRNA activators and inhibitors hold immense potential to finely balance gene expression and reestablish tissue health. Ongoing industry-sponsored clinical trials inspire a new miRNA therapeutics era, but progress largely relies on the development of safe and efficient delivery systems. The emerging application of biomaterial scaffolds for this purpose offers spatiotemporal control and circumvents biological and mechanical barriers that impede successful miRNA delivery. The nascent research in scaffold-mediated miRNA therapies translates know-how learnt from studies in antitumoral and genetic disorders as well as work on plasmid (p)DNA/siRNA delivery to expand the miRNA therapies arena. In this progress report, the state of the art methods of regulating miRNAs are reviewed. Relevant miRNA delivery vectors and scaffold systems applied to-date for RM and cancer treatment applications are discussed, as well as the challenges involved in their design. Overall, this progress report demonstrates the opportunity that exists for the application of miRNA-activated scaffolds in the future of RM and cancer treatments.
Collapse
Affiliation(s)
- Caroline M. Curtin
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| |
Collapse
|
25
|
Zhu N, Huang K, Liu Y, Zhang H, Lin E, Zeng Y, Li H, Xu Y, Cai B, Yuan Y, Li Y, Lin C. miR-195-5p Regulates Hair Follicle Inductivity of Dermal Papilla Cells by Suppressing Wnt/ β-Catenin Activation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4924356. [PMID: 29850524 PMCID: PMC5937601 DOI: 10.1155/2018/4924356] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/11/2018] [Accepted: 03/05/2018] [Indexed: 02/05/2023]
Abstract
Dermal papilla (DP) cells play a vital role in hair follicle (HF) development and postnatal hair cycling. However, the abilities are lost on further culture. Recent studies have demonstrated significant influences of posttranscriptional regulation by microRNA (miRNA) on HF development. The current study aims to investigate how miRNAs regulate Wnt/β-catenin to control HF inductivity of DP cells by performing microarray analysis in early- and late-passage DP cells and transfecting with miRNAs inhibitor or mimic. Results showed early-passage DP cells strongly expressed miRNAs related to inhibition of noncanonical Wnt pathways. In late-passage DP cells, miRNAs capable of inhibiting the canonical Wnt/β-catenin pathway were upregulated, in addition to the miRNAs targeting the noncanonical Wnt pathway. Moreover, we verified that β-catenin expression was downregulated by miR-195-5p overexpression in dose manner. Meanwhile LRP6 expression was downregulated in both protein and mRNA as well as the genes involved in the hair inductivity of DP cells. These results suggest that the appearance of miRNAs that suppress the Wnt/β-catenin pathway may be responsible for the loss of ability of DP cells in culture and miR-195-5p is the potential key factor involved in regulating HF inductivity of DP cells.
Collapse
Affiliation(s)
- Ningxia Zhu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi 541004, China
- Department of Cardiology, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Keng Huang
- Department of Emergency, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yang Liu
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Huan Zhang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - En Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yang Zeng
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Haihong Li
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Yanming Xu
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bozhi Cai
- Tissue Engineering Laboratory, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yanping Yuan
- Tissue Engineering Laboratory, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yu Li
- Tissue Engineering Laboratory, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
26
|
Serra R, Rizzuto A, Rossi A, Perri P, Barbetta A, Abdalla K, Caroleo S, Longo C, Amantea B, Sammarco G, de Franciscis S. Skin grafting for the treatment of chronic leg ulcers - a systematic review in evidence-based medicine. Int Wound J 2017; 14:149-157. [PMID: 26940940 PMCID: PMC7949524 DOI: 10.1111/iwj.12575] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/31/2015] [Accepted: 02/04/2016] [Indexed: 12/13/2022] Open
Abstract
Skin grafting is one of the most common surgical procedures in the area of non-healing wounds by which skin or a skin substitute is placed over a wound to replace and regenerate the damaged skin. Chronic leg ulcers are an important problem and a major source of expense for Western countries and for which many different forms of treatment have been used. Skin grafting is a method of treatment that decreases the area of chronic leg ulcers or heals them completely, thus improving a patient's quality of life. Skin grafting is an old technique, rediscovered during the first and second world wars as the main treatment for wound closure. Nowadays, skin grafting has a pivotal role in the context of modern wound healing and tissue regeneration. The aim of this review was to track and to analyse the specific outcomes this technique achieved, especially in the last decade, in relation to venous, arterial, diabetic, rheumatoid and traumatic leg ulcers. Our main findings indicate that autologous split-thickness skin grafting still remains the gold standard in terms of safety and efficacy for chronic leg ulcers; skin grafting procedures have greater success rates in chronic venous leg ulcers compared to other types of chronic leg ulcers; skin tissue engineering, also supported by genetic manipulation, is quickly expanding and, in the near future, may provide even better outcomes in the area of treatments for long-lasting chronic wounds.
Collapse
Affiliation(s)
- Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental BiotechnologyUniversity Magna Graecia of CatanzaroCatanzaroItaly
- Department of Medical and Surgical SciencesUniversity of CatanzaroCatanzaroItaly
| | - Antonia Rizzuto
- Department of Medical and Surgical SciencesUniversity of CatanzaroCatanzaroItaly
| | - Alessio Rossi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”University of MoliseCampobassoItaly
| | - Paolo Perri
- Department of Medical and Surgical SciencesUniversity of CatanzaroCatanzaroItaly
| | - Andrea Barbetta
- Department of Medical and Surgical SciencesUniversity of CatanzaroCatanzaroItaly
| | - Karim Abdalla
- Department of Medical and Surgical SciencesUniversity of CatanzaroCatanzaroItaly
| | - Santo Caroleo
- Department of Medical and Surgical SciencesUniversity of CatanzaroCatanzaroItaly
| | - Chiara Longo
- Department of Physical Medicine and RehabilitationHospital of Saint‐FlourSaint‐FlourFrance
| | - Bruno Amantea
- Department of Medical and Surgical SciencesUniversity of CatanzaroCatanzaroItaly
| | - Giuseppe Sammarco
- Department of Medical and Surgical SciencesUniversity of CatanzaroCatanzaroItaly
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental BiotechnologyUniversity Magna Graecia of CatanzaroCatanzaroItaly
- Department of Medical and Surgical SciencesUniversity of CatanzaroCatanzaroItaly
| |
Collapse
|
27
|
Mohammadi P, Youssef KK, Abbasalizadeh S, Baharvand H, Aghdami N. Human Hair Reconstruction: Close, But Yet So Far. Stem Cells Dev 2016; 25:1767-1779. [PMID: 27649771 DOI: 10.1089/scd.2016.0137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Billions of dollars are annually invested in pharmaceutical industry and cosmetic sector with intent to develop new drugs and treatment strategies for alopecia. Because the hair looks an important characteristic of humans-an effective appendage in perception, expression of beauty, and preservation of self-esteem-the global market for hair loss treatment products is exponentially increasing. However, current methods to treat hair loss endure yet multiple challenges, such as unfavorable outcomes, nonpermanent and patient-dependent results, as well as unpredictable impacts, which limit their application. Over recent years, remarkable advances in the fields of regenerative medicine and hair tissue engineering have raised new hopes for introducing novel cell-based approaches to treat hair loss. Through cell-based approaches, it is possible to produce hair-like structures in the laboratory setting or manipulate cells in their native niche (in vivo lineage reprogramming) to reconstruct the hair follicle. However, challenging issues still exist with the functionality of cultured human hair cells, the proper selection of nonhair cell sources in cases of shortage of donor hair, and the development of defined culture conditions. Moreover, in the case of in vivo lineage reprogramming, selecting appropriate induction factors and their efficient delivery to guide resident cells into a hair fate-with the aim of reconstructing functional hair-still needs further explorations. In this study, we highlight recent advances and current challenges in hair loss treatment using cell-based approaches and provide novel insights for crucial steps, which must be taken into account to develop reproducible, safe, and efficient cell-based treatment.
Collapse
Affiliation(s)
- Parvaneh Mohammadi
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran .,2 Department of Developmental Biology, University of Science and Culture , Tehran, Iran
| | - Khalil Kass Youssef
- 3 Department of Developmental Neurobiology, Instituto de Neurociencias CSIC-UMH , San Juan de Alicante, Spain
| | - Saeed Abbasalizadeh
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran
| | - Hossein Baharvand
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran .,2 Department of Developmental Biology, University of Science and Culture , Tehran, Iran
| | - Nasser Aghdami
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran
| |
Collapse
|
28
|
Frueh FS, Menger MD, Lindenblatt N, Giovanoli P, Laschke MW. Current and emerging vascularization strategies in skin tissue engineering. Crit Rev Biotechnol 2016; 37:613-625. [PMID: 27439727 DOI: 10.1080/07388551.2016.1209157] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascularization is a key process in skin tissue engineering, determining the biological function of artificial skin implants. Hence, efficient vascularization strategies are a major prerequisite for the safe application of these implants in clinical practice. Current approaches include (i) modification of structural and physicochemical properties of dermal scaffolds, (ii) biological scaffold activation with growth factor-releasing systems or gene vectors, and (iii) generation of prevascularized skin substitutes by seeding scaffolds with vessel-forming cells. These conventional approaches may be further supplemented by emerging strategies, such as transplantation of adipose tissue-derived microvascular fragments, 3D bioprinting and microfluidics, miRNA modulation, cell sheet engineering, and fabrication of photosynthetic scaffolds. The successful translation of these vascularization strategies from bench to bedside may pave the way for a broad clinical implementation of skin tissue engineering.
Collapse
Affiliation(s)
- Florian S Frueh
- a Institute for Clinical and Experimental Surgery , Saarland University , Homburg (Saar) , Germany.,b Division of Plastic Surgery and Hand Surgery , University Hospital Zurich , Zurich , Switzerland
| | - Michael D Menger
- a Institute for Clinical and Experimental Surgery , Saarland University , Homburg (Saar) , Germany
| | - Nicole Lindenblatt
- b Division of Plastic Surgery and Hand Surgery , University Hospital Zurich , Zurich , Switzerland
| | - Pietro Giovanoli
- b Division of Plastic Surgery and Hand Surgery , University Hospital Zurich , Zurich , Switzerland
| | - Matthias W Laschke
- a Institute for Clinical and Experimental Surgery , Saarland University , Homburg (Saar) , Germany
| |
Collapse
|