1
|
Prabhakaran R, Thamarai R, Sivasamy S, Dhandayuthapani S, Batra J, Kamaraj C, Karthik K, Shah MA, Mallik S. Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. Epigenetics Chromatin 2024; 17:31. [PMID: 39415281 PMCID: PMC11484394 DOI: 10.1186/s13072-024-00554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Cancer has arisen from both genetic mutations and epigenetic changes, making epigenetics a crucial area of research for innovative cancer prevention and treatment strategies. This dual perspective has propelled epigenetics into the forefront of cancer research. This review highlights the important roles of DNA methylation, histone modifications and non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs, which are key regulators of cancer-related gene expression. It explores the potential of epigenetic-based therapies to revolutionize patient outcomes by selectively modulating specific epigenetic markers involved in tumorigenesis. The review examines promising epigenetic biomarkers for early cancer detection and prognosis. It also highlights recent progress in oligonucleotide-based therapies, including antisense oligonucleotides (ASOs) and antimiRs, to precisely modulate epigenetic processes. Furthermore, the concept of epigenetic editing is discussed, providing insight into the future role of precision medicine for cancer patients. The integration of nanomedicine into cancer therapy has been explored and offers innovative approaches to improve therapeutic efficacy. This comprehensive review of recent advances in epigenetic-based cancer therapy seeks to advance the field of precision oncology, ultimately culminating in improved patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Rajkumar Prabhakaran
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Rajkumar Thamarai
- UGC Dr. D.S. Kothari Postdoctoral Fellow, Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Sivabalan Sivasamy
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | | | - Jyoti Batra
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Krishnasamy Karthik
- Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Mohd Asif Shah
- Department of Economics, Kardan University, Parwane Du, 1001, Kabul, Afghanistan.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, Massachusetts, 02115, United States.
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
2
|
Korsnes MS, Korsnes R. Initial refinement of data from video-based single-cell tracking. CANCER INNOVATION 2023; 2:416-432. [PMID: 38090384 PMCID: PMC10686135 DOI: 10.1002/cai2.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 10/15/2024]
Abstract
Background Video recording of cells offers a straightforward way to gain valuable information from their response to treatments. An indispensable step in obtaining such information involves tracking individual cells from the recorded data. A subsequent step is reducing such data to represent essential biological information. This can help to compare various single-cell tracking data yielding a novel source of information. The vast array of potential data sources highlights the significance of methodologies prioritizing simplicity, robustness, transparency, affordability, sensor independence, and freedom from reliance on specific software or online services. Methods The provided data presents single-cell tracking of clonal (A549) cells as they grow in two-dimensional (2D) monolayers over 94 hours, spanning several cell cycles. The cells are exposed to three different concentrations of yessotoxin (YTX). The data treatments showcase the parametrization of population growth curves, as well as other statistical descriptions. These include the temporal development of cell speed in family trees with and without cell death, correlations between sister cells, single-cell average displacements, and the study of clustering tendencies. Results Various statistics obtained from single-cell tracking reveal patterns suitable for data compression and parametrization. These statistics encompass essential aspects such as cell division, movements, and mutual information between sister cells. Conclusion This work presents practical examples that highlight the abundant potential information within large sets of single-cell tracking data. Data reduction is crucial in the process of acquiring such information which can be relevant for phenotypic drug discovery and therapeutics, extending beyond standardized procedures. Conducting meaningful big data analysis typically necessitates a substantial amount of data, which can stem from standalone case studies as an initial foundation.
Collapse
Affiliation(s)
- Mónica Suárez Korsnes
- Department of Clinical and Molecular MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Korsnes Biocomputing (KoBio)TrondheimNorway
| | | |
Collapse
|
3
|
Kim R, Kim JH. Engineered Extracellular Vesicles with Compound-Induced Cargo Delivery to Solid Tumors. Int J Mol Sci 2023; 24:ijms24119368. [PMID: 37298320 DOI: 10.3390/ijms24119368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Efficient delivery of functional factors into target cells remains challenging. Although extracellular vesicles (EVs) are considered to be potential therapeutic delivery vehicles, a variety of efficient therapeutic delivery tools are still needed for cancer cells. Herein, we demonstrated a promising method to deliver EVs to refractory cancer cells via a small molecule-induced trafficking system. We generated an inducible interaction system between the FKBP12-rapamycin-binding protein (FRB) domain and FK506 binding protein (FKBP) to deliver specific cargo to EVs. CD9, an abundant protein in EVs, was fused to the FRB domain, and the specific cargo to be delivered was linked to FKBP. Rapamycin recruited validated cargo to EVs through protein-protein interactions (PPIs), such as the FKBP-FRB interaction system. The released EVs were functionally delivered to refractory cancer cells, triple negative breast cancer cells, non-small cell lung cancer cells, and pancreatic cancer cells. Therefore, the functional delivery system driven by reversible PPIs may provide new possibilities for a therapeutic cure against refractory cancers.
Collapse
Affiliation(s)
- Raeyeong Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Jong Hyun Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| |
Collapse
|
4
|
Shi YX. Identification of the molecular function of tripartite motif containing 58 in human lung cancer. Oncol Lett 2021; 22:685. [PMID: 34434284 PMCID: PMC8335731 DOI: 10.3892/ol.2021.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 11/15/2022] Open
Abstract
Lung cancer is a major public health problem worldwide, with a high associated incidence and mortality. In the present study, novel epigenetic signatures were identified through genome-wide DNA methylation microarrays. The results revealed that tripartite motif containing 58 (TRIM58), a potential tumor suppressor gene exhibited high methylation and low expression in lung cancer tissue samples compared with normal tissues. Receiver operating characteristic curve analysis demonstrated that TRIM58 may be a promising early diagnostic indicator of lung cancer. In addition, the present study analyzed the role of TRIM58 in tumorigenesis and development in lung cancer A549 cells. Wound healing assay and transwell migration assay were used to investigate cell migration, and flow cytometry analysis was used to detect apoptosis. Silencing TRIM58 accelerated the proliferation and migration of lung cancer cells. In contrast, the overexpression of TRIM58 significantly inhibited the proliferation and migration of lung cancer cells and promoted apoptosis. Gene set enrichment analysis revealed that TRIM58 expression was negatively correlated with MYC targets, G2M checkpoints and the mTORC1 signaling pathway. These results of the present study suggested that TRIM58, a potential tumor suppressor gene may serve as a novel diagnostic biomarker and therapeutic target in human lung cancer.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
5
|
Fernandez A, O’Leary C, O’Byrne KJ, Burgess J, Richard DJ, Suraweera A. Epigenetic Mechanisms in DNA Double Strand Break Repair: A Clinical Review. Front Mol Biosci 2021; 8:685440. [PMID: 34307454 PMCID: PMC8292790 DOI: 10.3389/fmolb.2021.685440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Upon the induction of DNA damage, the chromatin structure unwinds to allow access to enzymes to catalyse the repair. The regulation of the winding and unwinding of chromatin occurs via epigenetic modifications, which can alter gene expression without changing the DNA sequence. Epigenetic mechanisms such as histone acetylation and DNA methylation are known to be reversible and have been indicated to play different roles in the repair of DNA. More importantly, the inhibition of such mechanisms has been reported to play a role in the repair of double strand breaks, the most detrimental type of DNA damage. This occurs by manipulating the chromatin structure and the expression of essential proteins that are critical for homologous recombination and non-homologous end joining repair pathways. Inhibitors of histone deacetylases and DNA methyltransferases have demonstrated efficacy in the clinic and represent a promising approach for cancer therapy. The aims of this review are to summarise the role of histone deacetylase and DNA methyltransferase inhibitors involved in DNA double strand break repair and explore their current and future independent use in combination with other DNA repair inhibitors or pre-existing therapies in the clinic.
Collapse
Affiliation(s)
- Alejandra Fernandez
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O’Leary
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Kenneth J O’Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Joshua Burgess
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Amila Suraweera
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
6
|
EZH2-dependent epigenetic modulation of histone H3 lysine-27 contributes to psoriasis by promoting keratinocyte proliferation. Cell Death Dis 2020; 11:826. [PMID: 33011750 PMCID: PMC7532974 DOI: 10.1038/s41419-020-03028-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
Psoriasis is characterized by keratinocyte hyperproliferation. While significant progress has been made in understanding the molecular mechanism regulating the proliferation of keratinocytes, little is known about the epigenetic factors that control this process. EZH2 and EZH2 mediated trimethylation of histone H3 lysine 27 (H3K27me3) was previously shown ectopically expressed in carcinoma and mediated proliferation, thereby we sought to clarify the role of EZH2–H3K27me3 in the proliferation of psoriatic keratinocyte. Interestingly, we found that EZH2 and H3K27me3 were both overexpressed in the epidermis of psoriatic lesional skin compared to normal skin. In vitro, the expression of EZH2 and H3K27me3 was stimulated in human keratinocytes treated with mixture of psoriasis-related cytokines pool (TNF-α, IFN-γ, IL-17A, and IL-22). Knockdown of EZH2 significantly reduced keratinocyte proliferative activity. Results from mRNA microarray analysis suggested that Kallikrein-8 (KLK8) might be the target gene of EZH2 in psoriatic keratinocytes. Overexpression or knockdown KLK8 could partially reverse the abnormal proliferation of keratinocytes caused by knockdown or overexpression of EZH2. In vivo, the inhibitor of EZH2, GSK126 could ameliorate the imiquimod-induced psoriasiform lesion. These results suggest that EZH2 might be a therapeutic target for the treatment of psoriasis.
Collapse
|
7
|
Shinjo K, Hara K, Nagae G, Umeda T, Katsushima K, Suzuki M, Murofushi Y, Umezu Y, Takeuchi I, Takahashi S, Okuno Y, Matsuo K, Ito H, Tajima S, Aburatani H, Yamao K, Kondo Y. A novel sensitive detection method for DNA methylation in circulating free DNA of pancreatic cancer. PLoS One 2020; 15:e0233782. [PMID: 32520974 PMCID: PMC7286528 DOI: 10.1371/journal.pone.0233782] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022] Open
Abstract
Despite recent advances in clinical treatment, pancreatic cancer remains a highly lethal malignancy. In order to improve the survival rate of patients with pancreatic cancer, the development of non-invasive diagnostic methods using effective biomarkers is urgently needed. Here, we developed a highly sensitive method to detect DNA methylation in cell-free (cf)DNA samples based on the enrichment of methyl-CpG binding (MBD) protein coupled with a digital PCR method (MBD–ddPCR). Five DNA methylation markers for the diagnosis of pancreatic cancer were identified through DNA methylation microarray analysis in 37 pancreatic cancers. The sensitivity and specificity of the five markers were validated in another independent cohort of pancreatic cancers (100% and 100%, respectively; n = 46) as well as in The Cancer Genome Atlas data set (96% and 90%, respectively; n = 137). MBD–ddPCR analysis revealed that DNA methylation in at least one of the five markers was detected in 23 (49%) samples of cfDNA from 47 patients with pancreatic cancer. Further, a combination of DNA methylation markers and the KRAS mutation status improved the diagnostic capability of this method (sensitivity and specificity, 68% and 86%, respectively). Genome-wide MBD-sequencing analysis in cancer tissues and corresponding cfDNA revealed that more than 80% of methylated regions were overlapping; DNA methylation profiles of cancerous tissues and cfDNA significantly correlated with each other (R = 0.97). Our data indicate that newly developed MBD–ddPCR is a sensitive method to detect cfDNA methylation and that using five marker genes plus KRAS mutations may be useful for the detection of pancreatic cancers.
Collapse
Affiliation(s)
- Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Genta Nagae
- Genome Science Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Umeda
- Genome Science Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Keisuke Katsushima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miho Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiteru Murofushi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Umezu
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan.,School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Ichiro Takeuchi
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hiroyuki Aburatani
- Genome Science Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kenji Yamao
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan.,Department of Gastroenterology, Narita Memorial Hospital, Toyohashi, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Piperigkou Z, Karamanos NK. Estrogen receptor-mediated targeting of the extracellular matrix network in cancer. Semin Cancer Biol 2020; 62:116-124. [PMID: 31310807 DOI: 10.1016/j.semcancer.2019.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
|
9
|
DKK1 is epigenetically downregulated by promoter methylation and inhibits bile acid-induced gastric intestinal metaplasia. Biochem Biophys Res Commun 2020; 523:780-786. [PMID: 31952791 DOI: 10.1016/j.bbrc.2019.12.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
Dickkopf-related protein 1 (DKK1) is essential to gastric cancer as an inhibitor of Wnt signaling. Gastric intestinal metaplasia (GIM) is an important precancerous lesion of gastric cancer that can be activated by bile acid reflux and chronic inflammation. However, the exact mechanism of DKK1 in bile acid-induced GIM has not been completely elucidated. We aimed to explore the epigenetic alterations and biological functions of DKK1 in the development of GIM. In the present study, bile acid was found to induce the expression of intestinal markers in gastric epithelial cells, whereas DKK1 was downregulated in response to bile acid stimulation. The mRNA and protein expression levels of DKK1 were decreased in GIM tissues as evidenced by qRT-PCR and immunohistochemical staining. Surprisingly, the methylation of the DKK1 promoter increased in GIM tissues, and we discovered 28 differential methylation sites of the DKK1 promoter in GIM tissues. Bile acid was able to induce the partial methylation of the DKK1 promoter, while 5-aza could increase DKK1 expression as well as decrease intestinal markers expression in gastric epithelial cells. In conclusion, the promoter methylation and downregulation of DKK1 might play important roles in the development of GIM, especially bile acid-induced GIM.
Collapse
|
10
|
Novel Epigenetic Biomarkers in Pregnancy-Related Disorders and Cancers. Cells 2019; 8:cells8111459. [PMID: 31752198 PMCID: PMC6912400 DOI: 10.3390/cells8111459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
As the majority of cancers and gestational diseases are prognostically stage- and grade-dependent, the ultimate goal of ongoing studies in precision medicine is to provide early and timely diagnosis of such disorders. These studies have enabled the development of various new diagnostic biomarkers, such as free circulating nucleic acids, and detection of their epigenetic changes. Recently, extracellular vesicles including exosomes, microvesicles, oncosomes, and apoptotic bodies have been recognized as powerful diagnostic tools. Extracellular vesicles carry specific proteins, lipids, DNAs, mRNAs, and miRNAs of the cells that produced them, thus reflecting the function of these cells. It is believed that exosomes, in particular, may be the optimal biomarkers of pathological pregnancies and cancers, especially those that are frequently diagnosed at an advanced stage, such as ovarian cancer. In the present review, we survey and critically appraise novel epigenetic biomarkers related to free circulating nucleic acids and extracellular vesicles, focusing especially on their status in trophoblasts (pregnancy) and neoplastic cells (cancers).
Collapse
|
11
|
Mo G, Baldwin JR, Luffer-Atlas D, Ilaria RL, Conti I, Heathman M, Cronier DM. Population Pharmacokinetic Modeling of Olaratumab, an Anti-PDGFRα Human Monoclonal Antibody, in Patients with Advanced and/or Metastatic Cancer. Clin Pharmacokinet 2019. [PMID: 28620891 PMCID: PMC5814542 DOI: 10.1007/s40262-017-0562-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background and Objectives Olaratumab is a recombinant human monoclonal antibody that binds to platelet-derived growth factor receptor-α (PDGFRα). In a randomized phase II study, olaratumab plus doxorubicin met its predefined primary endpoint for progression-free survival and achieved a highly significant improvement in overall survival versus doxorubicin alone in patients with advanced or metastatic soft tissue sarcoma (STS). In this study, we characterize the pharmacokinetics (PKs) of olaratumab in a cancer patient population. Methods Olaratumab was tested at 15 or 20 mg/kg in four phase II studies (in patients with nonsmall cell lung cancer, glioblastoma multiforme, STS, and gastrointestinal stromal tumors) as a single agent or in combination with chemotherapy. PK sampling was performed to measure olaratumab serum levels. PK data were analyzed by nonlinear mixed-effect modeling techniques using NONMEM®. Results The PKs of olaratumab were best described by a two-compartment PK model with linear clearance (CL). Patient body weight was found to have a significant effect on both CL and central volume of distribution (V1), whereas tumor size significantly affected CL. A small subset of patients developed treatment-emergent anti-drug antibodies (TE-ADAs); however, TE-ADAs did not have any effect on CL or PK time course of olaratumab. There was no difference in the PKs of olaratumab between patients who received olaratumab as a single agent or in combination with chemotherapy. Conclusion The PKs of olaratumab were best described by a model with linear disposition. Patient body weight and tumor size were found to be significant covariates. The PKs of olaratumab were not affected by immunogenicity or chemotherapeutic agents. Electronic supplementary material The online version of this article (doi:10.1007/s40262-017-0562-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gary Mo
- Eli Lilly and Company, Indianapolis, IN, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Li W, Chen S, Xu D, Wen Q, Yang T, Liu J. A DNA as a Substrate and an Enzyme: Direct Profiling of Methyltransferase Activity by Cytosine Methylation of a DNAzyme. Chemistry 2018; 24:14500-14505. [DOI: 10.1002/chem.201802822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Wang Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
- Department of Chemistry, Water Institute and Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Siyi Chen
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Dong Xu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Qian Wen
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Tao Yang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Juewen Liu
- Department of Chemistry, Water Institute and Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
13
|
Itoh Y. Chemical Protein Degradation Approach and its Application to Epigenetic Targets. CHEM REC 2018; 18:1681-1700. [PMID: 29893461 DOI: 10.1002/tcr.201800032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022]
Abstract
In addition to traditional drugs, such as enzyme inhibitors, receptor agonists/antagonists, and protein-protein interaction inhibitors as well as genetic technology, such as RNA interference and the CRISPR/Cas9 system, protein knockdown approaches using proteolysis-targeting chimeras (PROTACs) have attracted much attention. PROTACs, which induce selective degradation of their target protein via the ubiquitin-proteasome system, are useful for the down-regulation of various proteins, including disease-related proteins and epigenetic proteins. Recent reports have shown that chemical protein knockdown is possible not only in cells, but also in vivo and this approach is expected to be used as the therapeutic strategy for several diseases. Thus, this approach may be a significant technique to complement traditional drugs and genetic ablation and will be more widely used for drug discovery and chemical biology studies in the future. In this personal account, a history of chemical protein knockdown is introduced, and its features, recent progress in the epigenetics field, and future outlooks are discussed.
Collapse
Affiliation(s)
- Yukihiro Itoh
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| |
Collapse
|
14
|
Angrish MM, Allard P, McCullough SD, Druwe IL, Helbling Chadwick L, Hines E, Chorley BN. Epigenetic Applications in Adverse Outcome Pathways and Environmental Risk Evaluation. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:045001. [PMID: 29669403 PMCID: PMC6071815 DOI: 10.1289/ehp2322] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/15/2018] [Accepted: 03/01/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND The epigenome may be an important interface between environmental chemical exposures and human health. However, the links between epigenetic modifications and health outcomes are often correlative and do not distinguish between cause and effect or common-cause relationships. The Adverse Outcome Pathway (AOP) framework has the potential to demonstrate, by way of an inference- and science-based analysis, the causal relationship between chemical exposures, epigenome, and adverse health outcomes. OBJECTIVE The objective of this work is to discuss the epigenome as a modifier of exposure effects and risk, perspectives for integrating toxicoepigenetic data into an AOP framework, tools for the exploration of epigenetic toxicity, and integration of AOP-guided epigenetic information into science and risk-assessment processes. DISCUSSION Organizing epigenetic information into the topology of a qualitative AOP network may help describe how a system will respond to epigenetic modifications caused by environmental chemical exposures. However, understanding the biological plausibility, linking epigenetic effects to short- and long-term health outcomes, and including epigenetic studies in the risk assessment process is met by substantive challenges. These obstacles include understanding the complex range of epigenetic modifications and their combinatorial effects, the large number of environmental chemicals to be tested, and the lack of data that quantitatively evaluate the epigenetic effects of environmental exposure. CONCLUSION We anticipate that epigenetic information organized into AOP frameworks can be consistently used to support biological plausibility and to identify data gaps that will accelerate the pace at which epigenetic information is applied in chemical evaluation and risk-assessment paradigms. https://doi.org/10.1289/EHP2322.
Collapse
Affiliation(s)
- Michelle M Angrish
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Patrick Allard
- University of California Los Angeles Institute for Society and Genetics, Los Angeles, California, USA
| | - Shaun D McCullough
- National Health and Environmental Effects Research Laboratory, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Ingrid L Druwe
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Lisa Helbling Chadwick
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Erin Hines
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Brian N Chorley
- University of California Los Angeles Institute for Society and Genetics, Los Angeles, California, USA
| |
Collapse
|
15
|
Integrated analysis of promoter methylation and expression of telomere related genes in breast cancer. Oncotarget 2018; 8:25442-25454. [PMID: 28424414 PMCID: PMC5421942 DOI: 10.18632/oncotarget.16036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Telomeres at the ends of eukaryotic chromosomes play a critical role in tumorgenesis. Using microfluidic PCR and next-generation bisulfite sequencing technology, we investigated the promoter methylation of 29 telomere related genes in paired tumor and normal tissues from 184 breast cancer patients. The expression of significantly differentially methylated genes was quantified using qPCR method.We observed that the average methylation level of the 29 telomere related genes was significant higher in tumor than that in normal tissues (P = 4.30E-21). A total of 4 genes (RAD50, RTEL, TERC and TRF1) showed significant hyper-methylation in breast tumor tissues. RAD51D showed significant methylation difference among the four breast cancer subtypes. The methylation of TERC showed significant association with ER status of breast cancer. The expression profiles of the 4 hyper-methylated genes showed significantly reduced expression in tumor tissues. The integration analysis of methylation and expression of these 4 genes showed a good performance in breast cancer prediction (AUC = 0.947).Our results revealed the methylation pattern of telomere related genes in breast cancer and suggested a novel 4-gene panel might be a valuable biomarker for breast cancer diagnosis.
Collapse
|
16
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
17
|
Okochi-Takada E, Hattori N, Ito A, Niwa T, Wakabayashi M, Kimura K, Yoshida M, Ushijima T. Establishment of a high-throughput detection system for DNA demethylating agents. Epigenetics 2018; 13:147-155. [PMID: 27935410 DOI: 10.1080/15592294.2016.1267887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic alterations underlie various human disorders, including cancer, and this has resulted in the development of drugs targeting epigenetic alterations. Although DNA demethylating agents are one of the major epigenetic drugs, only two compounds-5-azacytidine (5-aza-CR, azacitidine) and 5-aza-2'-deoxycytidine (5-aza-dC, decitabine)-have obtained clinical approval. Here, we aimed to establish a detection system for DNA demethylating agents suitable for a high-throughput screening (HTS) in mammalian cells. We inserted luciferase and EGFP reporter genes under the UCHL1 promoter, which is methylation-silenced in human colon cancers and can be readily demethylated to drive strong expression. Methylated UCHL1 promoter was introduced into HCT116 colon cancer cells, and transfectants with methylated exogenous UCHL1 promoter were obtained. By screening subclones from each of the epigenetically heterogeneous transfectant clones, we finally obtained three optimal subclones that expressed luciferase and EGFP after 5-aza-dC treatment with high signal-to-noise ratios. Nucleosomes with H3K9me2 were present around the exogenous UCHL1 promoter in all three subclones. Using one of the subclones (HML58-3), HTS was conducted using 19,840 small molecules. Two hit compounds were obtained, and these turned out to be 5-aza-dC and 5-aza-CR. The assay system constructed here demonstrates a robust response to DNA demethylating agents, along with high specificity, and will be useful for screening and biological assays in epigenetics.
Collapse
Affiliation(s)
- Eriko Okochi-Takada
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| | - Naoko Hattori
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| | - Akihiro Ito
- b Chemical Genetics Laboratory , RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 , Japan.,c Chemical Genomics Research Group , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa, Wako, Saitama 351-0198 , Japan
| | - Tohru Niwa
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| | - Mika Wakabayashi
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| | - Kana Kimura
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| | - Minoru Yoshida
- b Chemical Genetics Laboratory , RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 , Japan.,c Chemical Genomics Research Group , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa, Wako, Saitama 351-0198 , Japan.,d Seed Compounds Exploratory Unit for Drug Discovery Platform , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa, Wako, Saitama 351-0198 , Japan
| | - Toshikazu Ushijima
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| |
Collapse
|
18
|
Falzone L, Salemi R, Travali S, Scalisi A, McCubrey JA, Candido S, Libra M. MMP-9 overexpression is associated with intragenic hypermethylation of MMP9 gene in melanoma. Aging (Albany NY) 2017; 8:933-44. [PMID: 27115178 PMCID: PMC4931845 DOI: 10.18632/aging.100951] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Abstract
Tumor spreading is associated with the degradation of extracellular matrix proteins, mediated by the overexpression of matrix metalloproteinase 9 (MMP-9). Although, such overexpression was linked to epigenetic promoter methylation, the role of intragenic methylation was not clarified yet. Melanoma was used as tumor model to investigate the relationship between the DNA intragenic methylation of MMP9 gene and MMP-9 overexpression at transcriptional and protein levels. Computational analysis revealed DNA hypermethylation within the intragenic CpG-2 region of MMP9 gene in melanoma samples with high MMP-9 transcript levels. In vitro validation showed that CpG-2 hotspot region was hypermethylated in the A375 melanoma cell line with highest mRNA and protein levels of MMP-9, while low methylation levels were observed in the MEWO cell line where MMP-9 was undetectable. Concordant results were demonstrated in both A2058 and M14 cell lines. This correlation may give further insights on the role of MMP-9 upregulation in melanoma.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, 95124, Catania, Italy
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, 95124, Catania, Italy
| | - Salvatore Travali
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, 95124, Catania, Italy
| | | | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, 95124, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, 95124, Catania, Italy
| |
Collapse
|
19
|
Rahmani S, Abdollahi M. Novel treatment opportunities for sulfur mustard-related cancers: genetic and epigenetic perspectives. Arch Toxicol 2017; 91:3717-3735. [DOI: 10.1007/s00204-017-2086-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/02/2017] [Indexed: 12/24/2022]
|
20
|
Yun Y, Gao R, Yue H, Guo L, Li G, Sang N. Sulfate Aerosols Promote Lung Cancer Metastasis by Epigenetically Regulating the Epithelial-to-Mesenchymal Transition (EMT). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11401-11411. [PMID: 28901751 DOI: 10.1021/acs.est.7b02857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Secondary inorganic aerosols (SIA), particularly sulfate aerosols, are central particulate matter (PM) constituents of severe haze formation in China and exert profound impacts on human health; however, our understanding of the mechanisms by which sulfate aerosols cause malignancy in lung carcinogenesis remains incomplete. Here, we show that exposure to secondary inorganic aerosols induced the invasion and migration of lung epithelial cells, and that (NH4)2SO4 exerted the most serious effects in vitro and promoted lung tumor metastasis in vivo. This action was associated with alterations of phenotype markers in the epithelial-to-mesenchymal transition (EMT), such as the up-regulation of fibronectin (Fn1) and the down-regulation of E-cadherin (E-cad). Hypoxia-inducible factor 1α (HIF-1α)-Snail signaling, regulated by the generation of reactive oxygen species (ROS), was involved in the (NH4)2SO4-induced EMT, and the potent antioxidant N-acetylcysteine (NAC) inhibited the activation of HIF-1α-Snail and blocked the EMT, cell invasion, and migration in response to (NH4)2SO4. Additionally, CpG hypermethylation in the E-cad promoter regions partly contributed to the (NH4)2SO4-regulated E-cad repression, and the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza) restored the (NH4)2SO4-induced down-regulation of E-cad. Our findings reveal a potential mechanistic basis for exploring the association between sulfate aerosol exposure and increased malignancy during lung carcinogenesis, and suggest new approaches for the treatment, improvement, and prevention of lung cancer resulting from sulfate aerosol exposure in severe haze-fog.
Collapse
Affiliation(s)
- Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Lin Guo
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P.R. China
| |
Collapse
|
21
|
Abstract
In mammals, caloric restriction consistently results in extended lifespan. Epigenetic information encoded by DNA methylation is tightly regulated, but shows a striking drift associated with age that includes both gains and losses of DNA methylation at various sites. Here, we report that epigenetic drift is conserved across species and the rate of drift correlates with lifespan when comparing mice, rhesus monkeys, and humans. Twenty-two to 30-year-old rhesus monkeys exposed to 30% caloric restriction since 7–14 years of age showed attenuation of age-related methylation drift compared to ad libitum-fed controls such that their blood methylation age appeared 7 years younger than their chronologic age. Even more pronounced effects were seen in 2.7–3.2-year-old mice exposed to 40% caloric restriction starting at 0.3 years of age. The effects of caloric restriction on DNA methylation were detectable across different tissues and correlated with gene expression. We propose that epigenetic drift is a determinant of lifespan in mammals. Caloric restriction has been shown to increase lifespan in mammals. Here, the authors provide evidence that age-related methylation drift correlates with lifespan and that caloric restriction in mice and rhesus monkeys results in attenuation of age-related methylation drift.
Collapse
|
22
|
Han S, Yang X, Pan Y, Qi Q, Shen J, Fang H, Ji Z. L-securinine inhibits the proliferation of A549 lung cancer cells and promotes DKK1 promoter methylation. Oncol Lett 2017; 14:4243-4248. [PMID: 28943934 DOI: 10.3892/ol.2017.6693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
Abstract
L-securinine is a natural product extracted and isolated from the leaf of dried Securinega suffruticosa. The aim of the present study was to explore the effects of L-securinine on proliferation, and the methylation profile of the dickkopf-related protein 1 (DKK1) gene in human lung cancer cells and fibroblasts. L-securinine was extracted, isolated and the structure was identified. The cytotoxicity of L-securinine in A549 cells was evaluated by Cell Counting Kit-8 assays. The expression and DNA methylation profile of DKK genes was analyzed by reverse transcription-quantitative polymerase chain reaction and bisulfite sequencing polymerase chain reaction, respectively. L-securinine inhibited the proliferation of lung cancer cells; the half-maximal inhibitory concentration values were 8.92, 4.73 and 3.81 µg/ml, at 24, 36 and 48 h post-treatment, respectively. DKK1, 2 and 3 expression was significantly increased in A549 cells compared with HLF-a cells. L-securinine induced the downregulation of DKK1 in A549 cells in a dose-dependent manner and induced methylation changes at CpG sites in the DKK1 promoter region. L-securinine may be a potential anticancer drug that mediates its effects by altering DKK1 gene methylation.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Xi Yang
- Department of Oncology, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Yuefen Pan
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Junjun Shen
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Huifen Fang
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Zhaoning Ji
- The Cancer Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
23
|
Hodjat M, Rahmani S, Khan F, Niaz K, Navaei–Nigjeh M, Mohammadi Nejad S, Abdollahi M. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view. Arch Toxicol 2017; 91:2577-2597. [DOI: 10.1007/s00204-017-1979-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 01/12/2023]
|
24
|
Hegarty SV, Togher KL, O'Leary E, Solger F, Sullivan AM, O'Keeffe GW. Romidepsin induces caspase-dependent cell death in human neuroblastoma cells. Neurosci Lett 2017; 653:12-18. [PMID: 28506690 DOI: 10.1016/j.neulet.2017.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/02/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
Neuroblastoma is the most common extracranial pediatric solid tumor, arising from the embryonic sympathoadrenal lineage of the neural crest, and is responsible for 15% of childhood cancer deaths. Although survival rates are good for some patients, those children diagnosed with high-risk neuroblastoma have survival rates as low as 35%. Thus, neuroblastoma remains a significant clinical challenge and the development of novel therapeutic strategies is essential. Given that there is widespread epigenetic dysregulation in neuroblastoma, epigenetic pharmacotherapy holds promise as a therapeutic approach. In recent years, histone deacetylase (HDAC) inhibitors, which cause selective activation of gene expression, have been shown to be potent chemotherapeutics for the treatment of a wide range of cancers. Here we examined the ability of the FDA-approved drug Romidepsin, a selective HDAC1/2 inhibitor, to act as a cytotoxic agent in neuroblastoma cells. Treatment with Romidepsin at concentrations in the low nanomolar range induced neuroblastoma cell death through caspase-dependent apoptosis. Romidepsin significantly increased histone acetylation, and significantly enhanced the cytotoxic effects of the cytotoxic agent 6-hydroxydopamine, which has been shown to induce cell death in neuroblastoma cells through increasing reactive oxygen species. Romidepsin was also more potent in MYCN-amplified neuroblastoma cells, which is an important prognostic marker of poor survival. This study has thus demonstrated that the FDA-approved chemotherapeutic drug Romidepsin has a potent caspase-dependent cytotoxic effect on neuroblastoma cells, whose effects enhance cell death induced by other cytotoxins, and suggests that Romidepsin may be a promising chemotherapeutic candidate for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland
| | - Katie L Togher
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland; APC Microbiome Institute, UCC, Cork, Ireland; INFANT Centre, Cork University Maternity Hospital and UCC, Cork, Ireland
| | - Eimear O'Leary
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland
| | - Franziska Solger
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland; APC Microbiome Institute, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland; APC Microbiome Institute, UCC, Cork, Ireland; INFANT Centre, Cork University Maternity Hospital and UCC, Cork, Ireland.
| |
Collapse
|
25
|
Application of single-cell technology in cancer research. Biotechnol Adv 2017; 35:443-449. [PMID: 28390874 DOI: 10.1016/j.biotechadv.2017.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/24/2022]
Abstract
In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients.
Collapse
|
26
|
Diet phytochemicals and cutaneous carcinoma chemoprevention: A review. Pharmacol Res 2017; 119:327-346. [PMID: 28242334 DOI: 10.1016/j.phrs.2017.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/25/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
Abstract
Cutaneous carcinoma, which has occupied a peculiar place among worldwide populations, is commonly responsible for the considerably increasing morbidity and mortality rates. Currently available medical procedures fail to completely avoid cutaneous carcinoma development or to prevent mortality. Cancer chemoprevention, as an alternative strategy, is being considered to reduce the incidence and burden of cancers through chemical agents. Derived from dietary foods, phytochemicals have become safe and reliable compounds for the chemoprevention of cutaneous carcinoma by relieving multiple pathological processes, including oxidative damage, epigenetic alteration, chronic inflammation, angiogenesis, etc. In this review, we presented comprehensive knowledges, main molecular mechanisms for the initiation and development of cutaneous carcinoma as well as effects of various diet phytochemicals on chemoprevention.
Collapse
|
27
|
Clinical Decision Making: Integrating Advances in the Molecular Understanding of Spine Tumors. Spine (Phila Pa 1976) 2016; 41 Suppl 20:S171-S177. [PMID: 27488298 DOI: 10.1097/brs.0000000000001836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Literature review. OBJECTIVE To describe advancements in molecular techniques, biomarkers, technology, and targeted therapeutics and the potential these modalities hold to predict treatment paradigms, clinical outcomes, and/or survival in patients diagnosed with primary spinal column tumors. SUMMARY OF BACKGROUND DATA Advances in molecular technologies and techniques have influenced the prevention, diagnosis, and overall management of patients diagnosed with cancer. Assessment of genomic, proteomic alterations, epigenetic, and posttranslational modifications as well as developments in diagnostic modalities and targeted therapeutics, although the best studied in nonspinal metastatic disease, have led to increased understanding of spine oncology that is expected to improve patient outcomes. In this manuscript, the technological advancements that are expected to change the landscape of spinal oncology are discussed with a focus on how these technologies will aid in clinical decision-making for patients diagnosed with primary spinal tumors. METHODS A review of the literature was performed focusing on studies that integrated next-generation sequencing, circulating tumor cells/circulating tumor DNA, advances in imaging modalities and/or radiotherapy in the diagnosis and treatment of cancer. RESULTS We discuss genetic and epigenetic drivers, aberrations in receptor tyrosine kinase signaling, and emerging therapeutic strategies that include receptor tyrosine kinase inhibitors, immunotherapy strategies, and vaccine-based cancer prevention strategies. CONCLUSION The wide range of approaches currently in use and the emerging technologies yet to be fully realized will allow for better development of rationale therapeutics to improve patient outcomes. LEVEL OF EVIDENCE N/A.
Collapse
|
28
|
Wicki A, Mandalà M, Massi D, Taverna D, Tang H, Hemmings BA, Xue G. Acquired Resistance to Clinical Cancer Therapy: A Twist in Physiological Signaling. Physiol Rev 2016; 96:805-29. [DOI: 10.1152/physrev.00024.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although modern therapeutic strategies have brought significant progress to cancer care in the last 30 years, drug resistance to targeted monotherapies has emerged as a major challenge. Aberrant regulation of multiple physiological signaling pathways indispensable for developmental and metabolic homeostasis, such as hyperactivation of pro-survival signaling axes, loss of suppressive regulations, and impaired functionalities of the immune system, have been extensively investigated aiming to understand the diversity of molecular mechanisms that underlie cancer development and progression. In this review, we intend to discuss the molecular mechanisms of how conventional physiological signal transduction confers to acquired drug resistance in cancer patients. We will particularly focus on protooncogenic receptor kinase inhibition-elicited tumor cell adaptation through two major core downstream signaling cascades, the PI3K/Akt and MAPK pathways. These pathways are crucial for cell growth and differentiation and are frequently hyperactivated during tumorigenesis. In addition, we also emphasize the emerging roles of the deregulated host immune system that may actively promote cancer progression and attenuate immunosurveillance in cancer therapies. Understanding these mechanisms may help to develop more effective therapeutic strategies that are able to keep the tumor in check and even possibly turn cancer into a chronic disease.
Collapse
Affiliation(s)
- Andreas Wicki
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Mario Mandalà
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Daniela Massi
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Daniela Taverna
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Huifang Tang
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Brian A. Hemmings
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Gongda Xue
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| |
Collapse
|
29
|
Deng H, Peng SY, Gao Z. Highly sensitive detection of M.SssI DNA methyltransferase activity using a personal glucose meter. Anal Bioanal Chem 2016; 408:5867-5872. [DOI: 10.1007/s00216-016-9701-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
30
|
Qi JH, Wang YP, Lu QM. Hypermethylated tumor suppressor genes as potential biomarkers in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:2506-2512. [DOI: 10.11569/wcjd.v24.i16.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a common malignant tumor and the fourth cause of cancer related death in the world. Colorectal cancer is a consequence of the accumulation of multiple genetic and epigenetic changes that transform colon epithelial cells into invasive malignant adenoma. Epigenetic changes, especially CpG island methylation in the promoter region, occur more frequently than genetic mutations in colorectal cancer. Hypermethylation contributes to carcinogenesis by inducing transcriptional silencing or downregulation of tumor suppressor genes. Up to now, more than 600 hypermethylated gene candidates have been identified. The use of methylated tumor suppressor genes as minimally invasive biomarkers has broad prospects, and great progress has been made in this area. These biomarkers, either stool-based or blood-based, are now commercially available for diagnostics. However, hypermethylated tumor suppressor genes as prognostic and predictive markers are still at the primary stage of development.
Collapse
|