1
|
Reese TC, Devineni A, Smith T, Lalami I, Ahn JM, Raj GV. Evaluating physiochemical properties of FDA-approved orally administered drugs. Expert Opin Drug Discov 2024; 19:225-238. [PMID: 37921049 DOI: 10.1080/17460441.2023.2275617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Analyses of orally administered FDA-approved drugs from 1990 to 1993 enabled the identification of a set of physiochemical properties known as Lipinski's Rule of Five (Ro5). The original Ro5 and extended versions still remain the reference criteria for drug development programs. Since many bioactive compounds do not conform to the Ro5, we validated the relevance of and adherence to these rulesets in a contemporary cohort of FDA-approved drugs. AREAS COVERED The authors noted that a significant proportion of FDA-approved orally administered parent compounds from 2011 to 2022 deviate from the original Ro5 criteria (~38%) or the Ro5 with extensions (~53%). They then evaluated if a contemporary Ro5 criteria (cRo5) could be devised to better predict oral bioavailability. Furthermore, they discuss many case studies showcasing the need for and benefit of increasing the size of certain compounds and cover several evolving strategies for improving oral bioavailability. EXPERT OPINION Despite many revisions to the Ro5, the authors find that no single proposed physiochemical rule has universal concordance with absolute oral bioavailability. Innovations in drug delivery and formulation have dramatically expanded the range of physicochemical properties and the chemical diversity for oral administration.
Collapse
Affiliation(s)
- Tanner C Reese
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Anvita Devineni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Tristan Smith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ismail Lalami
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
2
|
Best practices in current models mimicking drug permeability in the gastrointestinal tract - an UNGAP review. Eur J Pharm Sci 2021; 170:106098. [PMID: 34954051 DOI: 10.1016/j.ejps.2021.106098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
The absorption of orally administered drug products is a complex, dynamic process, dependent on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but in vitro and ex vivo tools provide initial screening approaches are important tools for direct assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
Collapse
|
3
|
Lipophilic Salts and Lipid-Based Formulations for Bridging the Food Effect Gap of Venetoclax. J Pharm Sci 2021; 111:164-174. [PMID: 34516990 DOI: 10.1016/j.xphs.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/31/2023]
Abstract
Lipid based formulations (LBF) have shown to overcome food dependent bioavailability for some poorly water-soluble drugs. However, the utility of LBFs can be limited by low dose loading due to a low drug solubility in LBF vehicles. This study investigated the solubility and drug loading increases in LBFs using lipophilic counterions to form lipophilic salts of venetoclax. Venetoclax docusate was formed from venetoclax free base and verified by 1H NMR. Formation of stable venetoclax-fatty acid associations with either oleic acid or decanoic acid were attempted, however, the molecular associations were less consistent based on 1H NMR. Venetoclax docusate displayed a up to 6.2-fold higher solubility in self-emulsifying drug delivery systems (SEDDS) when compared to the venetoclax free base solubility resulting in a higher dose loading. A subsequent bioavailability study in landrace pigs demonstrated a 2.5-fold higher bioavailability for the lipophilic salt containing long chain SEDDS compared to the commercially available solid dispersion Venclyxto® in the fasted state. The bioavailability of all lipophilic salt SEDDS in the fasted state was similar to Venclyxto® in the fed state. This study confirmed that lipophilic drug salts increase the dose loading in LBFs and showed that lipophilic salt-SEDDS combinations may be able to overcome bioavailability limitations of drugs with low inherent dose loading in lipid vehicles. Furthermore, the present study demonstrated the utility of a LBF approach, in combination with lipophilic salts, to overcome food dependent variable oral bioavailability of drugs.
Collapse
|
4
|
Bennett-Lenane H, Jørgensen JR, Koehl NJ, Henze LJ, O'Shea JP, Müllertz A, Griffin BT. Exploring porcine gastric and intestinal fluids using microscopic and solubility estimates: Impact of placebo self-emulsifying drug delivery system administration to inform bio-predictive in vitro tools. Eur J Pharm Sci 2021; 161:105778. [PMID: 33647402 DOI: 10.1016/j.ejps.2021.105778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/09/2023]
Abstract
Validation and characterisation of in vitro and pre-clinical animal models to support bio-enabling formulation development is of paramount importance. In this work, post-mortem gastric and small intestinal fluids were collected in the fasted, fed state and at five sample-points post administration of a placebo Self-Emulsifying Drug Delivery System (SEDDS) in the fasted state to pigs. Cryo-TEM and Negative Stain-TEM were used for ultrastructure characterisation. Ex vivo solubility of fenofibrate was determined in the fasted-state, fed-state and post-SEDDS administration. Highest observed ex vivo drug solubility in intestinal fluids after SEDDS administration was used for optimising the biorelevant in vitro conditions to determine maximum solubility. Under microscopic evaluation, fasted, fed and SEDDS fluids resulted in different colloidal structures. Drug solubility appeared highest 1 hour post SEDDS administration, corresponding with presence of SEDDS lipid droplets. A 1:200 dispersion of SEDDS in biorelevant media matched the highest observed ex vivo solubility upon SEDDS administration. Overall, impacts of this study include increasing evidence for the pig preclinical model to mimic drug solubility in humans, observations that SEDDS administration may poorly mimic colloidal structures observed under fed state, while microscopic and solubility porcine assessments provided a framework for increasingly bio-predictive in vitro tools.
Collapse
Affiliation(s)
| | - Jacob R Jørgensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | | |
Collapse
|
5
|
Sharifian Gh M. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Mol Pharm 2021; 18:2122-2141. [PMID: 33914545 DOI: 10.1021/acs.molpharmaceut.1c00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to measure the passive membrane permeation of drug-like molecules is of fundamental biological and pharmaceutical importance. Of significance, passive diffusion across the cellular membranes plays an effective role in the delivery of many pharmaceutical agents to intracellular targets. Hence, approaches for quantitative measurement of membrane permeability have been the topics of research for decades, resulting in sophisticated biomimetic systems coupled with advanced techniques. In this review, recent developments in experimental approaches along with theoretical models for quantitative and real-time analysis of membrane transport of drug-like molecules through mimetic and living cell membranes are discussed. The focus is on time-resolved fluorescence-based, surface plasmon resonance, and second-harmonic light scattering approaches. The current understanding of how properties of the membrane and permeant affect the permeation process is discussed.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
6
|
Bennett-Lenane H, O'Shea JP, O'Driscoll CM, Griffin BT. A Retrospective Biopharmaceutical Analysis of >800 Approved Oral Drug Products: Are Drug Properties of Solid Dispersions and Lipid-Based Formulations Distinctive? J Pharm Sci 2020; 109:3248-3261. [DOI: 10.1016/j.xphs.2020.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
|
7
|
Doufène K, Malki Y, Vincent LA, Cuq P, Devoisselle JM, Masurier N, Aubert-Pouëssel A. Vegetable Oil-based Hybrid Submicron Particles Loaded with JMV5038: A Promising Formulation against Melanoma. J Pharm Sci 2020; 110:1197-1205. [PMID: 33069708 DOI: 10.1016/j.xphs.2020.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
The aim of this work was to carry out a preformulation study on JMV5038 as a new potent cytotoxic agent, and to develop its formulation within vegetable oil-based hybrid submicron particles (HNP) in order to obtain a versatile dosage form against melanoma. JMV5038 was first characterized through physico-chemical tests and it exhibited high melting point and logP value, an important pH-sensitivity that led to the formation of well-identified degradation products at low pH, as well as a substantial solubility value in silylated castor oil (ICO). Then, JMV5038-loaded HNP were formulated through a thermostabilized emulsion process based on the sol-gel cross-linking of ICO. They showed high loading efficiency and their in vitro release kinetic assessed in a biorelevant PBS/octanol biphasic system showed a constant sustained release over one month. The cytotoxic activity and cytocompatibility of HNP were evaluated on A375 melanoma cells and NIH 3T3 cells, respectively. JMV5038-loaded HNP exhibited a slightly enhanced cytotoxic activity of JMV5038 on melanoma cells while demonstrating their safety on NIH 3T3 cells. In conclusion, JMV5038-loaded HNP proved to be an efficient and safe drug subcutaneous delivery system that will be interesting to evaluate through preclinical studies.
Collapse
Affiliation(s)
- Koceïla Doufène
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Yohan Malki
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laure-Anaïs Vincent
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Devoisselle
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Anne Aubert-Pouëssel
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
8
|
The solubility, permeability and the dose as key factors in formulation development for oral lipophilic drugs: Maximizing the bioavailability of carbamazepine with a cosolvent-based formulation. Int J Pharm 2020; 582:119307. [PMID: 32276090 DOI: 10.1016/j.ijpharm.2020.119307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
The purpose of this research was to investigate drug dose, solubility, permeability, and their interplay, as key factors in oral formulation development for lipophilic drugs. A PEG400-based formulation was studied for five doses of the lipophilic drug carbamazepine, accounting for biorelevant dissolution of the dose in the GIT, and in-vivo bioavailability in rats. With the three lower doses (10, 25 and 50 mg/kg), complete in-vitro dissolution was achieved and maintained throughout the experiment with this formulation, while significant precipitation was obtained with higher doses (100 and 200 mg/kg). Likewise, the studied formulation allowed complete bioavailability in-vivo with the three lower doses, while the same formulation allowed only 76% and 42% bioavailability for the 100 and 200 mg/kg doses, respectively. There was good correlation between the in-vitro and in-vivo results. In conclusion, this work demonstrates that the dose is a crucial factor in formulation development; while a given formulation may be optimal for a certain drug dose, it may no longer be optimal for higher doses of the same drug. Hence, the solubility, the permeability, and their interplay, have to be considered in light of the drug dose intended to be administered in order to achieve successful oral formulation development.
Collapse
|
9
|
Yang W, Gadgil P, Krishnamurthy VR, Landis M, Mallick P, Patel D, Patel PJ, Reid DL, Sanchez-Felix M. The Evolving Druggability and Developability Space: Chemically Modified New Modalities and Emerging Small Molecules. AAPS JOURNAL 2020; 22:21. [DOI: 10.1208/s12248-019-0402-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
|
10
|
Govindaiah P, Dumala N, Mattan I, Grover P, Jaya Prakash M. Design, synthesis, biological and in silico evaluation of coumarin-hydrazone derivatives as tubulin targeted antiproliferative agents. Bioorg Chem 2019; 91:103143. [DOI: 10.1016/j.bioorg.2019.103143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
|
11
|
Fine-Shamir N, Dahan A. Methacrylate-Copolymer Eudragit EPO as a Solubility-Enabling Excipient for Anionic Drugs: Investigation of Drug Solubility, Intestinal Permeability, and Their Interplay. Mol Pharm 2019; 16:2884-2891. [PMID: 31120762 DOI: 10.1021/acs.molpharmaceut.9b00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of this work was to investigate the use of the dimethylaminoethyl methacrylate-copolymer Eudragit EPO (EPO) in oral solubility-enabling formulations for anionic lipophilic drugs, aiming to guide optional formulation design and maximize oral bioavailability. We have studied the solubility, the permeability, and their interplay, using the low-solubility nonsteroidal anti-inflammatory drug mefenamic acid as a model drug. Then, we studied the biorelevant solubility enhancement of mefenamic acid from EPO-based formulations throughout the gastrointestinal tract (GIT), using the pH-dilution dissolution method. EPO allowed a profound and linear solubility increase of mefenamic acid, from 10 μg/mL without EPO to 9.41 mg/mL in the presence of 7.5% EPO (∼940-fold; 37 °C); however, a concomitant decrease of the drug permeability was obtained, both in vitro and in vivo in rats, indicating a solubility-permeability trade-off. In the absence of an excipient, the unstirred water layer (UWL) adjacent to the GI membrane was found to hinder the permeability of the drug, accounting for this UWL effect and revealing that the true membrane permeability allowed good prediction of the solubility-permeability trade-off as a function of EPO level using a direct relationship between the increased solubility afforded by a given EPO level and the consequent decreased permeability. Biorelevant dissolution studies revealed that EPO levels of 0.05 and 0.1% were insufficient to dissolve mefenamic acid dose during the entire dissolution time course, whereas 0.5 and 1% EPO allowed complete solubility with no drug precipitation. In conclusion, EPO may serve as a potent solubility-enabling excipient for BCS class II/IV acidic drugs; however, it should be used carefully. It is prudent to use the minimal EPO amounts just sufficient to dissolve the drug dose throughout the GIT and not more than that. Excess amounts of EPO provide no solubility gain and cause further permeability loss, jeopardizing the overall success of the formulation. This work may help the formulator to hit the optimal solubility-permeability balance, maximizing the oral bioavailability afforded by the formulation.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| |
Collapse
|
12
|
Berthelsen R, Klitgaard M, Rades T, Müllertz A. In vitro digestion models to evaluate lipid based drug delivery systems; present status and current trends. Adv Drug Deliv Rev 2019; 142:35-49. [PMID: 31265861 DOI: 10.1016/j.addr.2019.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
During the past two decades, a range of in vitro models simulating the digestion processes occurring in the stomach and small intestine have been developed to characterize lipid based drug delivery systems (LbDDSs). This review describes the presently existing range of in vitro digestion models and their use in the field of oral drug delivery. The models are evaluated in terms of their suitability to assess LbDDSs, and their ability to produce in vitro - in vivo correlations (IVIVCs). While the pH-stat lipolysis model is by far the most commonly utilized in vitro digestion model in relation to characterizing LbDDSs, a series of recent studies have shown a lack of IVIVCs limiting its future use. Presently, no single in vitro digestion model exists which is able to predict the in vivo performance of various LbDDSs. However, recent research has shown the potential of combined digestion-permeation models as well as species specific digestion models.
Collapse
Affiliation(s)
- Ragna Berthelsen
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Mette Klitgaard
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Thomas Rades
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Anette Müllertz
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
13
|
Whitty A, Viarengo LA, Zhong M. Progress towards the broad use of non-peptide synthetic macrocycles in drug discovery. Org Biomol Chem 2018; 15:7729-7735. [PMID: 28876025 DOI: 10.1039/c7ob00056a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We discuss progress towards addressing three key questions pertaining to the design of screening libraries of synthetic non-peptidic macrocycles (MCs) for drug discovery: What structural and physicochemical properties of MCs maximize the likelihood of achieving strong and specific binding to protein targets? What features render a protein target suitable for binding MCs, and can this information be used to identify suitable targets for inhibition by MCs? What properties of synthetic MCs confer good pharmaceutical properties, and particularly good aqueous solubility coupled with passive membrane permeability? We additionally discuss how the criteria that define a meaningful MC screening hit are linked to the size of the screening library and the synthetic methodology employed in its preparation.
Collapse
Affiliation(s)
- Adrian Whitty
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|