1
|
Synthetic chemical ligands and cognate antibodies for biorthogonal drug targeting and cell engineering. Adv Drug Deliv Rev 2021; 170:281-293. [PMID: 33486005 DOI: 10.1016/j.addr.2021.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022]
Abstract
A vast range of biomedical applications relies on the specificity of interactions between an antigen and its cognate receptor or antibody. This specificity can be highest when said antigen is a non-natural (synthetic) molecule introduced into a biological setting as a bio-orthogonal ligand. This review aims to present the development of this methodology from the early discovery of haptens a century ago to the recent clinical trials. We discuss such methodologies as antibody recruitment, artificial internalizing receptors and chemically induced dimerization, present the use of chimeric receptors and/or bispecific antibodies to achieve drug targeting and transcytosis, and illustrate how these platforms most impressively found use in the engineering of therapeutic cells such as the chimeric antigen receptor cells. This review aims to be of interest to a broad scientific audience and to spur the development of synthetic artificial ligands for biomedical applications.
Collapse
|
2
|
Yang T, Zelikin AN, Chandrawati R. Enzyme Mimics for the Catalytic Generation of Nitric Oxide from Endogenous Prodrugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907635. [PMID: 32372556 DOI: 10.1002/smll.201907635] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The highly diverse biological roles of nitric oxide (NO) in both physiological and pathophysiological processes have prompted great interest in the use of NO as a therapeutic agent in various biomedical applications. NO can exert either protective or deleterious effects depending on its concentration and the location where it is delivered or generated. This double-edged attribute, together with the short half-life of NO in biological systems, poses a major challenge to the realization of the full therapeutic potential of this molecule. Controlled release strategies show an admirable degree of precision with regard to the spatiotemporal dosing of NO but are disadvantaged by the finite NO deliverable payload. In turn, enzyme-prodrug therapy techniques afford enhanced deliverable payload but are troubled by the inherent low stability of natural enzymes, as well as the requirement to control pharmacokinetics for the exogenous prodrugs. The past decade has seen the advent of a new paradigm in controlled delivery of NO, namely localized bioconversion of the endogenous prodrugs of NO, specifically by enzyme mimics. These early developments are presented, successes of this strategy are highlighted, and possible future work on this avenue of research is critically discussed.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Alexander N Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Yang T, Fruergaard AS, Winther AK, Zelikin AN, Chandrawati R. Zinc Oxide Particles Catalytically Generate Nitric Oxide from Endogenous and Exogenous Prodrugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906744. [PMID: 32141238 DOI: 10.1002/smll.201906744] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/25/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Nitric oxide (NO) is a potent biological molecule that contributes to a wide spectrum of physiological processes. However, the full potential of NO as a therapeutic agent is significantly complicated by its short half-life and limited diffusion distance in human tissues. Current strategies for NO delivery focus on encapsulation of NO donors into prefabricated scaffolds or an enzyme-prodrug therapy approach. The former is limited by the finite pool of NO donors available, while the latter is challenged by the inherent low stability of natural enzymes. Zinc oxide (ZnO) particles with innate glutathione peroxidase and glycosidase activities, a combination that allows to catalytically decompose both endogenous (S-nitrosoglutathione) and exogenous (β-gal-NONOate) donors to generate NO at physiological conditions are reported. By tuning the concentration of ZnO particles and NO prodrugs, physiologically relevant NO levels are achieved. ZnO preserves its catalytic property for at least 6 months and the activity of ZnO in generating NO from prodrugs in human serum is demonstrated. The ZnO catalytic activity will be beneficial toward generating stable NO release for long-term biomedical applications.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Anne Sofie Fruergaard
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Anna K Winther
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Alexander N Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Jarlstad Olesen MT, Walther R, Poier PP, Dagnæs‐Hansen F, Zelikin AN. Molecular, Macromolecular, and Supramolecular Glucuronide Prodrugs: Lead Identified for Anticancer Prodrug Monotherapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Morten T. Jarlstad Olesen
- Department of ChemistryAarhus University Aarhus Denmark
- iNano Interdisciplinary Nanosciece CentreAarhus University Aarhus Denmark
| | - Raoul Walther
- Department of ChemistryAarhus University Aarhus Denmark
| | | | | | - Alexander N. Zelikin
- Department of ChemistryAarhus University Aarhus Denmark
- iNano Interdisciplinary Nanosciece CentreAarhus University Aarhus Denmark
| |
Collapse
|
5
|
Jarlstad Olesen MT, Walther R, Poier PP, Dagnæs‐Hansen F, Zelikin AN. Molecular, Macromolecular, and Supramolecular Glucuronide Prodrugs: Lead Identified for Anticancer Prodrug Monotherapy. Angew Chem Int Ed Engl 2020; 59:7390-7396. [DOI: 10.1002/anie.201916124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/18/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Morten T. Jarlstad Olesen
- Department of ChemistryAarhus University Aarhus Denmark
- iNano Interdisciplinary Nanosciece CentreAarhus University Aarhus Denmark
| | - Raoul Walther
- Department of ChemistryAarhus University Aarhus Denmark
| | | | | | - Alexander N. Zelikin
- Department of ChemistryAarhus University Aarhus Denmark
- iNano Interdisciplinary Nanosciece CentreAarhus University Aarhus Denmark
| |
Collapse
|
6
|
|
7
|
Polymersome nanoreactors with tumor pH-triggered selective membrane permeability for prodrug delivery, activation, and combined oxidation-chemotherapy. J Control Release 2019; 303:209-222. [DOI: 10.1016/j.jconrel.2019.04.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
|
8
|
Ke W, Li J, Mohammed F, Wang Y, Tou K, Liu X, Wen P, Kinoh H, Anraku Y, Chen H, Kataoka K, Ge Z. Therapeutic Polymersome Nanoreactors with Tumor-Specific Activable Cascade Reactions for Cooperative Cancer Therapy. ACS NANO 2019; 13:2357-2369. [PMID: 30699292 DOI: 10.1021/acsnano.8b09082] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Therapeutic nanoreactors are of increasing interest in precise cancer therapy, which have been explored to in situ produce therapeutic compounds from inert prodrugs or intrinsic molecules at the target sites. However, engineering a nanoreactor with tumor activable cascade reactions for efficient cooperative cancer therapy remains a great challenge. Herein, we demonstrate a polymersome nanoreactor with tumor acidity-responsive membrane permeability to activate cascade reactions for orchestrated cooperative cancer treatment. The nanoreactors are constructed from responsive polyprodrug polymersomes incorporating ultrasmall iron oxide nanoparticles and glucose oxidase in the membranes and inner aqueous cavities, respectively. The cascade reactions including glucose consumption to generate H2O2, accelerated iron ion release, Fenton reaction between H2O2 and iron ion to produce hydroxyl radicals (•OH), and •OH-triggered rapid release of parent drugs can be specifically activated by the tumor acidity-responsive membrane permeability. During this process, the orchestrated cooperative cancer therapy including starving therapy, chemodynamic therapy, and chemotherapy is realized for high-efficiency tumor suppression by the in situ consumed and produced compounds. The nanoreactor design with tumor-activable cascade reactions represents an insightful paradigm for precise cooperative cancer therapy.
Collapse
Affiliation(s)
- Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui China
| | - Junjie Li
- Innovation Center of NanoMedicine (iCONM) , Kawasaki Institute of Industrial Promotion , 3-25-14 Tonomachi , Kawasaki-ku, Kawasaki 210-0821 , Japan
| | - Fathelrahman Mohammed
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui China
| | - Kazuko Tou
- Innovation Center of NanoMedicine (iCONM) , Kawasaki Institute of Industrial Promotion , 3-25-14 Tonomachi , Kawasaki-ku, Kawasaki 210-0821 , Japan
| | - Xueying Liu
- Innovation Center of NanoMedicine (iCONM) , Kawasaki Institute of Industrial Promotion , 3-25-14 Tonomachi , Kawasaki-ku, Kawasaki 210-0821 , Japan
| | - Panyue Wen
- Innovation Center of NanoMedicine (iCONM) , Kawasaki Institute of Industrial Promotion , 3-25-14 Tonomachi , Kawasaki-ku, Kawasaki 210-0821 , Japan
| | - Hiroaki Kinoh
- Innovation Center of NanoMedicine (iCONM) , Kawasaki Institute of Industrial Promotion , 3-25-14 Tonomachi , Kawasaki-ku, Kawasaki 210-0821 , Japan
| | - Yasutaka Anraku
- Graduate School of Engineering , The University of Tokyo , Tokyo 113-8656 , Japan
| | - Huabing Chen
- State Key Laboratory of Radiation Medicine and Protection, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences , Soochow University , Suzhou 215123 , China
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM) , Kawasaki Institute of Industrial Promotion , 3-25-14 Tonomachi , Kawasaki-ku, Kawasaki 210-0821 , Japan
- Policy Alternatives Research Institute , The University of Tokyo , Tokyo 113-0033 , Japan
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui China
| |
Collapse
|
9
|
Walther R, Winther AK, Fruergaard AS, van den Akker W, Sørensen L, Nielsen SM, Jarlstad Olesen MT, Dai Y, Jeppesen HS, Lamagni P, Savateev A, Pedersen SL, Frich CK, Vigier‐Carrière C, Lock N, Singh M, Bansal V, Meyer RL, Zelikin AN. Identification and Directed Development of Non‐Organic Catalysts with Apparent Pan‐Enzymatic Mimicry into Nanozymes for Efficient Prodrug Conversion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Raoul Walther
- Department of Chemistry Aarhus University Aarhus Denmark
| | | | | | | | - Lise Sørensen
- Department of Chemistry Aarhus University Aarhus Denmark
| | - Signe Maria Nielsen
- Department of Chemistry Aarhus University Aarhus Denmark
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | - Morten T. Jarlstad Olesen
- Department of Chemistry Aarhus University Aarhus Denmark
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | - Yitao Dai
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | - Henrik S. Jeppesen
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | - Paolo Lamagni
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | | | | | | | | | - Nina Lock
- Department of Chemistry Aarhus University Aarhus Denmark
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | | | | | - Rikke L. Meyer
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | - Alexander N. Zelikin
- Department of Chemistry Aarhus University Aarhus Denmark
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| |
Collapse
|
10
|
ter Meer M, Dillion R, Nielsen SM, Walther R, Meyer RL, Daamen WF, van den Heuvel LP, van der Vliet JA, Lomme RMLM, Hoogeveen YL, Schultze Kool LJ, Schaffer JE, Zelikin AN. Innate glycosidic activity in metallic implants for localized synthesis of antibacterial drugs. Chem Commun (Camb) 2019; 55:443-446. [DOI: 10.1039/c8cc08737g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The unexpected discovery presented herein is that industrialized metallic wires can perform conversion of the glucuronide prodrugs with ensuing antibacterial effects.
Collapse
Affiliation(s)
- Marja ter Meer
- Department of Radiology and Nuclear Medicine
- Radboud university medical center
- Nijmegen
- The Netherlands
| | - Ross Dillion
- Fort Wayne Metals Research Products Corp
- Research and Development
- Fort Wayne
- USA
| | | | - Raoul Walther
- Department of Chemistry
- Aarhus University
- Aarhus
- Denmark
| | - Rikke L. Meyer
- iNano Interdisciplinary Nanoscience Centre
- Aarhus University
- Aarhus
- Denmark
| | - Willeke F. Daamen
- Department of Biochemistry
- Radboud Institute for Molecular Life Sciences
- Radboud university medical center
- Nijmegen
- The Netherlands
| | - Lambertus P. van den Heuvel
- Department of Pediatrics/Pediatric Nephrology
- Radboud university medical center
- Nijmegen
- The Netherlands
- Department of Development and Regeneration/Pediatrics
| | | | | | - Yvonne L. Hoogeveen
- Department of Radiology and Nuclear Medicine
- Radboud university medical center
- Nijmegen
- The Netherlands
| | - Leo J. Schultze Kool
- Department of Radiology and Nuclear Medicine
- Radboud university medical center
- Nijmegen
- The Netherlands
| | - Jeremy E. Schaffer
- Fort Wayne Metals Research Products Corp
- Research and Development
- Fort Wayne
- USA
| | - Alexander N. Zelikin
- iNano Interdisciplinary Nanoscience Centre
- Aarhus University
- Aarhus
- Denmark
- Department of Chemistry
| |
Collapse
|
11
|
Walther R, Jarlstad Olesen MT, Zelikin AN. Extended scaffold glucuronides: en route to the universal synthesis of O-aryl glucuronide prodrugs. Org Biomol Chem 2019; 17:6970-6974. [DOI: 10.1039/c9ob01384a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An extended scaffold is the key to facile glucuronidation for the synthesis of prodrugs.
Collapse
Affiliation(s)
- Raoul Walther
- Department of Chemistry
- Aarhus University
- Aarhus
- Denmark
| | | | - Alexander N. Zelikin
- Department of Chemistry
- Aarhus University
- Aarhus
- Denmark
- iNano Interdisciplinary Nanoscience Centre
| |
Collapse
|
12
|
Targeted delivery of nitric oxide via a 'bump-and-hole'-based enzyme-prodrug pair. Nat Chem Biol 2018; 15:151-160. [PMID: 30598545 DOI: 10.1038/s41589-018-0190-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
The spatiotemporal generation of nitric oxide (NO), a versatile endogenous messenger, is precisely controlled. Despite its therapeutic potential for a wide range of diseases, NO-based therapies are limited clinically due to a lack of effective strategies for precisely delivering NO to a specific site. In the present study, we developed a novel NO delivery system via modification of an enzyme-prodrug pair of galactosidase-galactosyl-NONOate using a 'bump-and-hole' strategy. Precise delivery to targeted tissues was clearly demonstrated by an in vivo near-infrared imaging assay. The therapeutic potential was evaluated in both rat hindlimb ischemia and mouse acute kidney injury models. Targeted delivery of NO clearly enhanced its therapeutic efficacy in tissue repair and function recovery and abolished side effects due to the systemic release of NO. The developed protocol holds broad applicability in the targeted delivery of important gaseous signaling molecules and offers a potent tool for the investigation of relevant molecular mechanisms.
Collapse
|
13
|
Walther R, Winther AK, Fruergaard AS, van den Akker W, Sørensen L, Nielsen SM, Jarlstad Olesen MT, Dai Y, Jeppesen HS, Lamagni P, Savateev A, Pedersen SL, Frich CK, Vigier‐Carrière C, Lock N, Singh M, Bansal V, Meyer RL, Zelikin AN. Identification and Directed Development of Non‐Organic Catalysts with Apparent Pan‐Enzymatic Mimicry into Nanozymes for Efficient Prodrug Conversion. Angew Chem Int Ed Engl 2018; 58:278-282. [DOI: 10.1002/anie.201812668] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Raoul Walther
- Department of Chemistry Aarhus University Aarhus Denmark
| | | | | | | | - Lise Sørensen
- Department of Chemistry Aarhus University Aarhus Denmark
| | - Signe Maria Nielsen
- Department of Chemistry Aarhus University Aarhus Denmark
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | - Morten T. Jarlstad Olesen
- Department of Chemistry Aarhus University Aarhus Denmark
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | - Yitao Dai
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | - Henrik S. Jeppesen
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | - Paolo Lamagni
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | | | | | | | | | - Nina Lock
- Department of Chemistry Aarhus University Aarhus Denmark
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | | | | | - Rikke L. Meyer
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| | - Alexander N. Zelikin
- Department of Chemistry Aarhus University Aarhus Denmark
- iNano Interdisciplinary Nanoscience Centre Aarhus University Aarhus Denmark
| |
Collapse
|
14
|
Walther R, Nielsen SM, Christiansen R, Meyer RL, Zelikin AN. Combatting implant-associated biofilms through localized drug synthesis. J Control Release 2018; 287:94-102. [PMID: 30138714 PMCID: PMC6176123 DOI: 10.1016/j.jconrel.2018.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
Bacterial contamination of implantable biomaterials is a significant socioeconomic and healthcare burden. Indeed, bacterial colonization of implants after surgery has a high rate of incidence whereas concurrent prophylaxis using systemic antibiotics has limited clinical success. In this work, we develop enzyme-prodrug therapy (EPT) to prevent and to treat bacteria at interfaces. Towards the overall goal, novel prodrugs for fluoroquinolone antibiotics were developed on a privileged glucuronide scaffold. Whereas carbamoyl prodrugs were not stable and not suitable for EPT, glucuronides containing self-immolative linker between glucuronic acid masking group and the antibiotic were stable in solution and readily underwent bioconversion in the presence of β-glucuronidase. Surface coatings for model biomaterials were engineered using sequential polymer deposition technique. Resulting coatings afforded fast prodrug conversion and mediated antibacterial measures against planktonic species as evidenced by pronounced zone of bacterial growth inhibition around the biomaterial surface. These biomaterials coupled with the glucuronide prodrugs also effectively combatted bacteria within established biofilms and also successfully prevented bacterial colonization of the surface. To our knowledge, this is the first report of EPT engineered to the surface of biomaterials to mediate antibacterial measures.
Collapse
Affiliation(s)
- Raoul Walther
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Signe Maria Nielsen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus 8000, Denmark
| | - Rikke Christiansen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus 8000, Denmark
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus 8000, Denmark.
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark; Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus 8000, Denmark.
| |
Collapse
|
15
|
Mukerabigwi JF, Ge Z, Kataoka K. Therapeutic Nanoreactors as In Vivo Nanoplatforms for Cancer Therapy. Chemistry 2018; 24:15706-15724. [DOI: 10.1002/chem.201801159] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Jean Felix Mukerabigwi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine Institute of Industrial Promotion-Kawasaki 3-25-14 Tonomachi Kawasaki-ku Kawasaki 210-0821 Japan
- Policy Alternatives Research Institute The University of Tokyo Tokyo 113-0033 Japan
| |
Collapse
|
16
|
Yang T, Zelikin AN, Chandrawati R. Progress and Promise of Nitric Oxide-Releasing Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1701043. [PMID: 29938181 PMCID: PMC6010811 DOI: 10.1002/advs.201701043] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/24/2018] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) is a highly potent radical with a wide spectrum of physiological activities. Depending on the concentration, it can enhance endothelial cell proliferation in a growth factor-free medium, mediate angiogenesis, accelerate wound healing, but may also lead to tumor progression or induce inflammation. Due to its multifaceted role, NO must be administered at a right dose and at the specific site. Many efforts have focused on developing NO-releasing biomaterials; however, NO short half-life in human tissues only allows this molecule to diffuse over short distances, and significant challenges remain before the full potential of NO can be realized. Here, an overview of platforms that are engineered to release NO via catalytic or noncatalytic approaches is presented, with a specific emphasis on progress reported in the past five years. A number of NO donors, natural enzymes, and enzyme mimics are highlighted, and recent promising developments of NO-releasing scaffolds, particles, and films are presented. In particular, key parameters of NO delivery are discussed: 1) NO payload, 2) maximum NO flux, 3) NO release half-life, 4) time required to reach maximum flux, and 5) duration of NO release. Advantages and drawbacks are reviewed, and possible further developments are suggested.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical EngineeringThe University of New South Wales (UNSW Sydney)SydneyNSW2052Australia
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Alexander N. Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience CenterAarhus UniversityAarhusC 8000Denmark
| | - Rona Chandrawati
- School of Chemical EngineeringThe University of New South Wales (UNSW Sydney)SydneyNSW2052Australia
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| |
Collapse
|