1
|
Rajsiglova L, Babic M, Krausova K, Lukac P, Kalkusova K, Taborska P, Sojka L, Bartunkova J, Stakheev D, Vannucci L, Smrz D. Immunogenic properties of nickel-doped maghemite nanoparticles and the implication for cancer immunotherapy. J Immunotoxicol 2024; 21:2416988. [PMID: 39484726 DOI: 10.1080/1547691x.2024.2416988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
Nanoparticles are commonly used in diagnostics and therapy. They are also increasingly being implemented in cancer immunotherapy because of their ability to deliver drugs and modulate the immune system. However, the effect of nanoparticles on immune cells involved in the anti-tumor immune response is not well understood. The study reported here showed that nickel-doped maghemite nanoparticles (FN NP) are differentially cytotoxic to cultured mouse and human cancer cell lines, causing their death without negatively impacting the subsequent anticancer immune response. It also found that FN NP induced cell death in the mouse colorectal cancer cell line CT26 and human prostate cancer cell line PC-3, but not in the human prostate cancer cell line LNCaP. The induced cancer cell death did not affect the phenotype and responsivity of the isolated mouse peritoneal macrophages, or ex vivo-generated mouse bone marrow-derived, or human monocyte-derived dendritic cells. Additionally, the induced cancer cell death did not prevent the ex vivo-generated mouse or human dendritic cells from stimulating lymphocytes and enriching cell cultures with cancer cell-reactive T-cells. In conclusion, this study shows that FN NP could be a valuable platform for targeting cancer cells without causing immunosuppressive effects on the subsequent anticancer immune response.
Collapse
Affiliation(s)
- Lenka Rajsiglova
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Babic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Krausova
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavol Lukac
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ludek Sojka
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Technical Operations, SOTIO, a.s., Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Dmitry Stakheev
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
| | - Daniel Smrz
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Prague, Czech Republic
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
2
|
Matikhina T, Cohen CJ. Targeting TGFβ with chimeric switch receptor and secreted trap to improve T cells anti-tumor activity. Front Immunol 2024; 15:1460266. [PMID: 39512355 PMCID: PMC11540659 DOI: 10.3389/fimmu.2024.1460266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction TGFβ is a major immunoinhibitory factor present in the microenvironment of solid tumors. Various cancer types acquire the ability to overexpress TGFβ to escape immune response. Specifically, TGFβ dampens cytotoxic T cell activity, and its presence has been correlated with tumor invasion and poor prognosis. Methods In this study, we developed two approaches to counteract the effects of TGFβ and provide a functional advantage to genetically engineered T cells in the immunoinhibitory tumor milieu. We designed a TGFβRI-based co-stimulatory switch receptor (CSRI), comprising the TGFβ receptor I extracellular binding domain and a 4-1BB co-stimulatory signaling moiety. Additionally, we tested the efficacy of a TGFβ-binding scFv trap produced by T cells. Results We demonstrated that both approaches enhanced tumor-specific T cell cytokine secretion, upregulated activation markers, and reduced inhibition markers upon co-culture with melanoma targets. Furthermore, CSRI and the anti-TGFβ trap exhibited improved anti-tumor function in vivo. Conclusion Overall, we show that targeting the TGFβ pathway can enhance cellular immunotherapy.
Collapse
Affiliation(s)
| | - Cyrille J. Cohen
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
3
|
Toledano Zur R, Atar O, Barliya T, Hoogi S, Abramovich I, Gottlieb E, Ron-Harel N, Cohen CJ. Genetically engineering glycolysis in T cells increases their antitumor function. J Immunother Cancer 2024; 12:e008434. [PMID: 38964783 PMCID: PMC11227835 DOI: 10.1136/jitc-2023-008434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND T cells play a central role in the antitumor response. However, they often face numerous hurdles in the tumor microenvironment, including the scarcity of available essential metabolites such as glucose and amino acids. Moreover, cancer cells can monopolize these resources to thrive and proliferate by upregulating metabolite transporters and maintaining a high metabolic rate, thereby outcompeting T cells. METHODS Herein, we sought to improve T-cell antitumor function in the tumor vicinity by enhancing their glycolytic capacity to better compete with tumor cells. To achieve this, we engineered human T cells to express a key glycolysis enzyme, phosphofructokinase, in conjunction with Glucose transporter 3, a glucose transporter. We co-expressed these, along with tumor-specific chimeric antigen or T-cell receptors. RESULTS Engineered cells demonstrated an increased cytokine secretion and upregulation of T-cell activation markers compared with control cells. Moreover, they displayed superior glycolytic capacity, which translated into an improved in vivo therapeutic potential in a xenograft model of human tumors. CONCLUSION In summary, these findings support the implementation of T-cell metabolic engineering to enhance the efficacy of cellular immunotherapies for cancer.
Collapse
Affiliation(s)
| | - Orna Atar
- Technion Israel Institute of Technology, Haifa, Haifa, Israel
| | | | | | - Ifat Abramovich
- Technion Israel Institute of Technology, Haifa, Haifa, Israel
| | - Eyal Gottlieb
- Technion Israel Institute of Technology, Haifa, Haifa, Israel
| | - Noga Ron-Harel
- Technion Israel Institute of Technology, Haifa, Haifa, Israel
| | - Cyrille J Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Tel Aviv, Israel
| |
Collapse
|
4
|
Xu M, Chang Y, Zhu G, Zhu X, Song X, Li J. Transforming Cold Tumors into Hot Ones with a Metal-Organic Framework-Based Biomimetic Nanosystem for Enhanced Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17470-17484. [PMID: 36995264 DOI: 10.1021/acsami.2c21005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Immunotherapy has revolutionized the landscape in clinical tumor therapy, although the response rates in "cold" tumors are relatively low owing to the complex tumor microenvironment (TME). Cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon genes (cGAS/STING) pathway-inducing agents can reprogram the TME; however, their applications remain underutilized. Herein, we engineered a facile manganese-based metal-organic framework (Mn-MOF) encapsulating polyphyllin I (PPI) and coated it with red blood cell (RBC) membranes (RBC@Mn-MOF/PPI) that enhanced the cGAS/STING-mediated antitumor immunity. RBC@Mn-MOF/PPI was engineered by camouflaging it with a biomimetic RBC membrane for prolonged blood circulation and immune escape, which was also extended with TME-sensitive properties for triggering the release of PPI and Mn2+ to remodel the suppressive TME and augment antitumor immune responses. Furthermore, RBC@Mn-MOF/PPI helped transform cold tumors into "hot" ones by activating immune cells, as evidenced via dendritic cell maturation, cytotoxic T lymphocyte infiltration, and natural killer cell recruitment, thereby targeting primary and abscopal tumors and lung metastatic nodules. Therefore, our engineered nanosystem represents a novel strategy to transform immunologically "cold" tumors into "hot" ones by activating the cGAS/STING pathway, thereby addressing the major challenges associated with immunotherapy.
Collapse
Affiliation(s)
- Manman Xu
- Department of Oncology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yincheng Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guanghui Zhu
- Department of Oncology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaoyu Zhu
- Department of Oncology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaotong Song
- Department of Oncology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jie Li
- Department of Oncology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
5
|
Xu DL, He YQ, Xiao B, Si Y, Shi J, Liu XA, Tian L, Ren Q, Wu YS, Zhu Y. A Novel Sushi-IL15-PD1 CAR-NK92 Cell Line With Enhanced and PD-L1 Targeted Cytotoxicity Against Pancreatic Cancer Cells. Front Oncol 2022; 12:726985. [PMID: 35392221 PMCID: PMC8980464 DOI: 10.3389/fonc.2022.726985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy with a limited response to current therapies. Novel and effective treatment is urgently needed. Herein, a chimeric antigen receptor (CAR)-NK92 cell line, with an interleukin (IL)-15Rα-sushi/IL-15 complex and a Programmed cell death-1(PD1) signal inverter was constructed and named SP (Sushi-IL15-PD1). We showed that CAR expression enabled SP cells to proliferate independently of IL-2 and became more resistant to nutrition starvation-induced apoptosis. Meanwhile, SP cells were more effective than NK92 in PDAC cell killing assays in vitro and in vivo, and there was a positive correlation between the killing capability of SP cells and PD-L1 expression in pancreatic cancer cells. Based on the synergistic and comprehensive effects of the special CAR structure, the adhesion, responsiveness, degranulation efficiency, targeted delivery of cytotoxic granule content, and cytotoxicity of SP cells were significantly stronger than those of NK92. In conclusion, the SP cell line is a promising adoptive immunotherapy cell line and has potential value as an adjuvant treatment for pancreatic cancer, especially in patients with high PD-L1 expression.
Collapse
Affiliation(s)
- Da-Lai Xu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Qing He
- Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Bin Xiao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Yuan Si
- Research & Development Department, Timmune Biotech Inc., Tianjin, China
| | - Jian Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Ang Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Tian
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China
| | - Qian Ren
- Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Ya-Song Wu
- Research & Development Department, Timmune Biotech Inc., Tianjin, China
| | - Yi Zhu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute of Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
A chimeric switch-receptor PD1-DAP10-41BB augments NK92-cell activation and killing for human lung Cancer H1299 Cell. Biochem Biophys Res Commun 2022; 600:94-100. [DOI: 10.1016/j.bbrc.2022.02.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/25/2022]
|
7
|
Zur RT, Adler G, Shamalov K, Tal Y, Ankri C, Cohen CJ. Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:253-294. [PMID: 35165867 DOI: 10.1007/978-3-030-91311-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an important part of the immune system, T lymphocytes exhibit undoubtedly an important role in targeting and eradicating cancer. However, despite these characteristics, their natural antitumor response may be insufficient. Numerous clinical trials in terminally ill cancer patients testing the design of novel and efficient immunotherapeutic approaches based on the adoptive transfer of autologous tumor-specific T lymphocytes have shown encouraging results. Moreover, this also led to the approval of engineered T-cell therapies in patients. Herein, we will expand on the development and the use of such strategies using tumor-infiltrating lymphocytes or genetically engineered T-cells. We will also comment on the requirements and potential hurdles encountered when elaborating and implementing such treatments as well as the exciting prospects for this kind of emerging personalized medicine therapy.
Collapse
Affiliation(s)
- Raphaëlle Toledano Zur
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Adler
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yair Tal
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chen Ankri
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
8
|
Shamalov K, Meir R, Motiei M, Popovtzer R, Cohen CJ. Noninvasive Tracking of Natural Killer Cells Using Gold Nanoparticles. ACS OMEGA 2021; 6:28507-28514. [PMID: 34746546 PMCID: PMC8567284 DOI: 10.1021/acsomega.1c02143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 05/27/2023]
Abstract
Natural killer (NK)-cell-based immunotherapy is emerging as an attractive approach for cancer treatment. However, to facilitate and expedite clinical implementation, important questions must be answered regarding the in vivo functionality and trafficking patterns of the transferred cells. We have recently developed a noninvasive cell-tracking technique, based on gold nanoparticles (GNPs) as cell-labeling and contrast agents for whole-body computed tomography (CT) imaging. Herein, we report the implementation of this technique for longitudinal and quantitative tracking of NK cell kinetics, the migration and biodistribution in tumor-bearing mice. NK cells were successfully labeled with GNPs, without impairing their biological function, as assessed both in vitro, by cytokine release and cytotoxicity assays, and in vivo, using a xenograft model of human tumors. Using CT, we longitudinally tracked the migration of intravenously injected NK cells and observed an accumulation of effector cell clusters at the tumor site, up to 72 h. Fluorescence imaging of the cells over time correlated with ex vivo quantitative analysis of gold content in the tumor, validating the accuracy and reliability of our technique. Our cell-tracking approach thus offers a valuable tool for preclinical studies, as well as for clinical applications, to elucidate the fate of NK cells and promote the implementation of NK-cell-based immunotherapy.
Collapse
Affiliation(s)
- Katerina Shamalov
- Laboratory
of Tumor Immunology and Immunotherapy, Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Rinat Meir
- Faculty
of Engineering & the Institute of Nanotechnology and Advanced
Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Menachem Motiei
- Faculty
of Engineering & the Institute of Nanotechnology and Advanced
Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Rachela Popovtzer
- Faculty
of Engineering & the Institute of Nanotechnology and Advanced
Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Cyrille J. Cohen
- Laboratory
of Tumor Immunology and Immunotherapy, Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
9
|
Lv F, Jin Y, Feng X, Fan M, Ren C, Dai X, Zhang J, Li Z, Jin Y, Liu H. Traceable metallic antigen release for enhanced cancer immunotherapy. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2021; 23:130. [PMID: 34149308 PMCID: PMC8202220 DOI: 10.1007/s11051-021-05256-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/01/2021] [Indexed: 05/04/2023]
Abstract
Tumor vaccine has shown outstanding advantages and good therapeutic effects in tumor immunotherapy. However, antigens in tumor vaccines can be easily cleared by the reticuloendothelium system in advance, which leads to poor therapeutic effect of tumor vaccines. Moreover, it was still hard to monitor the fate and distribution of antigens. To address these limitations, we synthesized a traceable nanovaccine based on gold nanocluster-labeled antigens and upconversion nanoparticles (UCNPs) for the treatment of melanoma in this study. PH-sensitive Schiff base bond is introduced between UCNPs and gold nanocluster-labeled ovalbumin antigens for monitoring antigens release. Our studies demonstrated that UCNPs conjugated metallic antigen showed excellent biocompatibility, pH-sensitive and therapeutic effect.
Collapse
Affiliation(s)
- Fangfang Lv
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Yan Jin
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Xiaochen Feng
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Miao Fan
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Cui Ren
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Xinyue Dai
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Zhenhua Li
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Yi Jin
- College of Basic Medical Science, Hebei University, Baoding, 071000 China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| |
Collapse
|
10
|
Ecsedi M, McAfee MS, Chapuis AG. The Anticancer Potential of T Cell Receptor-Engineered T Cells. Trends Cancer 2021; 7:48-56. [PMID: 32988787 PMCID: PMC7770096 DOI: 10.1016/j.trecan.2020.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022]
Abstract
Adoptively transferred T cell receptor (TCR)-transgenic T cells (TCR-T cells) are not restricted by cell surface expression of their targets and are therefore poised to become a main pillar of cellular cancer immunotherapies. Addressing clinical and laboratory data, we discuss emerging features for the efficient deployment of novel TCR-T therapies, such as selection of ideal TCRs targeting validated epitopes with well-characterized cancer cell expression and processing, enhancing TCR-T effector function, trafficking, expansion, persistence, and memory formation by strategic selection of substrate cells, and gene-engineering with synthetic co-stimulatory circuits. Overall, a better understanding of the relevant mechanisms of action and resistance will help prioritize the vast array of potential TCR-T optimizations for future clinical products.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/metabolism
- Clinical Trials as Topic
- Disease Models, Animal
- Humans
- Immunotherapy, Adoptive/methods
- Mice
- Mutation
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Protein Engineering
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/transplantation
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/transplantation
- Treatment Outcome
Collapse
Affiliation(s)
- Matyas Ecsedi
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Megan S McAfee
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Aude G Chapuis
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
Winge-Main AK, Wälchli S, Inderberg EM. T cell receptor therapy against melanoma-Immunotherapy for the future? Scand J Immunol 2020; 92:e12927. [PMID: 32640053 DOI: 10.1111/sji.12927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
Malignant melanoma has seen monumental changes in treatment options the last decade from the very poor results of dacarbazine treatment to the modern-day use of targeted therapies and immune checkpoint inhibitors. Melanoma has a high mutational burden making it more capable of evoking immune responses than many other tumours. Even when considering double immune checkpoint blockade with anti-CTLA-4 and anti-PD-1, we still have far to go in melanoma treatment as 50% of patients with metastatic disease do not respond to current treatment. Alternative immunotherapy should therefore be considered. Since melanoma has a high mutational burden, it is considered more immunogenic than many other tumours. T cell receptor (TCR) therapy could be a possible way forward, either alone or in combination, to improve the response rates of this deadly disease. Melanoma is one of the cancers where TCR therapy has been frequently applied. However, the number of antigens targeted remains fairly limited, although advanced personalized therapies aim at also targeting private mutations. In this review, we look at possible aspects of targeting TCR therapy towards melanoma and provide an implication of its use in the future.
Collapse
Affiliation(s)
- Anna K Winge-Main
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Tian Y, Li Y, Shao Y, Zhang Y. Gene modification strategies for next-generation CAR T cells against solid cancers. J Hematol Oncol 2020; 13:54. [PMID: 32423475 PMCID: PMC7236186 DOI: 10.1186/s13045-020-00890-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapies have become the backbone of cancer treatment. Among them, chimeric antigen receptor (CAR) T cells have demonstrated great success in the treatment of hematological malignancies. However, CAR T therapy against solid tumors is less effective. Antigen targeting; an immunosuppressive tumor microenvironment (TME); and the infiltration, proliferation, and persistence of CAR T cells are the predominant barriers preventing the extension of CAR T therapy to solid tumors. To circumvent these obstacles, the next-generation CAR T cells will require more potent antitumor properties, which can be achieved by gene-editing technology. In this review, we summarize innovative strategies to enhance CAR T cell function by improving target identification, persistence, trafficking, and overcoming the suppressive TME. The construction of multi-target CAR T cells improves antigen recognition and reduces immune escape. Enhancing CAR T cell proliferation and persistence can be achieved by optimizing costimulatory signals and overexpressing cytokines. CAR T cells equipped with chemokines or chemokine receptors help overcome their poor homing to tumor sites. Strategies like knocking out immune checkpoint molecules, incorporating dominant negative receptors, and chimeric switch receptors can favor the depletion or reversal of negative T cell regulators in the TME.
Collapse
Affiliation(s)
- Yonggui Tian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, China
| | - Yilu Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,School of Medicine, Zhengzhou University, Zhengzhou, 450052, China
| | - Yupei Shao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,School of Medicine, Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Meril S, Harush O, Reboh Y, Matikhina T, Barliya T, Cohen CJ. Targeting glycosylated antigens on cancer cells using siglec‐7/9‐based CAR T‐cells. Mol Carcinog 2020; 59:713-723. [DOI: 10.1002/mc.23213] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Sara Meril
- Division of Molecular, Cellular and Medical BiologyThe Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar‐Ilan University Ramat Gan Israel
| | - Ortal Harush
- Division of Molecular, Cellular and Medical BiologyThe Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar‐Ilan University Ramat Gan Israel
| | - Yishai Reboh
- Division of Molecular, Cellular and Medical BiologyThe Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar‐Ilan University Ramat Gan Israel
| | - Tatyana Matikhina
- Division of Molecular, Cellular and Medical BiologyThe Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar‐Ilan University Ramat Gan Israel
| | - Tilda Barliya
- Division of Molecular, Cellular and Medical BiologyThe Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar‐Ilan University Ramat Gan Israel
| | - Cyrille J. Cohen
- Division of Molecular, Cellular and Medical BiologyThe Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar‐Ilan University Ramat Gan Israel
| |
Collapse
|
14
|
Lu C, Guo C, Chen H, Zhang H, Zhi L, Lv T, Li M, Niu Z, Lu P, Zhu W. A novel chimeric PD1-NKG2D-41BB receptor enhances antitumor activity of NK92 cells against human lung cancer H1299 cells by triggering pyroptosis. Mol Immunol 2020; 122:200-206. [PMID: 32388482 DOI: 10.1016/j.molimm.2020.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
Chimeric antigen receptor (CAR)-modified adoptive natural killer (NK) cells represent a promising immunotherapeutic modality for cancer treatment but face many challenges in solid tumors. One major obstacle is the immune-suppressive effects induced by inhibitory receptors (IR) including PD1. To interfere with PD1 signaling to augment CAR-NK cells' activity against solid tumors, we rationally designed a novel chimeric costimulatory converting receptor (CCCR), comprising mainly the extracellular domain of PD1, transmembrane and cytoplasmic domains of NKG2D, and the cytoplasmic domain of 41BB. This NK-tailored CCCR was able to switch the negative PD1 signal to an activating signal and hence reversed the immune suppressive effects of PD1. The CCCR-modified NK92 (CCCR-NK92) cells retained typical characteristics of NK cells and exhibited enhanced antitumor activity against human lung cancer H1299 cells in vitro compared with untransduced NK92 cells. The rapid clearance of H1299 cells was caused by CCCR-NK92 cell-induced extensive pyroptosis. In a lung cancer xenograft model, CCCR-NK92 cells significantly inhibited tumor growth. Our results highlight a promising immunotherapeutic potential of using NK-tailored CCCR engineered NK92 cells to treat human lung cancer.
Collapse
Affiliation(s)
- Chengui Lu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China; Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Han Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Huiyong Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Tanyu Lv
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Mingfeng Li
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Ping Lu
- Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| |
Collapse
|
15
|
Hoogi S, Eisenberg V, Mayer S, Shamul A, Barliya T, Cohen CJ. A TIGIT-based chimeric co-stimulatory switch receptor improves T-cell anti-tumor function. J Immunother Cancer 2019; 7:243. [PMID: 31500665 PMCID: PMC6734436 DOI: 10.1186/s40425-019-0721-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Tumors can employ different mechanisms to evade immune surveillance and function. Overexpression of co-inhibitory ligands that bind to checkpoint molecules on the surface of T-cells can greatly impair the function of latter. TIGIT (T cell immunoreceptor with Ig and ITIM domains) is such a co-inhibitory receptor expressed by T and NK cells which, upon binding to its ligand (e.g., CD155), can diminish cytokine production and effector function. Additionally, the absence of positive co-stimulation at the tumor site can further dampen T-cell response. Methods As T-cell genetic engineering has become clinically-relevant in the recent years, we devised herein a strategy aimed at enhancing T-cell anti-tumor function by diverting T-cell coinhibitory signals into positive ones using a chimeric costimulatory switch receptor (CSR) composed of the TIGIT exodomain fused to the signaling domain of CD28. Results After selecting an optimized TIGIT-28 CSR, we co-transduced it along with tumor-specific TCR or CAR into human T-cells. TIGIT-28-equipped T-cells exhibited enhanced cytokine secretion and upregulation of activation markers upon co-culture with tumor cells. TIGIT-28 enhancing capability was also demonstrated in an original in vitro model of T-cell of hypofunction induction upon repetitive antigen exposure. Finally, we tested the function of this molecule in the context of a xenograft model of established human melanoma tumors and showed that TIGIT-28-engineered human T-cells demonstrated superior anti-tumor function. Conclusion Overall, we propose that TIGIT-based CSR can substantially enhance T-cell function and thus contribute to the improvement of engineered T cell-based immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-019-0721-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiran Hoogi
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Vasyl Eisenberg
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Shimrit Mayer
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Astar Shamul
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Tilda Barliya
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Cyrille J Cohen
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel.
| |
Collapse
|
16
|
Emerging CRISPR/Cas9 applications for T-cell gene editing. Emerg Top Life Sci 2019; 3:261-275. [PMID: 33523139 DOI: 10.1042/etls20180144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Gene editing tools are being rapidly developed, accelerating many areas of cell and gene therapy research. Each successive gene editing technology promises increased efficacy, improved specificity, reduced manufacturing cost and design complexity; all of which are currently epitomised by the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas9) platform. Since its conceptualisation, CRISPR-based gene editing has been applied to existing methodologies and has further allowed the exploration of novel avenues of research. Implementation of CRISPR/Cas9 has been instrumental to recent progress in the treatment of cancer, primary immunodeficiency, and infectious diseases. To this end, T-cell therapies have attempted to harness and redirect antigen recognition function, and through gene editing, broaden T-cell targeting capabilities and enhance their potency. The purpose of this review is to provide insights into emerging applications of CRISPR/Cas9 in T-cell therapies, to briefly address concerns surrounding CRISPR-mediated indel formation, and to introduce CRISPR/Cas9 base editing technologies that hold vast potential for future research and clinical translation.
Collapse
|
17
|
Moghimi SM, Peer D. Reprogramming the lymphocyte axis for advanced immunotherapy. Adv Drug Deliv Rev 2019; 141:1-2. [PMID: 31375166 DOI: 10.1016/j.addr.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Institute of Cellular Medicine, Division of Stratified Medicine, Biomarkers and Therapeutics, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | - Dan Peer
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|