1
|
Mustonen AM, Julkunen P, Säisänen L, Karttunen L, Esrafilian A, Reijonen J, Tollis S, Käkelä R, Sihvo SP, Höglund N, Niemelä T, Mykkänen A, Mäki J, Kröger H, Arokoski J, Nieminen P. Pain and functional limitations in knee osteoarthritis are reflected in the fatty acid composition of plasma extracellular vesicles. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159602. [PMID: 39971231 DOI: 10.1016/j.bbalip.2025.159602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/26/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
This study investigated relationships between fatty acid (FA) profiles of extracellular vesicles (EVs) and cartilage degradation, functional limitations, pain, and psychological well-being in knee osteoarthritis (KOA). Fasting plasma was collected from controls (n = 10), end-stage KOA patients at baseline (n = 12) and at 3 and 12 months (n = 11 and 9) after joint replacement surgery, and from KOA synovial fluid (SF) at baseline (n = 10). EVs were isolated with the exoEasy Maxi Kit or size-exclusion chromatography, and EV FAs were analyzed with gas chromatography-mass spectrometry. Articular cartilage loss was determined by magnetic resonance imaging, and knee pain and function were assessed through questionnaires and physiatric and neuromuscular examinations. The associations of these data with EV FA proportions were tested with the univariate analysis of variance adjusted for age and body adiposity. Higher proportions of 16:1n-7, 18:1n-7, and total monounsaturated FAs in plasma EVs were associated with less severe KOA symptoms, while higher 24:1n-9, total saturated FAs, and ratios of arachidonic acid to long-chain n-3 polyunsaturated FAs (PUFAs) were linked to KOA pain, independent of age and body adiposity. In SF EVs, higher product/precursor ratios of n-6 PUFAs were associated with increased joint stiffness, and higher total dimethyl acetals were linked to physical disability. EV FAs emerged as significant indicators of knee pain and function. The results can be utilized to discover novel biomarkers for KOA and may have implications for targeted prevention and treatment of KOA symptoms by using EVs with a specific FA cargo.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Joensuu, Finland.
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Technical Physics, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Technical Physics, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.
| | - Lauri Karttunen
- Department of Rehabilitation, Kuopio University Hospital, Kuopio, Finland.
| | - Amir Esrafilian
- Department of Technical Physics, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Jusa Reijonen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Technical Physics, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.
| | - Sylvain Tollis
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Quantitative Cell Biology (QCB) Consulting, 63100 Clermont-Ferrand, France.
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland.
| | - Sanna P Sihvo
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland.
| | - Nina Höglund
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Tytti Niemelä
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Jussi Mäki
- Department of Rehabilitation, Kuopio University Hospital, Kuopio, Finland.
| | - Heikki Kröger
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland; Kuopio Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland.
| | - Jari Arokoski
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
2
|
Gao K, Xi W, Ni J, Jiang J, Lei Y, Li L, Chu J, Li R, An Y, Ouyang Y, Su R, Zhang R, Wu G. Genetically modified extracellular vesicles loaded with activated gasdermin D potentially inhibit prostate-specific membrane antigen-positive prostate carcinoma growth and enhance immunotherapy. Biomaterials 2025; 315:122894. [PMID: 39461061 DOI: 10.1016/j.biomaterials.2024.122894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Prostate cancer (PCa) is associated with poor immunogenicity and lymphocytic infiltration, and immunotherapy effective against PCa remains unavailable. Pyroptosis, a novel immunotherapeutic modality for cancer, promotes systemic immune responses leading to immunogenic cell death in solid tumors. This paper describes the preparation and analysis of PSMAscFv-EVN-GSDMD; this genetically engineered recombinant extracellular vesicle (EV) expresses a single-chain variable antibody fragment (scFv) with high affinity for prostate-specific membrane antigen (PSMA) on their surfaces and is loaded with the N-terminal domain of gasdermin D (GSDMD). Both in vitro and in vivo, PSMAscFv-EVN-GSDMD effectively targeted PSMA-positive PCa cells and induced pyroptosis through the carrier properties of EVs and the specificity of PSMAscFv. In the 22RV1 and PSMA-transfected RM-1-inoculated PCa mouse models, PSMAscFv-EVN-GSDMD efficiently inhibited tumor growth and promoted tumor immune responses. In conclusion, PSMAscFv-EVN-GSDMD can convert the immunosuppressive "cold" tumor microenvironment of PCa into an immunogenic "hot" tumor microenvironment.
Collapse
Affiliation(s)
- Ke Gao
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Jianxin Ni
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Jun Jiang
- Department of Health Service, Base of Health Service, Air Force Medical University, Xi'an, China
| | - Yonghua Lei
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Lin Li
- Department of Immunology, School of Basic Medicine, Yan'an University. Yan'an, 716099, China
| | - Jie Chu
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Ruixiao Li
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Yongpan An
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Yanan Ouyang
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Ruiping Su
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.
| | - Guojun Wu
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| |
Collapse
|
3
|
Wu F, Li Y, Zhang L, Zhou Y, Xu Y, Cai Y, Ding L, Zhang L, Wang Y, Qian H. Real-Time Isolation and Versatile Detection for Extracellular Vesicles Based on Ordered Porous Layer Interferometry. Anal Chem 2025; 97:5798-5807. [PMID: 40045887 DOI: 10.1021/acs.analchem.4c07108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Extracellular vesicles (EVs) are progressively becoming novel instruments for clinical therapeutics and liquid biopsies. Due to the complexity of biofluids and the physicochemical properties of EVs, the biological activity, velocity, and efficiency of EV isolation are always unsatisfying. Here, we present a real-time isolation approach of EVs derived from cells and urine using ordered porous layer interferometry with a silica colloidal crystal film as the sensing substrate, achieving efficiency greater than 90%. The online concentration detection function is performed during the isolation process on the basis of its real-time monitoring characteristic. Using membrane protein markers of urine EVs as targets, this technique has a high diagnostic value for liquid biopsy of prostate cancer. Furthermore, we compared multiple EV membrane protein expression and binding dissociation kinetic data from cells and urine. In summary, this multifunctional approach provides a novel strategy for the rapid EVs isolation, concentration detection, drug target screening, and liquid biopsy of various body fluids.
Collapse
Affiliation(s)
- Feng Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yaoyang Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Linlin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yuchen Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yili Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Youpeng Cai
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Lingling Ding
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yanfeng Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Yu J, Ji L, Liu Y, Wang X, Wang J, Liu C. Bone-brain interaction: mechanisms and potential intervention strategies of biomaterials. Bone Res 2025; 13:38. [PMID: 40097409 PMCID: PMC11914511 DOI: 10.1038/s41413-025-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 03/19/2025] Open
Abstract
Following the discovery of bone as an endocrine organ with systemic influence, bone-brain interaction has emerged as a research hotspot, unveiling complex bidirectional communication between bone and brain. Studies indicate that bone and brain can influence each other's homeostasis via multiple pathways, yet there is a dearth of systematic reviews in this area. This review comprehensively examines interactions across three key areas: the influence of bone-derived factors on brain function, the effects of brain-related diseases or injuries (BRDI) on bone health, and the concept of skeletal interoception. Additionally, the review discusses innovative approaches in biomaterial design inspired by bone-brain interaction mechanisms, aiming to facilitate bone-brain interactions through materiobiological effects to aid in the treatment of neurodegenerative and bone-related diseases. Notably, the integration of artificial intelligence (AI) in biomaterial design is highlighted, showcasing AI's role in expediting the formulation of effective and targeted treatment strategies. In conclusion, this review offers vital insights into the mechanisms of bone-brain interaction and suggests advanced approaches to harness these interactions in clinical practice. These insights offer promising avenues for preventing and treating complex diseases impacting the skeleton and brain, underscoring the potential of interdisciplinary approaches in enhancing human health.
Collapse
Affiliation(s)
- Jiaze Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Luli Ji
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yongxian Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaogang Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
5
|
Ten A, Yudintceva N, Samochernykh K, Combs SE, Jha HC, Gao H, Shevtsov M. Post-Secretion Processes and Modification of Extracellular Vesicles. Cells 2025; 14:408. [PMID: 40136657 PMCID: PMC11940929 DOI: 10.3390/cells14060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Extracellular vesicles (EVs) are an important mediator of intercellular communication and the regulation of processes occurring in cells and tissues. The processes of EVs secretion by cells into the extracellular space (ECS) leads to their interaction with its participants. The ECS is a dynamic structure that also takes direct part in many processes of intercellular communication and regulation. Changes in the ECS can also be associated with pathological processes, such as increased acidity during the development of solid tumors, changes in the composition and nature of the organization of the extracellular matrix (ECM) during fibroblast activation, an increase in the content of soluble molecules during necrosis, and other processes. The interaction of these two systems, the EVs and the ESC, leads to structural and functional alteration in both participants. In the current review, we will focus on these alterations in the EVs which we termed post-secretory modification and processes (PSMPs) of EVs. PSPMs can have a significant effect on the immediate cellular environment and on the spread of the pathological process in the body as a whole. Thus, it can be assumed that PSPMs are one of the important stages in the regulation of intercellular communication, which has significant differences in the norm and in pathology.
Collapse
Affiliation(s)
- Artem Ten
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India;
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| |
Collapse
|
6
|
Wang J, Xing K, Zhang G, Li Z, Ding X, Leong DT. Surface Components and Biological Interactions of Extracellular Vesicles. ACS NANO 2025; 19:8433-8461. [PMID: 39999425 DOI: 10.1021/acsnano.4c16854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Extracellular vesicles (EVs) are critical mediators of intercellular communication, carrying bioactive cargo and displaying diverse surface components that reflect their cellular origins and functions. The EV surface, composed of proteins, lipids, and glycocalyx elements, plays a pivotal role in targeting recipient cells, mediating biological interactions, and enabling selective cargo delivery. This review comprehensively examined the molecular architecture of EV surfaces, linking their biogenesis to functional diversity, and highlights their therapeutic and diagnostic potential in diseases such as cancer and cardiovascular disorders. Additionally, we explore emerging applications of EVs, including machine-learning-assisted analysis, chemical integration, and cross-system combinations. The review also discusses some key challenges in the clinical translation of EV-related technologies.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Guoying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhiyang Li
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu Province 210008, China
| | - Xianguang Ding
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| |
Collapse
|
7
|
Skotland T, Ekroos K, Llorente A, Sandvig K. Quantitative Lipid Analysis of Extracellular Vesicle Preparations: A Perspective. J Extracell Vesicles 2025; 14:e70049. [PMID: 40091364 PMCID: PMC11911390 DOI: 10.1002/jev2.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Quantitative lipidomic analysis performed by mass spectrometry is required for determination of the lipid content of extracellular vesicles (EVs). Such methods can provide information about the total amount of lipids, the lipid species composition, the purity of EV samples as well as the cellular origin of the EVs. There are, however, many pitfalls when performing lipid analyses. Thus, any non-specialist should collaborate with experts in lipidomics. In addition to many good review articles giving advice about lipid analyses, we recommend the information and guidelines published by the Lipidomic Standard Initiative, an interest group affiliated with the International Lipidomics Society.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- Centre for Cancer Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kim Ekroos
- Lipidomic Consulting Ltd., Espoo, Finland
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- Centre for Cancer Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- Centre for Cancer Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Feix AS, Laimer-Digruber A, Cruz-Bustos T, Steiner G, Ruttkowski B, Ehling-Schulz M, Joachim A. Variations in extracellular vesicle shedding of Cystoisospora suis stages (Apicomplexa: Coccidia). Int J Parasitol 2025; 55:197-212. [PMID: 39793881 DOI: 10.1016/j.ijpara.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/21/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Cystoisospora suis, a porcine enteral parasite of the order Coccidia, is characterized by a complex life cycle, with asexual and sexual development in the epithelium of the host gut and an environmental phase as an oocyst. All developmental stages vary greatly in their morphology and function, and therefore excrete different bioactive molecules for intercellular communication. Due to their complex development, we hypothesized that the extracellular vesicles (EVs) cargo is highly dependent on the life cycle stages from which they are released. This study aimed to characterize and compare EVs of all developmental stages of C. suis. Nanoparticle tracking analysis and microscopy were used to determine particle numbers and size distributions of stage-specific parasite EVs. Furthermore, Fourier-transform infrared spectral analysis was employed for the metabolic fingerprinting of EVs, and the lipid and protein profiles of all parasite stages were determined. Overall, the study revealed that asexual, sexual and transmissible stages of C. suis release different EVs during the parasite's life cycle. EVs of endogenous asexual and sexual stages were found to be more similar to each other than to those of the transmissible environmental stage, the oocyst. Furthermore, the ratio of fatty acids to polysaccharides and proteins changed during parasite development. In particular, proteins associated with the Apicomplexa and those involved in vesicle shedding showed changes in expression in all parasite stages. Lipid analysis showed that fatty acids were found in the same concentration through all parasite stages, whereas the amount of stereolipids, sphingolipids and glycerolipids changed between the parasite stages. In conclusion, this study, which presents the first known characterization of C. suis EVs, demonstrates a link between EVs and the respective developmental stages of the parasite, and putative functions in the parasite-parasite and host-parasite interplays.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1 A-1210 Vienna, Austria.
| | - Astrid Laimer-Digruber
- Institute of Microbiology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine, Veterinärplatz 1 A-1210 Vienna, Austria
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1 A-1210 Vienna, Austria
| | - Gerhard Steiner
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1 1030 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1 A-1210 Vienna, Austria
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine, Veterinärplatz 1 A-1210 Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1 A-1210 Vienna, Austria
| |
Collapse
|
9
|
Romano E, Perut F, Avnet S, Di Pompo G, Silvestri S, Roffo F, Baldini N, Netti PA, Torino E. Mesenchymal Stem Cells-Derived Small Extracellular Vesicles and Their Validation as a Promising Treatment for Chondrosarcoma in a 3D Model in Vitro. Biotechnol Bioeng 2025; 122:667-676. [PMID: 39690717 PMCID: PMC11808436 DOI: 10.1002/bit.28909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Chondrosarcomas (CHS) constitute approximately 20% of all primary malignant bone tumors, characterized by a slow growth rate with initial manifestation of few signs and symptoms. These malignant cartilaginous neoplasms, particularly those with dedifferentiated histological subtypes, pose significant therapeutic challenges, as they exhibit high resistance to both radiation and chemotherapy. Ranging from relatively benign, low-grade tumors (grade I) to aggressive high-grade tumors with the potential for lung metastases and a grim prognosis, there is a critical need for innovative diagnostic and therapeutic approaches, particularly for patients with more aggressive forms. Herein, small extracellular vesicles (sEVs) derived from mesenchymal stem cells are presented as an efficient nanodelivery tool to enhance drug penetration in an in vitro 3D model of CHS. Employing high-pressure homogenization (HPH), we achieved unprecedented encapsulation efficiency of doxorubicin (DXR) in sEVs derived from mesenchymal stem cells (MSC-EVs). Subsequently, a comparative analysis between free DXR and MSC-EVs encapsulated with DXR (DXR-MSC-EVs) was conducted to assess their penetration and uptake efficacy in the 3D model. The results unveiled a higher incidence of necrotic cells and a more pronounced toxic effect with DXR-MSC-EVs compared to DXR alone. This underscores the remarkable ability of MSC-EVs to deliver drugs in complex environments, highlighting their potential application in the treatment of aggressive CHS.
Collapse
Affiliation(s)
- Eugenia Romano
- Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples Federico IINaplesItaly
- Department of Chemical, Materials and Production Engineering (DICMaPI)University of Naples Federico IINaplesItaly
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology LaboratoryIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Sofia Avnet
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Gemma Di Pompo
- Biomedical Science and Technologies and Nanobiotechnology LaboratoryIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Simona Silvestri
- Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples Federico IINaplesItaly
- Department of Chemical, Materials and Production Engineering (DICMaPI)University of Naples Federico IINaplesItaly
- Fondazione Istituto Italiano di Tecnologia, IITNaplesItaly
| | - Felicia Roffo
- Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples Federico IINaplesItaly
- Department of Chemical, Materials and Production Engineering (DICMaPI)University of Naples Federico IINaplesItaly
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology LaboratoryIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples Federico IINaplesItaly
- Department of Chemical, Materials and Production Engineering (DICMaPI)University of Naples Federico IINaplesItaly
- Fondazione Istituto Italiano di Tecnologia, IITNaplesItaly
| | - Enza Torino
- Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples Federico IINaplesItaly
- Department of Chemical, Materials and Production Engineering (DICMaPI)University of Naples Federico IINaplesItaly
- Fondazione Istituto Italiano di Tecnologia, IITNaplesItaly
| |
Collapse
|
10
|
Kostyusheva A, Romano E, Yan N, Lopus M, Zamyatnin AA, Parodi A. Breaking barriers in targeted Therapy: Advancing exosome Isolation, Engineering, and imaging. Adv Drug Deliv Rev 2025; 218:115522. [PMID: 39855273 DOI: 10.1016/j.addr.2025.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Exosomes have emerged as promising tools for targeted drug delivery in biomedical applications and medicine. This review delves into the scientific advancements, challenges, and future prospects specifically associated with these technologies. In this work, we trace the research milestones that led to the discovery and characterization of exosomes and extracellular vesicles, and discuss strategies for optimizing the synthetic yield and the loading of these particles with various therapeutics. In addition, we report the current major issues affecting the field and hampering the clinical translation of these technologies. Highlighting the pivotal role of imaging techniques, we explore how they drive exosome therapy and development by offering insights into biodistribution and cellular trafficking dynamics. Methodologies for vesicle isolation, characterization, loading, and delivery mechanisms are thoroughly examined, alongside strategies aimed at enhancing their therapeutic efficacy. Special emphasis was dedicated to their therapeutic properties, particularly to their ability to deliver biologics into the cytoplasm. Furthermore, we delve into the intricate balance between surface modifications and targeting properties including also transgenic methods aimed at their functionalization and visualization within biological systems. This review underscores the transformative potential of these carriers in targeted drug delivery and identifies crucial areas for further research and clinical translation.
Collapse
Affiliation(s)
- Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | | | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India
| | - Andrey A Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia.
| |
Collapse
|
11
|
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer 2025; 24:45. [PMID: 39953480 PMCID: PMC11829561 DOI: 10.1186/s12943-025-02233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Extracellular vesicles (EVs), nanoscale vesicles secreted by cells, have attracted considerable attention in recent years due to their role in tumor immunomodulation. These vesicles facilitate intercellular communication by transporting proteins, nucleic acids, and other biologically active substances, and they exhibit a dual role in tumor development and immune evasion mechanisms. Specifically, EVs can assist tumor cells in evading immune surveillance and attack by impairing immune cell function or modulating immunosuppressive pathways, thereby promoting tumor progression and metastasis. Conversely, they can also transport and release immunomodulatory factors that stimulate the activation and regulation of the immune system, enhancing the body's capacity to combat malignant diseases. This dual functionality of EVs presents promising avenues and targets for tumor immunotherapy. By examining the biological characteristics of EVs and their influence on tumor immunity, novel therapeutic strategies can be developed to improve the efficacy and relevance of cancer treatment. This review delineates the complex role of EVs in tumor immunomodulation and explores their potential implications for cancer therapeutic approaches, aiming to establish a theoretical foundation and provide practical insights for the advancement of future EVs-based cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
12
|
Furioso Ferreira R, Ghaffari MH, Ceciliani F, Fontana M, Caruso D, Audano M, Savoini G, Agazzi A, Mrljak V, Sauerwein H. Untargeted lipidomics reveals unique lipid signatures of extracellular vesicles from porcine colostrum and milk. PLoS One 2025; 20:e0313683. [PMID: 39946395 PMCID: PMC11825007 DOI: 10.1371/journal.pone.0313683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/30/2024] [Indexed: 02/16/2025] Open
Abstract
Extracellular vesicles (EV) are membranous vesicles considered as significant players in cell-to-cell communication. Milk provides adequate nutrition, transfers immunity, and promotes neonatal development, and milk EV are suggested to play a crucial role in these processes. Milk samples were obtained on days 0, 7, and 14 after parturition from sows receiving either a standard diet (ω-6:ω-3 = 13:1) or a test diet enriched in ω-3 (ω-6:ω-3 = 4:1). EV were isolated using ultracentrifugation coupled with size exclusion chromatography, and characterized by nanoparticle tracking analysis, transmission electron microscopy, and assessment of EV markers via Western blotting. The lipidome was determined following a liquid chromatography-quadrupole time-of-flight mass spectrometry approach. Here, we show that different stages of lactation (colostrum vs mature milk) have a distinct extracellular vesicle lipidomic profile. The distinct lipid content can be further explored to understand and regulate milk EV functionalities and primordial for enabling their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rafaela Furioso Ferreira
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Morteza H. Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Manuela Fontana
- Unitech OMICs, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Unitech OMICs, Università degli Studi di Milano, Milano, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Matteo Audano
- Unitech OMICs, Università degli Studi di Milano, Milano, Italy
| | - Giovanni Savoini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Agazzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Cadelano F, Giannasi C, Gualerzi A, Gerli M, Niada S, Della Morte E, Brini AT. Pre-Concentration Freezing Alters the Composition of Mesenchymal Stem/Stromal Cell-Conditioned Medium. BIOLOGY 2025; 14:181. [PMID: 40001949 PMCID: PMC11852129 DOI: 10.3390/biology14020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
Batch-to-batch reproducibility and robust quality assessment are crucial for producing cell-free biologics, such as conditioned medium (CM) derived from mesenchymal stem/stromal cells (MSCs). This study investigated the effects of freezing CM at -80 °C prior to concentration, a step that could occur in large scale pipelines, compared to freshly processed CM. Quality assessment included total protein quantification; extracellular vesicle evaluation using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and cytofluorimetry; and biochemical analysis using Raman spectroscopy. The freezing process resulted in a 34% reduction in total protein content, as confirmed for selected bioactive mediators, and significant depletion of specific particle types, particularly larger ones. Interestingly, the total particle concentration and polydispersity remained stable. Alterations in Raman spectra highlighted changes in protein, lipid, and nucleic acid content. These findings demonstrate that even routine steps like freezing can alter CM composition, likely due to temperature-induced structural changes in biological molecules. Careful consideration of pre- and intra-processing handling temperatures is critical for preserving the integrity of CM and ensuring consistent quality. This study emphasizes the importance of refining manufacturing protocols in the production of cell-free biologics.
Collapse
Affiliation(s)
- Francesca Cadelano
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.T.B.)
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (S.N.); (E.D.M.)
| | - Chiara Giannasi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.T.B.)
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (S.N.); (E.D.M.)
| | - Alice Gualerzi
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (M.G.)
| | - Martina Gerli
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (M.G.)
| | - Stefania Niada
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (S.N.); (E.D.M.)
| | - Elena Della Morte
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (S.N.); (E.D.M.)
| | - Anna Teresa Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.T.B.)
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (S.N.); (E.D.M.)
| |
Collapse
|
14
|
Shen M, Ye X, Zhou Q, Zheng M, Du M, Wang L, Cong M, Liu C, Deng C, Xu Z, Wang Y, Li J, Feng M, Ye Y, Zhang S, Xu W, Lu Y, Kong J, Gong J, Xia Y, Gu J, Xie H, He Q, Zhang Q, Sun H, Liu X, Gong L, Yu M, Gu X, Zhao J, Zhang N, Ding F, Zhou S. Angiogenesis-promoting effect of SKP-SC-EVs-derived miRNA-30a-5p in peripheral nerve regeneration by targeting LIF and ANGPT2. J Biol Chem 2025; 301:108146. [PMID: 39732166 PMCID: PMC11791313 DOI: 10.1016/j.jbc.2024.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 11/24/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
Ischemia and hypoxia caused by vascular injury intensify nerve damage. Skin precursor-derived Schwann cells have demonstrated an accelerated in vivo prevascularization of tissue-engineered nerves. Furthermore, extracellular vesicles from skin precursor-derived Schwann cells (SKP-SC-EVs) show the potential in aiding peripheral nerve regeneration. Nonetheless, the capacity of SKP-SC-EVs to facilitate nerve repair via angiogenesis remains uncertain. This study observed that SKP-SC-EVs significantly enhanced angiogenesis, evidenced by increased transparency of the tissue-engineered nerve graft and ultrasonic blood flow imaging. In vitro experiments confirmed that SKP-SC-EVs promote the proliferation, migration, and tube formation of human umbilical vein endothelial cells, a standard model for assessing angiogenic potential. Additionally, a comprehensive miRNA expression profile of SKP-SC-EVs was performed, leading to the identification of potential candidates through functional experiments. Among these, miR-30a-5p emerged as a significant candidate, demonstrating remarkable proangiogenic effects both in vivo and in vitro, akin to the effects of SKP-SC-EVs. Furthermore, luciferase reporter assay and functional experiments revealed that miR-30a-5p in SKP-SC-EVs promotes angiogenesis by targeting ANGPT2 and LIF without sufficient VEGFa. Thus, the enrichment of miR-30a-5p in SKP-SC-EVs indicates its pivotal role as a regulator of angiogenesis, presenting a promising avenue for cell-free treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xinli Ye
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Mingzhi Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Lijuan Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Chunyan Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Zhen Xu
- Department of Clinical Medical Research Center, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Yu Wang
- Department of Clinical Medical Research Center, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Jiyu Li
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Min Feng
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yujiao Ye
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shuyu Zhang
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Wenqing Xu
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yi Lu
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Junjie Kong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jiahuan Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yingjie Xia
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jinhua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, China
| | - Huimin Xie
- The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xingjun Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Miaomei Yu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jian Zhao
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Ning Zhang
- Department of Clinical Medical Research Center, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Jiangsu Province, China; Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
15
|
Bader J, Rüedi P, Mantella V, Geisshüsler S, Brigger F, Qureshi BM, Ortega Arroyo J, Montanari E, Leroux J. Loading of Extracellular Vesicles with Nucleic Acids via Hybridization with Non-Lamellar Liquid Crystalline Lipid Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404860. [PMID: 39741121 PMCID: PMC11848734 DOI: 10.1002/advs.202404860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/01/2024] [Indexed: 01/02/2025]
Abstract
The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (HII) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L2) or sponge (L3) phases, at pH 7.4, which are particularly suitable for inducing a controlled hybridization process with EVs. State-of-the-art single-particle analysis techniques reveal that LCNPs interact with various EV subpopulations at physiological conditions and that ≈40% of HEVs are loaded with the genetic cargo. Importantly, this study demonstrates that EV membrane proteins remain accessible on HEV surfaces, with their intrinsic enzymatic activity unaffected after the hybridization process. Finally, HEVs show in vitro improved transfection efficiencies compared to unhybridized LCNPs. In summary, this versatile platform holds potential for loading various nucleic acid molecules into native EVs and may help developing EV-based therapeutics.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Pascal Rüedi
- Nanophotonic Systems LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Valeria Mantella
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Silvana Geisshüsler
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Bilal Muhammad Qureshi
- Scientific Center for Optical and Electron Microscopy (ScopeM)ETH ZurichZurich8093Switzerland
| | - Jaime Ortega Arroyo
- Nanophotonic Systems LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Elita Montanari
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Jean‐Christophe Leroux
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| |
Collapse
|
16
|
Feng H, Gao H, Chen J, Zhao R, Huang Y. Emerging phospholipid-targeted affinity materials for extracellular vesicle isolation and molecular profiling. J Chromatogr A 2025; 1741:465639. [PMID: 39742681 DOI: 10.1016/j.chroma.2024.465639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Extracellular vesicles (EVs) carrying lipids, proteins, nucleic acids and small molecular metabolites have emerged as an attractive paradigm for understanding and interfering physiological and pathological processes. To this end, selective and efficient separation approaches are highly demanded to obtain target EVs from complicated biosamples. With increasing knowledges on EV lipids, recent years have witnessed rapid advances of phospholipid-targeted affinity materials and platforms for high-performance isolation and analysis of EVs. In view of this, this review is contributed to introduce recent progresses in lipid membrane-targeted affinity strategies for EV isolation and molecular detection in biofluids. Affinity ligands including lipids, peptides, small molecules and aptamers and their molecular interactions with lipids are discussed in focus. The design, construction and mechanism of actions of affinity interfaces are summarized. The EV separation performances in complex biosamples and downstream proteomic, lipidomic and metabolic profiling are introduced. Finally, the perspectives and challenges for the development of next-generation phospholipid-targeted EV separation platforms are discussed.
Collapse
Affiliation(s)
- Huixia Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Wang G, Wang Y, Sheng K, Wang Y. Effect of probiotic extracellular vesicles and their applications on health and disease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39806860 DOI: 10.1002/jsfa.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/25/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Probiotics have been established to exert a positive impact on the treatment of various diseases. Indeed, these active microorganisms have garnered significant attention in recent years for their potential to prevent and treat illnesses. Their beneficial effects have been hypothesized to be linked to their released extracellular vesicles. These nanoscale structures, secreted during the growth and metabolism of probiotics, possess favorable biocompatibility and targeting properties, thereby promoting intercellular material transport and signaling. This article aimed to review the bioactive components and functions of these probiotics vesicles, highlighting their role in the treatment of various diseases and discussing their potential future applications. By exploring the mechanisms of probiotic extracellular vesicles in disease development, this review aimed to provide a theoretical reference for further research on their therapeutic potential. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangzhao Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yang Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| |
Collapse
|
18
|
Yaeger JDW, Sengupta S, Walz AL, Morita M, Morgan TK, Vermeer PD, Francis KR. Cholesterol deficiency directs autophagy-dependent secretion of extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632510. [PMID: 39829772 PMCID: PMC11741461 DOI: 10.1101/2025.01.11.632510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Extracellular vesicle (EV) secretion is an important, though not fully understood, intercellular communication process. Lipid metabolism has been shown to regulate EV activity, though the impact of specific lipid classes is unclear. Through analysis of small EVs (sEVs), we observe aberrant increases in sEV release within genetic models of cholesterol biosynthesis disorders, where cellular cholesterol is diminished. Inhibition of cholesterol synthesis at multiple synthetic steps mimics genetic models in terms of cholesterol reduction and sEVs secreted. Further analyses of sEVs from cholesterol-depleted cells revealed structural deficits and altered surface marker expression, though these sEVs were also more easily internalized by recipient cells. Transmission electron microscopy of cells with impaired cholesterol biosynthesis demonstrated multivesicular and multilamellar structures potentially associated with autophagic defects. We further found autophagic vesicles being redirected toward late endosomes at the expense of autophagolysosomes. Through CRISPR-mediated inhibition of autophagosome formation, we mechanistically determined that release of sEVs after cholesterol depletion is autophagy dependent. We conclude that cholesterol imbalance initiates autophagosome-dependent secretion of sEVs, which may have pathological relevance in diseases of cholesterol disequilibrium.
Collapse
Affiliation(s)
- Jazmine D. W. Yaeger
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Sonali Sengupta
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Austin L. Walz
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Mayu Morita
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Terry K. Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
- Center for Developmental Health, Oregon Health and Science University, Portland, OR 97239, USA
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Surgery, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Kevin R. Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
19
|
Forte D, Pellegrino RM, Falvo P, Garcia-Gonzalez P, Alabed HBR, Maltoni F, Lombardi D, Bruno S, Barone M, Pasini F, Fabbri F, Vannini I, Donati B, Cristiano G, Sartor C, Ronzoni S, Ciarrocchi A, Buratta S, Urbanelli L, Emiliani C, Soverini S, Catani L, Bertolini F, Argüello RJ, Cavo M, Curti A. Parallel single-cell metabolic analysis and extracellular vesicle profiling reveal vulnerabilities with prognostic significance in acute myeloid leukemia. Nat Commun 2024; 15:10878. [PMID: 39738118 DOI: 10.1038/s41467-024-55231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34+(CD38low/-) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34+ AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes. Although CD34+ AML cells are highly dependent on glucose oxidation and glycolysis for energy, those from intermediate- and adverse-risk patients reveal increased mitochondrial dependence. Extracellular vesicles from AML are mainly enriched in stem cell markers and express antioxidant GPX3, with their profiles showing potential prognostic value. Extracellular vesicles enhance mitochondrial functionality and dependence on CD34+ AML cells via the glutathione/GPX4 axis. Notably, extracellular vesicles from adverse-risk patients enhance leukemia cell engraftment in vivo. Here, we show a potential noninvasive approach based on liquid 'cell-extracellular vesicle' biopsy toward a redefined metabolic stratification in AML.
Collapse
Affiliation(s)
- Dorian Forte
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences Section, University of Perugia, Perugia, Italy
| | - Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Paulina Garcia-Gonzalez
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Husam B R Alabed
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences Section, University of Perugia, Perugia, Italy
| | - Filippo Maltoni
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Davide Lombardi
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Samantha Bruno
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Martina Barone
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Federico Pasini
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Gianluca Cristiano
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Chiara Sartor
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Simona Ronzoni
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milano, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences Section, University of Perugia, Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences Section, University of Perugia, Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences Section, University of Perugia, Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Perugia, Italy
| | - Simona Soverini
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Lucia Catani
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Rafael José Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Michele Cavo
- Department of Medical and Surgical Sciences, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy.
| |
Collapse
|
20
|
Kumari S, Lausted C, Scherler K, Ng AHC, Lu Y, Lee I, Hood L, Wang K. Approaches and Challenges in Characterizing the Molecular Content of Extracellular Vesicles for Biomarker Discovery. Biomolecules 2024; 14:1599. [PMID: 39766306 PMCID: PMC11674167 DOI: 10.3390/biom14121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanoparticles released from all known cells and are involved in cell-to-cell communication via their molecular content. EVs have been found in all tissues and body fluids, carrying a variety of biomolecules, including DNA, RNA, proteins, metabolites, and lipids, offering insights into cellular and pathophysiological conditions. Despite the emergence of EVs and their molecular contents as important biological indicators, it remains difficult to explore EV-mediated biological processes due to their small size and heterogeneity and the technical challenges in characterizing their molecular content. EV-associated small RNAs, especially microRNAs, have been extensively studied. However, other less characterized RNAs, including protein-coding mRNAs, long noncoding RNAs, circular RNAs, and tRNAs, have also been found in EVs. Furthermore, the EV-associated proteins can be used to distinguish different types of EVs. The spectrum of EV-associated RNAs, as well as proteins, may be associated with different pathophysiological conditions. Therefore, the ability to comprehensively characterize EVs' molecular content is critical for understanding their biological function and potential applications in disease diagnosis. Here, we set out to provide an overview of EV-associated RNAs and proteins as well as approaches currently being used to characterize them.
Collapse
Affiliation(s)
- Suman Kumari
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Christopher Lausted
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kelsey Scherler
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Alphonsus H. C. Ng
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yue Lu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| |
Collapse
|
21
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
22
|
Liu H, Ouyang Z, Li S. Advances of M1 macrophages-derived extracellular vesicles in tumor therapy. Biomed Pharmacother 2024; 181:117735. [PMID: 39644871 DOI: 10.1016/j.biopha.2024.117735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Abstract
Extracellular vesicles derived from classically activated M1 macrophages (M1 EVs) have shown great potential in both tumor treatment and drug delivery. M1 EVs inherit specific biological messengers from their parent cells and possess the capability to activate immune cells residing in close or distant tumor tissues for antitumor therapy. Moreover, M1 EVs are commonly used as an attractive drug delivery system due to their tumor-targeting ability, biocompatibility, and non-toxic. They can effectively encapsulate various therapeutic cargoes through specific methods such as electroporation, co-incubation, sonication, extrusion, transfection, or click chemistry reaction. In this review, we provide a comprehensive summary of the advancements in M1 EVs for tumor therapy, discussing their application prospects and existing problems.
Collapse
Affiliation(s)
- Houli Liu
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China.
| | - Zhaorong Ouyang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| | - Siyu Li
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| |
Collapse
|
23
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024; 215:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
24
|
Leiva-Sabadini C, Saavedra P, Inostroza C, Aguayo S. Extracellular vesicle production by oral bacteria related to dental caries and periodontal disease: role in microbe-host and interspecies interactions. Crit Rev Microbiol 2024:1-18. [PMID: 39563638 DOI: 10.1080/1040841x.2024.2427656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Extracellular vesicles (EVs) are cell membrane-derived structures between 20-400 nm in size. In bacteria, EVs play a crucial role in molecule secretion, cell wall biogenesis, cell-cell communication, biofilm development, and host-pathogen interactions. Despite these increasing reports of bacterial-derived vesicles, there remains a limited number of studies that summarize oral bacterial EVs, their cargo, and their main biological functions. Therefore, the aim of this review is to present the latest research on oral bacteria-derived EVs and how they can modulate various physiological and pathological processes in the oral cavity, including the pathogenesis of highly relevant diseases such as dental caries and periodontitis and their systemic complications. Overall, caries-associated bacteria (such as Streptococcus mutans) as well as periodontal pathogens (including the red complex pathogens Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) have all been shown to produce EVs that carry an array of virulent factors and molecules involved in biofilm and immune modulation, bacterial adhesion, and extracellular matrix degradation. As bacterial EV production is strongly impacted by genotypic and environmental variations, the inhibition of EV genesis and secretion remains a key potential future approach against oral diseases.
Collapse
Affiliation(s)
- Camila Leiva-Sabadini
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Saavedra
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carla Inostroza
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Aguayo
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Abebaw D, Akelew Y, Adugna A, Teffera ZH, Tegegne BA, Fenta A, Selabat B, Amare GA, Getinet M, Jemal M, Baylie T, Atnaf A. Extracellular vesicles: immunomodulation, diagnosis, and promising therapeutic roles for rheumatoid arthritis. Front Immunol 2024; 15:1499929. [PMID: 39624102 PMCID: PMC11609219 DOI: 10.3389/fimmu.2024.1499929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 01/03/2025] Open
Abstract
Extracellular vesicles (EV) can be produced as part of pathology and physiology with increased amounts in pathological conditions. EVs can carry and transfer cargo such as proteins, nucleic acids, and lipids to target cells and mediate intercellular communication resulting in modulation of gene expression, signaling pathways, and phenotype of recipient cells. EVs greatly influence the extracellular environment and the immune response. Their immunomodulatory properties are crucial in rheumatoid arthritis (RA), a condition marked by dysregulated immune response. EVs can modulate the functions of innate and adaptive immune cells in RA pathogenesis. Differentially expressed EV-associated molecules in RA, such as microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), messenger RNAs (mRNAs) and proteins are promising markers to diagnose the disease. miRNA, lncRNA, and circular RNA (circRNA) cargos in EV regulate inflammation and the pathogenic functions of RA fibroblast-like synoviocytes (RA-FLS). Downregulated molecules in RA tissue and drugs can be encapsulated in EVs for RA therapy. This review provides an updated overview of EVs' immunomodulatory, diagnostic, and therapeutic roles, particularly emphasizing mesenchymal stem cell-derived EVs (MSC-EVs).
Collapse
Affiliation(s)
- Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantegize Selabat
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Aytenew Atnaf
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
26
|
Kadkhodaei S, Hatefi A, Pedramnia S, Godini E, Khalili-Samani S, Saniee P, Sarrafnejad A, Salmanian AH, Sotoudeh M, Graham DY, Malekzadeh R, Siavoshi F. Role of Oral Yeast in Replenishing Gastric Mucosa with Yeast and Helicobacter pylori. Yeast 2024; 41:645-657. [PMID: 39548684 DOI: 10.1002/yea.3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/10/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
The relationship between oral and gastric yeasts and their role in the colonization of Helicobacter pylori in the stomach was studied. Four groups of 221, 7, 44, and 10 patients were used for the isolation of H. pylori and oral and gastric yeasts. In Group 1, gastric biopsies were used for the isolation of H. pylori and yeast, rapid urease test (RUT), staining with Gram's and hematoxylin & eosin (H&E), and immunohistochemistry (IHC) methods. In the other three groups, DNAs extracted from H. pylori and yeasts were used for the amplification of H. pylori-specific genes. Wet mounts of yeasts in Group 2 were examined to observe intracellular bacteria and released EVs. Among 221 patients, 65 (29.3%) had oral yeast, 35 (15.8%) H. pylori, and 31 (14%) gastric yeast. Culture of oral yeasts showed a significant correlation with the detection of H. pylori by IHC (10.3%), Gram stain (9%), RUT (6.3%), H&E (4.9%), and culture (4%) (p < 0.05). Gram-stained biopsies showed the occurrence of yeast and H. pylori, and the release of EVs from yeast. Detection of similar H. pylori genes in oral and gastric yeasts from patients in Group 2 showed their common source. Oral yeasts in Groups 3 and 4 also carried H. pylori genes. Wet mount preparations of yeasts showed intracellular bacteria inside the yeast vacuole and the release of EVs that could carry H. pylori. Oral yeast protects its intracellular H. pylori and releases it inside EVs to safely reach gastric mucosa. Yeast, as the environmental reservoir of H. pylori, plays a crucial role in bacterial reinfection after successful eradication.
Collapse
Affiliation(s)
- Sara Kadkhodaei
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Atousa Hatefi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Shahrzad Pedramnia
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Elham Godini
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Saman Khalili-Samani
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoud Sotoudeh
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - David Y Graham
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Liu C, Li Q, Ma JX, Lu B, Criswell T, Zhang Y. Exosome-mediated renal protection: Halting the progression of fibrosis. Genes Dis 2024; 11:101117. [PMID: 39263535 PMCID: PMC11388648 DOI: 10.1016/j.gendis.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2024] Open
Abstract
Renal fibrosis is a complex and multifactorial process that involves inflammation, cell proliferation, collagen, and fibronectin deposition in the kidney, ultimately leading to chronic kidney disease and even end-stage renal disease. The main goal of treatment is to slow down or halt the progression of fibrosis and to improve or preserve kidney function. Despite significant progress made in understanding the underlying mechanisms of renal fibrosis, current therapies have limited renal protection as the disease progresses. Exosomes derived from stem cells are a newer area of research for the treatment of renal fibrosis. Exosomes as nano-sized extracellular vesicles carry proteins, lipids, and nucleic acids, which can be taken up by local or distant cells, serving as mediators of intercellular communication and as drug delivery vehicles. Exosomes deliver molecules that reduce inflammation, renal fibrosis and extracellular matrix protein production, and promote tissue regeneration in animal models of kidney disease. Additionally, they have several advantages over stem cells, such as being non-immunogenic, having low risk of tumor formation, and being easier to produce and store. This review describes the use of natural and engineered exosomes containing therapeutic agents capable of mediating anti-inflammatory and anti-fibrotic processes during both acute kidney injury and chronic kidney disease. Exosome-based therapies will be compared with stem cell-based treatments for tissue regeneration, with a focus on renal protection. Finally, future directions and strategies for improving the therapeutic efficacy of exosomes are discussed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Baisong Lu
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Tracy Criswell
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
28
|
Liu W, Chung K, Yu S, Lee LP. Nanoplasmonic biosensors for environmental sustainability and human health. Chem Soc Rev 2024; 53:10491-10522. [PMID: 39192761 DOI: 10.1039/d3cs00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Monitoring the health conditions of the environment and humans is essential for ensuring human well-being, promoting global health, and achieving sustainability. Innovative biosensors are crucial in accurately monitoring health conditions, uncovering the hidden connections between the environment and human well-being, and understanding how environmental factors trigger autoimmune diseases, neurodegenerative diseases, and infectious diseases. This review evaluates the use of nanoplasmonic biosensors that can monitor environmental health and human diseases according to target analytes of different sizes and scales, providing valuable insights for preventive medicine. We begin by explaining the fundamental principles and mechanisms of nanoplasmonic biosensors. We investigate the potential of nanoplasmonic techniques for detecting various biological molecules, extracellular vesicles (EVs), pathogens, and cells. We also explore the possibility of wearable nanoplasmonic biosensors to monitor the physiological network and healthy connectivity of humans, animals, plants, and organisms. This review will guide the design of next-generation nanoplasmonic biosensors to advance sustainable global healthcare for humans, the environment, and the planet.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Kyungwha Chung
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Yu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Luke P Lee
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
29
|
Tikhonov A, Kachanov A, Yudaeva A, Danilik O, Ponomareva N, Karandashov I, Kostyusheva A, Zamyatnin AA, Parodi A, Chulanov V, Brezgin S, Kostyushev D. Biomimetic Nanoparticles for Basic Drug Delivery. Pharmaceutics 2024; 16:1306. [PMID: 39458635 PMCID: PMC11510494 DOI: 10.3390/pharmaceutics16101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Biomimetic nanoparticles (BMNPs) are innovative nanovehicles that replicate the properties of naturally occurring extracellular vesicles, facilitating highly efficient drug delivery across biological barriers to target organs and tissues while ensuring maximal biocompatibility and minimal-to-no toxicity. BMNPs can be utilized for the delivery of therapeutic payloads and for imparting novel properties to other nanotechnologies based on organic and inorganic materials. The application of specifically modified biological membranes for coating organic and inorganic nanoparticles has the potential to enhance their therapeutic efficacy and biocompatibility, presenting a promising pathway for the advancement of drug delivery technologies. This manuscript is grounded in the fundamentals of biomimetic technologies, offering a comprehensive overview and analytical perspective on the preparation and functionalization of BMNPs, which include cell membrane-coated nanoparticles (CMCNPs), artificial cell-derived vesicles (ACDVs), and fully synthetic vesicles (fSVs). This review examines both "top-down" and "bottom-up" approaches for nanoparticle preparation, with a particular focus on techniques such as cell membrane coating, cargo loading, and microfluidic fabrication. Additionally, it addresses the technological challenges and potential solutions associated with the large-scale production and clinical application of BMNPs and related technologies.
Collapse
Affiliation(s)
- Andrey Tikhonov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
30
|
Feix AS, Tabaie EZ, Singh AN, Wittenberg NJ, Wilson EH, Joachim A. An in-depth exploration of the multifaceted roles of EVs in the context of pathogenic single-cell microorganisms. Microbiol Mol Biol Rev 2024; 88:e0003724. [PMID: 38869292 PMCID: PMC11426017 DOI: 10.1128/mmbr.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYExtracellular vesicles (EVs) have been recognized throughout scientific communities as potential vehicles of intercellular communication in both eukaryotes and prokaryotes, thereby influencing various physiological and pathological functions of both parent and recipient cells. This review provides an in-depth exploration of the multifaceted roles of EVs in the context of bacteria and protozoan parasite EVs, shedding light on their contributions to physiological processes and disease pathogenesis. These studies highlight EVs as a conserved mechanism of cellular communication, which may lead us to important breakthroughs in our understanding of infection, mechanisms of pathogenesis, and as indicators of disease. Furthermore, EVs are involved in host-microbe interactions, offering insights into the strategies employed by bacteria and protozoan parasites to modulate host responses, evade the immune system, and establish infections.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Emily Z. Tabaie
- Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Aarshi N. Singh
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | - Emma H. Wilson
- Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
31
|
Yeung V, Boychev N, Kanu LN, Ng V, Ross AE, Hutcheon AEK, Ciolino JB. Proteomic Characterization of Corneal Epithelial and Stromal Cell-Derived Extracellular Vesicles. Int J Mol Sci 2024; 25:10338. [PMID: 39408670 PMCID: PMC11477500 DOI: 10.3390/ijms251910338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Communication between the different layers of the cornea (epithelium and stroma) is a complex, yet crucial element in the corneal healing process. Upon corneal injury, it has been reported that the bi-directional cross talk between the epithelium and stroma via the vesicular secretome, namely, extracellular vesicles (EVs), can lead to accelerated wound closure upon injury. However, the distinct protein markers of EVs derived from human corneal epithelial (HCE) cells, keratocytes (HCKs), fibroblasts (HCFs), and myofibroblasts (HCMs) remain poorly understood. All EVs were enriched for CD81 and showed increased expression levels of ITGAV and FN1 in HCM-EVs compared to HCE- and HCF-EVs. All EVs were negative for GM130 and showed minimal differences in biophysical properties (particle concentration, median particle size, and zeta potential). At the proteomic level, we show that HCM-EVs are enriched with proteins associated with fibrosis pathways, such as COL6A1, COL6A2, MMP1, MMP2, TIMP1, and TIMP2, compared to HCE-, HCK-, and HCF-EVs. Interestingly, HCE-EVs express proteins involved with the EIF-2 signaling pathway (stress-induced signals to regulate mRNA translation), such as RPS21, RALB, EIF3H, RALA, and others, compared to HCK-, HCF-, and HCM-EVs. In this study, we isolated EVs from cell-conditioned media from HCE, HCKs, HCFs, and HCMs and characterized their biophysical and protein composition by Western blot, nanoparticle tracking analysis, and proteomics. This study supports the view that EVs from the corneal epithelium and stroma have a distinct molecular composition and may provide novel protein markers to distinguish the difference between HCE-, HCK-, HCF-, and HCM-EVs.
Collapse
Affiliation(s)
- Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (N.B.); (L.N.K.); (V.N.); (A.E.R.); (A.E.K.H.); (J.B.C.)
| | | | | | | | | | | | | |
Collapse
|
32
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Plant Defense Mechanisms against Polycyclic Aromatic Hydrocarbon Contamination: Insights into the Role of Extracellular Vesicles. TOXICS 2024; 12:653. [PMID: 39330582 PMCID: PMC11436043 DOI: 10.3390/toxics12090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose significant environmental and health risks. These compounds originate from both natural phenomena, such as volcanic activity and wildfires, and anthropogenic sources, including vehicular emissions, industrial processes, and fossil fuel combustion. Their classification as carcinogenic, mutagenic, and teratogenic substances link them to various cancers and health disorders. PAHs are categorized into low-molecular-weight (LMW) and high-molecular-weight (HMW) groups, with HMW PAHs exhibiting greater resistance to degradation and a tendency to accumulate in sediments and biological tissues. Soil serves as a primary reservoir for PAHs, particularly in areas of high emissions, creating substantial risks through ingestion, dermal contact, and inhalation. Coastal and aquatic ecosystems are especially vulnerable due to concentrated human activities, with PAH persistence disrupting microbial communities, inhibiting plant growth, and altering ecosystem functions, potentially leading to biodiversity loss. In plants, PAH contamination manifests as a form of abiotic stress, inducing oxidative stress, cellular damage, and growth inhibition. Plants respond by activating antioxidant defenses and stress-related pathways. A notable aspect of plant defense mechanisms involves plant-derived extracellular vesicles (PDEVs), which are membrane-bound nanoparticles released by plant cells. These PDEVs play a crucial role in enhancing plant resistance to PAHs by facilitating intercellular communication and coordinating defense responses. The interaction between PAHs and PDEVs, while not fully elucidated, suggests a complex interplay of cellular defense mechanisms. PDEVs may contribute to PAH detoxification through pollutant sequestration or by delivering enzymes capable of PAH degradation. Studying PDEVs provides valuable insights into plant stress resilience mechanisms and offers potential new strategies for mitigating PAH-induced stress in plants and ecosystems.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
33
|
Yao X, He D, Wei P, Niu Z, Chen H, Li L, Fu P, Wang Y, Lou S, Qian S, Zheng J, Zuo G, Wang K. DNA Nanomaterial-Empowered Surface Engineering of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306852. [PMID: 38041689 DOI: 10.1002/adma.202306852] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Extracellular vesicles (EVs) are cell-secreted biological nanoparticles that are critical mediators of intercellular communication. They contain diverse bioactive components, which are promising diagnostic biomarkers and therapeutic agents. Their nanosized membrane-bound structures and innate ability to transport functional cargo across major biological barriers make them promising candidates as drug delivery vehicles. However, the complex biology and heterogeneity of EVs pose significant challenges for their controlled and actionable applications in diagnostics and therapeutics. Recently, DNA molecules with high biocompatibility emerge as excellent functional blocks for surface engineering of EVs. The robust Watson-Crick base pairing of DNA molecules and the resulting programmable DNA nanomaterials provide the EV surface with precise structural customization and adjustable physical and chemical properties, creating unprecedented opportunities for EV biomedical applications. This review focuses on the recent advances in the utilization of programmable DNA to engineer EV surfaces. The biology, function, and biomedical applications of EVs are summarized and the state-of-the-art achievements in EV isolation, analysis, and delivery based on DNA nanomaterials are introduced. Finally, the challenges and new frontiers in EV engineering are discussed.
Collapse
Affiliation(s)
- Xuxiang Yao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Dongdong He
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Pengyao Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Zitong Niu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Hao Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Yiting Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China
| | - Saiyun Lou
- Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
- Ningbo Second Hospital, Ningbo, 315010, P. R. China
| | - Sihua Qian
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Jianping Zheng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Guokun Zuo
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| |
Collapse
|
34
|
Chen C, Pan X, Sun M, Wang J, Su X, Zhang T, Chen Y, Wu D, Li J, Wu S, Yan X. Phospholipid-Anchored Ligand Conjugation on Extracellular Vesicles for Enhanced Cancer Targeting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310712. [PMID: 38733222 DOI: 10.1002/smll.202310712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/27/2024] [Indexed: 05/13/2024]
Abstract
Extracellular vesicles (EVs) are recognized as potential candidates for next-generation drug delivery systems. However, the inherent cancer-targeting efficiency is unsatisfactory, necessitating surface modification to attach cell-binding ligands. By utilizing phospholipase D from Streptomyces in combination with maleimide-containing primary alcohol, the authors successfully anchored ligands onto milk-derived EVs (mEVs), overcoming the issues of ligand leakage or functional alteration seen in traditional methods. Quantitative nano-flow cytometry demonstrated that over 90% of mEVs are effectively modified with hundreds to thousands of ligands. The resulting mEV formulations exhibited remarkable long-term stability in conjugation proportion, ligand number, size distribution, and particle concentration, even after months of storage. It is further shown that conjugating transferrin onto mEVs significantly enhanced cellular uptake and induced pronounced cytotoxic effects when loaded with paclitaxel. Overall, this study presents a highly efficient, stable, cost-effective, and scalable ligand conjugation approach, offering a promising strategy for targeted drug delivery of EVs.
Collapse
Affiliation(s)
- Chaoxiang Chen
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Xueping Pan
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Mengdi Sun
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Jialin Wang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Xueqi Su
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Tianyu Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Yulei Chen
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Daren Wu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Jian Li
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Shuqi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
35
|
Han Y, Ye M, Ye S, Liu B. Comparison of Lung Tissue-Derived Extracellular Vesicles Using Multiple Dissociation Methods for Profiling Protein Biomarkers. Biotechnol J 2024; 19:e202400329. [PMID: 39295555 DOI: 10.1002/biot.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
Extracellular vesicles (EVs) operate as chemical messengers that facilitate intercellular communication. Emerging evidence has demonstrated that lung tissue-derived EVs play pivotal roles in pulmonary physiological processes and have potential as biomarkers and therapeutics for lung diseases. Multiple methods have been proposed for the isolation of lung tissue-derived EVs. However, the effects of different tissue pre-treatments on lung EV isolation and subsequent disease biomarker discovery have not yet been comprehensively investigated. In this study, we compared the physical characteristics, recovery yields, and protein compositions of EVs isolated from lung tissues using three methods based on different tissue dissociation principles. Methodologically, the beneficial roles of blood perfusion and gentle meshing were emphasized based on their impact on EV yield and purity. These results demonstrate that different methods enrich distinct subpopulations of EVs that exhibit significant differences in their protein cargo and surface properties. These disparities directly affect the diagnostic detection of marker proteins related to lung diseases, including lung tumors, asthma, and pulmonary fibrosis. Collectively, these findings highlight the variations in EV characteristics resulting from the applied approaches and offer compelling suggestions for guiding researchers in selecting a suitable isolation method based on downstream functional studies and clinical applications.
Collapse
Affiliation(s)
- Yue Han
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Meng Ye
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Sheng Ye
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Bowen Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
36
|
Vachon L, Jean G, Milasan A, Babran S, Lacroix E, Guadarrama Bello D, Villeneuve L, Rak J, Nanci A, Mihalache-Avram T, Tardif JC, Finnerty V, Ruiz M, Boilard E, Tessier N, Martel C. Platelet extracellular vesicles preserve lymphatic endothelial cell integrity and enhance lymphatic vessel function. Commun Biol 2024; 7:975. [PMID: 39128945 PMCID: PMC11317532 DOI: 10.1038/s42003-024-06675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
Lymphatic vessels are essential for preventing the accumulation of harmful components within peripheral tissues, including the artery wall. Various endogenous mechanisms maintain adequate lymphatic function throughout life, with platelets being essential for preserving lymphatic vessel integrity. However, since lymph lacks platelets, their impact on the lymphatic system has long been viewed as restricted to areas where lymphatics intersect with blood vessels. Nevertheless, platelets can also exert long range effects through the release of extracellular vesicles (EVs) upon activation. We observed that platelet EVs (PEVs) are present in lymph, a compartment to which they could transfer regulatory effects of platelets. Here, we report that PEVs in lymph exhibit a distinct signature enabling them to interact with lymphatic endothelial cells (LECs). In vitro experiments show that the internalization of PEVs by LECs maintains their functional integrity. Treatment with PEVs improves lymphatic contraction capacity in atherosclerosis-prone mice. We suggest that boosting lymphatic pumping with exogenous PEVs offers a novel therapeutic approach for chronic inflammatory diseases characterized by defective lymphatics.
Collapse
Affiliation(s)
- Laurent Vachon
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Gabriel Jean
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Sara Babran
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Elizabeth Lacroix
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | | | | | - Janusz Rak
- McGill University and Research, Institute of the McGill University Health Centre, Montreal, Canada
- Department of Experimental Medicine, McGill University, Montreal, Canada
| | - Antonio Nanci
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | | - Jean-Claude Tardif
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | | | - Matthieu Ruiz
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Metabolomics platform, Montreal, Canada
| | - Eric Boilard
- Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, Québec, Canada
- Infectious and Immune Diseases Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada
| | - Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada.
- Montreal Heart Institute, Montreal, Canada.
| |
Collapse
|
37
|
Thananjeyan AL, Arnold J, Lee M, Au C, Pye V, Madigan MC, Cherepanoff S. Basal Linear Deposit: Normal Physiological Ageing or a Defining Lesion of Age-Related Macular Degeneration? J Clin Med 2024; 13:4611. [PMID: 39200753 PMCID: PMC11354422 DOI: 10.3390/jcm13164611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Objective: To determine if basal linear deposit (BLinD) is a specific lesion of age-related macular degeneration (AMD). Methods: The cohort was selected from a clinically and histopathologically validated archive (Sarks Archive) and consisted of 10 normal eyes (age 55-80 years) without any macular basal laminar deposit (BLamD) (Sarks Group I) and 16 normal aged eyes (age 57-88 years) with patchy BLamD (Sarks Group II). Only eyes with in vivo fundus assessment and corresponding high-resolution transmission electron microscopy (TEM) micrographs of the macula were included. Semithin sections and fellow-eye paraffin sections were additionally examined. BLinD was defined as a diffuse layer of electron-lucent vesicles external to the retinal pigment epithelium (RPE) basement membrane by TEM and was graded as follows: (i) Grade 0, absence of a continuous layer; (ii) Grade 1, a continuous layer up to three times the thickness of the RPE basement membrane (0.9 µm); (iii) Grade 2, a continuous layer greater than 0.9 µm. Bruch's membrane (BrM) hyalinisation and RPE abnormalities were determined by light microscopic examination of corresponding semithin and paraffin sections. Results: BLinD was identified in both normal (30%) and normal aged (62.5%) eyes. BLinD was thicker in normal aged eyes (p = 0.045; 95% CI 0.04-3.4). BLinD thickness positively correlated with both the degree of BrM hyalinisation (p = 0.049; 95% CI 0.05-2.69) and increasing microscopic RPE abnormalities (p = 0.022; 95% CI 0.188-2.422). RPE abnormalities were more likely to be observed in eyes with increased BrM hyalinisation (p = 0.044; 95% CI 0.61-4.319). Conclusions: BLinD is most likely an age-related deposit rather than a specific lesion of AMD. Its accumulation is associated with increasing BrM hyalinisation and microscopic RPE abnormalities, suggesting a relationship with dysregulated RPE metabolism and/or transport.
Collapse
Affiliation(s)
- Akshaya Lakshmi Thananjeyan
- St. Vincent’s Hospital, Victoria Street, Darlinghurst, NSW 2010, Australia
- School of Medicine, University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Mitchell Lee
- School of Clinical Medicine, University of NSW, Sydney, NSW 2052, Australia
- Anatomical Pathology, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Cheryl Au
- Anatomical Pathology, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
- School of Medicine, University of Notre Dame, Sydney, NSW 2008, Australia
| | - Victoria Pye
- School of Clinical Medicine, University of NSW, Sydney, NSW 2052, Australia
- Anatomical Pathology, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Michele C. Madigan
- Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW 2000, Australia
| | - Svetlana Cherepanoff
- School of Clinical Medicine, University of NSW, Sydney, NSW 2052, Australia
- Anatomical Pathology, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
- School of Medicine, University of Notre Dame, Sydney, NSW 2008, Australia
| |
Collapse
|
38
|
Qadeer A, Wajid A, Rafey HA, Nawaz S, Khan S, Rahman SU, Alzahrani KJ, Khan MZ, Alsabi MNS, Ullah H, Safi SZ, Xia Z, Zahoor M. Exploring extracellular vesicles in zoonotic helminth biology: implications for diagnosis, therapeutic and delivery. Front Cell Infect Microbiol 2024; 14:1424838. [PMID: 39165921 PMCID: PMC11333462 DOI: 10.3389/fcimb.2024.1424838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key intercellular communication and pathogenesis mediators. Parasitic organisms' helminths, cause widespread infections with significant health impacts worldwide. Recent research has shed light on the role of EVs in the lifecycle, immune evasion, and disease progression of these parasitic organisms. These tiny membrane-bound organelles including microvesicles and exosomes, facilitate the transfer of proteins, lipids, mRNAs, and microRNAs between cells. EVs have been isolated from various bodily fluids, offering a potential diagnostic and therapeutic avenue for combating infectious agents. According to recent research, EVs from helminths hold great promise in the diagnosis of parasitic infections due to their specificity, early detection capabilities, accessibility, and the potential for staging and monitoring infections, promote intercellular communication, and are a viable therapeutic tool for the treatment of infectious agents. Exploring host-parasite interactions has identified promising new targets for diagnostic, therapy, and vaccine development against helminths. This literature review delves into EVS's origin, nature, biogenesis, and composition in these parasitic organisms. It also highlights the proteins and miRNAs involved in EV release, providing a comprehensive summary of the latest findings on the significance of EVs in the biology of helminths, promising targets for therapeutic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Hafiz Abdul Rafey
- Shifa College of Pharmaceutical Sciences, Faculty of Pharmaceutical and Allied Health Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Mohammad Nafi Solaiman Alsabi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Duval C, Wyse BA, Tsang BK, Librach CL. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: a review. J Ovarian Res 2024; 17:160. [PMID: 39103867 DOI: 10.1186/s13048-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Extracellular vesicles (EVs), particles enriched in bioactive molecules like proteins, nucleic acids, and lipids, are crucial mediators of intercellular communication and play key roles in various physiological and pathological processes. EVs have been shown to be involved in ovarian follicular function and to be altered in two prevalent gynecological disorders; polycystic ovarian syndrome (PCOS) and endometriosis.Ovarian follicles are complex microenvironments where folliculogenesis takes place with well-orchestrated interactions between granulosa cells, oocytes, and their surrounding stromal cells. Recent research unveiled the presence of EVs, including exosomes and microvesicles, in the follicular fluid (FFEVs), which constitutes part of the developing oocyte's microenvironment. In the context of PCOS, a multifaceted endocrine, reproductive, and metabolic disorder, studies have explored the dysregulation of these FFEVs and their cargo. Nine PCOS studies were included in this review and two miRNAs were commonly reported in two different studies, miR-379 and miR-200, both known to play a role in female reproduction. Studies have also demonstrated the potential use of EVs as diagnostic tools and treatment options.Endometriosis, another prevalent gynecological disorder characterized by ectopic growth of endometrial-like tissue, has also been linked to aberrant EV signaling. EVs in the peritoneal fluid of women with endometriosis carry molecules that modulate the immune response and promote the establishment and maintenance of endometriosis lesions. EVs derived from endometriosis lesions, serum and peritoneal fluid obtained from patients with endometriosis showed no commonly reported biomolecules between the eleven reviewed studies. Importantly, circulating EVs have been shown to be potential biomarkers, also reflecting the severity of the pathology.Understanding the interplay of EVs within human ovarian follicles may provide valuable insights into the pathophysiology of both PCOS and endometriosis. Targeting EV-mediated communication may open avenues for novel diagnostic and therapeutic approaches for these common gynecological disorders. More research is essential to unravel the mechanisms underlying EV involvement in folliculogenesis and its dysregulation in PCOS and endometriosis, ultimately leading to more effective and personalized interventions.
Collapse
Affiliation(s)
- Cyntia Duval
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Benjamin K Tsang
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Center, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
40
|
Xia Y, Zhang J, Liu G, Wolfram J. Immunogenicity of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403199. [PMID: 38932653 DOI: 10.1002/adma.202403199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Extracellular vesicles (EVs) are promising next-generation therapeutics and drug delivery systems due to demonstrated safety and efficacy in preclinical models and early-stage clinical trials. There is an urgent need to address the immunogenicity of EVs (beyond the apparent lack of immunotoxicity) to advance clinical development. To date, few studies have assessed unintended immunological recognition of EVs. An in-depth understanding of EV-induced immunogenicity and clearance is necessary to develop effective therapeutic strategies, including approaches to mitigate immunological recognition when undesired. This article summarizes various factors involved in the potential immunogenicity of EVs and strategies to reduce immunological recognition for improved therapeutic benefit.
Collapse
Affiliation(s)
- Yutian Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
41
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
42
|
Durmaz E, Dribika L, Kutnyanszky M, Mead B. Utilizing extracellular vesicles as a drug delivery system in glaucoma and RGC degeneration. J Control Release 2024; 372:209-220. [PMID: 38880332 DOI: 10.1016/j.jconrel.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Retinal diseases are the leading cause of blindness, resulting in irreversible degeneration and death of retinal neurons. One such cell type, the retinal ganglion cell (RGC), is responsible for connecting the retina to the rest of the brain through its axons that make up the optic nerve and is the primary cell lost in glaucoma and traumatic optic neuropathy. To date, different therapeutic strategies have been investigated to protect RGCs from death and preserve vision, yet currently available strategies are restricted to treating neuron loss by reducing intraocular pressure. A major barrier identified by these studies is drug delivery to RGCs, which is in large part due to drug stability, short duration time at target, low delivery efficiency, and undesired off-target effects. Therefore, a delivery system to deal with these problems is needed to ensure maximum benefit from the candidate therapeutic material. Extracellular vesicles (EV), nanocarriers released by all cells, are lipid membranes encapsulating RNAs, proteins, and lipids. As they naturally shuttle these encapsulated compounds between cells for communicative purposes, they may be exploitable and offer opportunities to overcome hurdles in retinal drug delivery, including drug stability, drug molecular weight, barriers in the retina, and drug adverse effects. Here, we summarize the potential of an EV drug delivery system, discussing their superiorities and potential application to target RGCs.
Collapse
Affiliation(s)
- Esmahan Durmaz
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| | | | | | - Ben Mead
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| |
Collapse
|
43
|
Zhong T, Li Y, Jin M, Liu J, Wu Z, Zhu F, Zhao L, Fan Y, Xu L, Ji J. Downregulation of 4-HNE and FOXO4 collaboratively promotes NSCLC cell migration and tumor growth. Cell Death Dis 2024; 15:546. [PMID: 39085238 PMCID: PMC11291900 DOI: 10.1038/s41419-024-06948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Non-small cell lung cancer (NSCLC) is among the most prevalent cancers and a leading cause of cancer-related mortality globally. Extracellular vesicles (EVs) derived from NSCLC play a pivotal role in lung cancer progression. Our findings reveal a direct correlation between the abundance of EVs and the transfection efficiencies. Co-culturing two different lung cancer cell lines could enhance EVs formation, cell proliferation, migration and tumorigenicity. mRNA chip and metabolic analyses revealed significant alterations in the FOXO signaling pathway and unsaturated fatty acid metabolism within tumor tissues derived from co-cultured cells. Shotgun lipidomics studies and bioinformatics analyses guided our attention towards 4-Hydroxynonenal (4-HNE) and FOXO4. Elevating 4-HNE or FOXO4 levels could reduce the formation of EVs and impede cell growth and migration. While silencing FOXO4 expression lead to an increase in cell cloning rate and enhanced migration. These findings suggest that regulating the production of 4-HNE and FOXO4 might provide an effective therapeutic approach for the treatment of NSCLC.
Collapse
Affiliation(s)
- Tianfei Zhong
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China
- Logistic Affairs Department, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Li
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng Jin
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingqun Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyu Wu
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China
| | - Feiye Zhu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Zhao
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Yongsheng Fan
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China.
| | - Jinjun Ji
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
44
|
Yan B, Liao P, Liu Y, Han Z, Wang C, Chen F, Lei P. Therapeutic potential of microglia-derived extracellular vesicles in ischemic stroke. Int Immunopharmacol 2024; 139:112712. [PMID: 39032476 DOI: 10.1016/j.intimp.2024.112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Ischemic stroke (IS) is a debilitating neurological disorder with limited treatment options. Extracellular vesicles (EVs) have emerged as crucial lipid bilayer particles derived from various cell types that facilitate intercellular communication and enable the exchange of proteins, lipids, and genetic material. Microglia are resident brain cells that play a crucial role in brain development, maintenance of neuronal networks, and injury repair. They secrete numerous extracellular vesicles in different states. Recent evidence indicates that microglia-derived extracellular vesicles (M-EVs) actively participate in mediating various biological processes, such as neuroprotection and neurorepair, in stroke, making them an excellent therapeutic approach for treating this condition. This review comprehensively summarizes the latest research on M-EVs in stroke and explores their potential as novel therapeutic targets for this disorder. Additionally, it provides an overview of the effects and functions of M-EVs on stroke recovery to facilitate the development of clinically relevant therapies for IS.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Yaru Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Fanglian Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
45
|
Martínez-Díaz P, Parra A, Sanchez-López CM, Casas J, Lucas X, Marcilla A, Roca J, Barranco I. Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile. Int J Mol Sci 2024; 25:7492. [PMID: 39000599 PMCID: PMC11242203 DOI: 10.3390/ijms25137492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Seminal plasma contains a heterogeneous population of extracellular vesicles (sEVs) that remains poorly characterized. This study aimed to characterize the lipidomic profile of two subsets of differently sized sEVs, small (S-) and large (L-), isolated from porcine seminal plasma by size-exclusion chromatography and characterized by an orthogonal approach. High-performance liquid chromatography-high-resolution mass spectrometry was used for lipidomic analysis. A total of 157 lipid species from 14 lipid classes of 4 major categories (sphingolipids, glycerophospholipids, glycerolipids, and sterols) were identified. Qualitative differences were limited to two cholesteryl ester species present only in S-sEVs. L-sEVs had higher levels of all quantified lipid classes due to their larger membrane surface area. The distribution pattern was different, especially for sphingomyelins (more in S-sEVs) and ceramides (more in L-sEVs). In conclusion, this study reveals differences in the lipidomic profile of two subsets of porcine sEVs, suggesting that they differ in biogenesis and functionality.
Collapse
Affiliation(s)
- Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Christian M Sanchez-López
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Institute for Advanced Chemistry (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
46
|
Cheng FC, Wang LH, Lai YJ, Chiang CP. The utility of microbiome (microbiota) and exosomes in dentistry. J Dent Sci 2024; 19:1313-1319. [PMID: 39035305 PMCID: PMC11259687 DOI: 10.1016/j.jds.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 07/23/2024] Open
Abstract
The concept of the oral-systemic link is important in both basic and clinical dentistry. The microbiome (microbiota) and exosomes are two prevalent issues in the modern medical researches. The common advent of oral and general microbiological investigation originated from the initial observations of oral bacteria within the dental plaque known as oral microbiome. In addition to oral diseases related to oral microbiome, the disruption of the oral and intestinal microbiome could result in the onset of systemic diseases. In the past decade, the exosomes have emerged in the field of the medical researches as they play a role in regulating the transport of intracellular vesicles. However, with the rapid advancement of exosomes researches in recent years, oral tissues (such as dental pulp stem cells and salivary gland cells) are used as the research materials to further promote the development of regenerative medicine. This article emphasized the importance of the concept of the oral-systemic link through the examples of microbiome (microbiota) and exosomes. Through the researches related to microbiome (microbiota) and exosomes, many evidences showed that as the basic dentistry developed directly from the assistance of the basic medicine, indirectly the progress of the basic dentistry turns back to promote the development of the basic medicine, indicating the importance of the concept of the oral-systemic link. The understanding of the oral-systemic link is essential for both clinicians and medical researchers, regardless of their dental backgrounds.
Collapse
Affiliation(s)
- Feng-Chou Cheng
- Chia-Te Dental Clinic, New Taipei City, Taiwan
- School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
- Science Education Center, National Taiwan Normal University, Taipei, Taiwan
| | - Ling-Hsia Wang
- Center for the Literature and Art, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Yun-Ju Lai
- School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chun-Pin Chiang
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
47
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
48
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
49
|
Maiyulan A, Matsumoto Y, Wang H, Murakami K, Toyozumi T, Otsuka R, Shiraishi T, Kinoshita K, Hu J, Iida S, Morishita H, Makiyama T, Nishioka Y, Kano M, Matsubara H. Hypoxia‑regulated exosomal miR‑185 inhibits esophageal squamous cell carcinoma progression and predicts prognosis. Oncol Lett 2024; 28:334. [PMID: 38827568 PMCID: PMC11140231 DOI: 10.3892/ol.2024.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
Despite advances in treatment and diagnosis, the prognosis of patients with esophageal squamous cell carcinoma (ESCC) remains poor. MicroRNAs (miRNAs/miRs) are associated with prognosis in esophageal cancer, indicating that they may help guide treatment decisions. The aim of the present study was to explore exosomal miR-185 as a candidate prognostic biomarker and therapeutic target in ESCC, to investigate its biological function and clinical significance, and to ascertain the applicability of circulating exosomal miR-185 for the development of targeted drugs for ESCC treatment. A GeneChip miRNA array was used to compare exosomal miRNA expression in ESCC cell lines under hypoxia with those under normoxia. Exosomal miR-185 expression was then confirmed by reverse transcription-quantitative PCR. Patient background and prognosis were compared between high and low miR-185 expression groups. Functional analyses were performed to evaluate the antitumor effects of miR-185 in ESCC cells. Global Gene Set Enrichment Analysis of The Cancer Genome Atlas data was also performed, and differentially expressed exosomal miRNAs under hypoxia were identified compared to those under normoxia. Hypoxia markedly decreased the expression of exosomal miR-185 in KYSE-960 and T.Tn cell culture media. Overexpression of miR-185 suppressed the migration, invasion and colony-forming abilities of ESCC lines, and also suppressed cell cycle progression and promoted apoptosis after cisplatin treatment. Notably, high miR-185 expression was associated with signaling pathways related to cell death, DNA damage and p53. Furthermore, circulating exosomal miR-185 levels were associated with cN and cStage, and could predict progression-free survival and disease-specific survival of patients with ESCC after initial treatment. In conclusion, miR-185 holds potential as a prognostic biomarker and therapeutic target in ESCC.
Collapse
Affiliation(s)
- Abula Maiyulan
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Huan Wang
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Ryota Otsuka
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tadashi Shiraishi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kazuya Kinoshita
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Jie Hu
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Shinichiro Iida
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hiroki Morishita
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tenshi Makiyama
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yuri Nishioka
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
50
|
Palmulli R, Couty M, Piontek MC, Ponnaiah M, Dingli F, Verweij FJ, Charrin S, Tantucci M, Sasidharan S, Rubinstein E, Kontush A, Loew D, Lhomme M, Roos WH, Raposo G, van Niel G. CD63 sorts cholesterol into endosomes for storage and distribution via exosomes. Nat Cell Biol 2024; 26:1093-1109. [PMID: 38886558 DOI: 10.1038/s41556-024-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
Extracellular vesicles such as exosomes are now recognized as key players in intercellular communication. Their role is influenced by the specific repertoires of proteins and lipids, which are enriched when they are generated as intraluminal vesicles (ILVs) in multivesicular endosomes. Here we report that a key component of small extracellular vesicles, the tetraspanin CD63, sorts cholesterol to ILVs, generating a pool that can be mobilized by the NPC1/2 complex, and exported via exosomes to recipient cells. In the absence of CD63, cholesterol is retrieved from the endosomes by actin-dependent vesicular transport, placing CD63 and cholesterol at the centre of a balance between inward and outward budding of endomembranes. These results establish CD63 as a lipid-sorting mechanism within endosomes, and show that ILVs and exosomes are alternative providers of cholesterol.
Collapse
Affiliation(s)
- Roberta Palmulli
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Mickaël Couty
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
- CRCI2NA, Nantes Université, Inserm UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France
| | - Melissa C Piontek
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Maharajah Ponnaiah
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN, ICAN OMICS and ICAN I/O), F-75013, Paris, France
| | - Florent Dingli
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Frederik J Verweij
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Stéphanie Charrin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, Inserm, Paris, France
| | - Matteo Tantucci
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Sajitha Sasidharan
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Eric Rubinstein
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, Inserm, Paris, France
| | - Anatol Kontush
- ICAN, National Institute for Health and Medical Research, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Marie Lhomme
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN, ICAN OMICS and ICAN I/O), F-75013, Paris, France
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248, Paris Cedex 05, France
| | - Guillaume van Niel
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France.
- CRCI2NA, Nantes Université, Inserm UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France.
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| |
Collapse
|