1
|
Salybekov AA, Wolfien M, Kobayashi S, Steinhoff G, Asahara T. Personalized Cell Therapy for Patients with Peripheral Arterial Diseases in the Context of Genetic Alterations: Artificial Intelligence-Based Responder and Non-Responder Prediction. Cells 2021; 10:3266. [PMID: 34943774 PMCID: PMC8699290 DOI: 10.3390/cells10123266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
Stem/progenitor cell transplantation is a potential novel therapeutic strategy to induce angiogenesis in ischemic tissue, which can prevent major amputation in patients with advanced peripheral artery disease (PAD). Thus, clinicians can use cell therapies worldwide to treat PAD. However, some cell therapy studies did not report beneficial outcomes. Clinical researchers have suggested that classical risk factors and comorbidities may adversely affect the efficacy of cell therapy. Some studies have indicated that the response to stem cell therapy varies among patients, even in those harboring limited risk factors. This suggests the role of undetermined risk factors, including genetic alterations, somatic mutations, and clonal hematopoiesis. Personalized stem cell-based therapy can be developed by analyzing individual risk factors. These approaches must consider several clinical biomarkers and perform studies (such as genome-wide association studies (GWAS)) on disease-related genetic traits and integrate the findings with those of transcriptome-wide association studies (TWAS) and whole-genome sequencing in PAD. Additional unbiased analyses with state-of-the-art computational methods, such as machine learning-based patient stratification, are suited for predictions in clinical investigations. The integration of these complex approaches into a unified analysis procedure for the identification of responders and non-responders before stem cell therapy, which can decrease treatment expenditure, is a major challenge for increasing the efficacy of therapies.
Collapse
Affiliation(s)
- Amankeldi A. Salybekov
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan;
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| | - Markus Wolfien
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstrasse 69, 18057 Rostock, Germany;
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan;
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| | - Gustav Steinhoff
- Department of Cardiac Surgery, Rostock University Medical Center, 18059 Rostock, Germany;
- Department Life, Light & Matter, University of Rostock, 18057 Rostock, Germany
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, 1-1370 Okamoto, Kamakura 2478533, Japan
| |
Collapse
|
2
|
Won H, Jeong DH, Shin HS, Lee JH, Lee JP, Yang JY, Jung K, Jeong J, Oh JH. Toxicological Assessment of Bromochlorophene: Single and Repeated-Dose 28-Day Oral Toxicity, Genotoxicity, and Dermal Application in Sprague-Dawley Rats. Front Pharmacol 2021; 12:690141. [PMID: 34335256 PMCID: PMC8316990 DOI: 10.3389/fphar.2021.690141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Bromochlorophene (BCP) has shown good properties in sterilization and antibacterial activity and is widely used as a household chemical. We evaluated the genotoxicity, single and repeated-dose 28-day oral toxicity, and dermal application of a BCP suspension in Sprague–Dawley (SD) rats. For the single-dose toxicity study, a dose of 25–1,000 mg per kg of bodyweight (mg/kg b.w.) of BCP was given once orally to SD rats. Mortality and clinical signs were observed and recorded for the first 30 min after treatment, at 4 h post-administration, and then at least once daily for 14 days after administration. For the repeated-dose 28-day toxicity study, the high dose was set at 1,000 mg/kg b.w. and the middle, middle-low, and low dose were set to 500, 250, and 125 mg/kg, respectively. Hematology and biochemistry parameters were examined. Gross pathologic and histopathologic examinations were performed on selected tissues from all animals. A bacterial reverse mutation assay, in vitro chromosomal aberration assay, and in vivo micronucleus assay were performed to assess genotoxicity-dermal application exposure assessment of BCP in rats. A high oral approximate lethal dose (ALD) of 1,000 mg/kg was observed in the single-dose toxicity test. During the repeated-dose 28-day time period, most animal deaths after administration occurred during the first 3 weeks. The 1,000 mg/kg b.w. oral dose caused the death of six male rats (6/7) and four female rats (4/7). At 500 mg/kg b.w., the female rats showed mortality (1/7). For the biochemistry assays, cholesterol was increased significantly compared to vehicle in both sexes in the 250 and 500 mg/kg groups. Histopathological changes with treatment-related findings were observed in the pancreas in female rats treated with a high dose of BCP compared with the vehicle group. BCP showed no genotoxic effect. These data suggested that the ALD of BCP, estimated as a non-genotoxic substance, was over 1,000 mg/kg b.w. in the single-dose toxicity study, and the NOAEL of BCP was considered to be 250 mg/kg b.w. for male and female rats after repeated oral administration for 28 days under the present study conditions.
Collapse
Affiliation(s)
- Hansol Won
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Da Hye Jeong
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Hyo-Sook Shin
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jin Hee Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jeong Pyo Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jun-Young Yang
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Kikyung Jung
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jayoung Jeong
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jae Ho Oh
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| |
Collapse
|