1
|
Han B, Liu Y, Zhou Q, Yu Y, Liu X, Guo Y, Zheng X, Zhou M, Yu H, Wang W. The advance of ultrasound-enabled diagnostics and therapeutics. J Control Release 2024; 375:1-19. [PMID: 39208935 DOI: 10.1016/j.jconrel.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.
Collapse
Affiliation(s)
- Biying Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qianqian Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Guo
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Haijun Yu
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
2
|
Zhu X, He C, Tan L, Qi X, Niu M, Meng X, Zhong H. An Fe-Cu bimetallic organic framework as a microwave sensitizer for treating tumors using combined microwave thermotherapy and chemodynamic therapy. J Pharm Anal 2024; 14:100952. [PMID: 39185337 PMCID: PMC11343999 DOI: 10.1016/j.jpha.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 08/27/2024] Open
Abstract
Microwave thermotherapy (MWTT), as a treatment for tumors, lacks specificity and requires sensitizers. Most reported microwave sensitizers are single metal-organic frameworks (MOFs), which must be loaded with ionic liquids to enhance the performance in MWTT. Meanwhile, MWTT is rarely combined with other treatment modalities. Here, we synthesized a novel Fe-Cu bimetallic organic framework FeCuMOF (FCM) by applying a hydrothermal method and further modified it with methyl polyethylene glycol (mPEG). The obtained FCM@PEG (FCMP) showed remarkable heating performance under low-power microwave irradiation; it also acted as a novel nanospheres enzyme to catalyze H2O2 decomposition, producing abundant reactive oxygen species (ROS) to deplete glutathione (GSH) and prevent ROS clearance from tumor cells during chemodynamic treatment. The FCMP was biodegradable and demonstrated excellent biocompatibility, allowing it to be readily metabolized without causing toxic effects. Finally, it was shown to act as a suitable agent for T2 magnetic resonance imaging (MRI) in vitro and in vivo. This new bimetallic nanostructure could successfully realize two tumor treatment modalities (MWTT and chemodynamic therapy) and dual imaging modes (T2 MRI and microwave thermal imaging). Our findings represent a breakthrough for integrating the diagnosis and treatment of tumors and provides a reference for developing new microwave sensitizers.
Collapse
Affiliation(s)
- Xinyang Zhu
- Department of Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Xixian New Area Rimag Medical Diagnosis Center, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712099, China
| | - Chao He
- Xixian New Area Rimag Medical Diagnosis Center, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712099, China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xun Qi
- Department of Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Meng Niu
- Department of Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongshan Zhong
- Department of Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
3
|
Carrese B, Cavallini C, Armanetti P, Silvestri B, Calì G, Luciani G, Sanità G, Menichetti L, Lamberti A. Hybrid Nanoparticle-Assisted Chemo-Photothermal Therapy and Photoacoustic Imaging in a Three-Dimensional Breast Cancer Cell Model. Int J Mol Sci 2023; 24:17374. [PMID: 38139203 PMCID: PMC10743567 DOI: 10.3390/ijms242417374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Bioinspired nanoparticles have recently been gaining attention as promising multifunctional nanoplatforms for therapeutic applications in cancer, including breast cancer. Here, the efficiency of the chemo-photothermal and photoacoustic properties of hybrid albumin-modified nanoparticles (HSA-NPs) loaded with doxorubicin was evaluated in a three-dimensional breast cancer cell model. The HSA-NPs showed a higher uptake and deeper penetration into breast cancer spheroids than healthy breast cell 3D cultures. Confocal microscopy revealed that, in tumour spheroids incubated with doxorubicin-loaded NPs for 16 h, doxorubicin was mainly localised in the cytoplasm, while a strong signal was detectable at the nuclear level after 24 h, suggesting a time-dependent uptake. To evaluate the cytotoxicity of doxorubicin-loaded NPs, tumour spheroids were treated for up to 96 h with increasing concentrations of NPs, showing marked toxicity only at the highest concentration of doxorubicin. When doxorubicin administration was combined with laser photothermal irradiation, enhanced cytotoxicity was observed at lower concentrations and incubation times. Finally, the photoacoustic properties of doxorubicin-loaded NPs were evaluated in tumour spheroids, showing a detectable signal increasing with NP concentration. Overall, our data show that the combined effect of chemo-photothermal therapy results in a shorter exposure time to doxorubicin and a lower drug dose. Furthermore, owing to the photoacoustic properties of the NPs, this nanoplatform may represent a good candidate for theranostic applications.
Collapse
Affiliation(s)
- Barbara Carrese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Chiara Cavallini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Paolo Armanetti
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Brigida Silvestri
- Department of Civil, Construction and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Gaetano Calì
- Institute of Endocrinology and Molecular Oncology, National Research Council, 80131 Naples, Italy
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Gennaro Sanità
- Institute of Applied Sciences and Intelligent Systems—Unit of Naples, National Research Council, 80131 Naples, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
4
|
Carrese B, Cavallini C, Sanità G, Armanetti P, Silvestri B, Calì G, Pota G, Luciani G, Menichetti L, Lamberti A. Controlled Release of Doxorubicin for Targeted Chemo-Photothermal Therapy in Breast Cancer HS578T Cells Using Albumin Modified Hybrid Nanocarriers. Int J Mol Sci 2021; 22:ijms222011228. [PMID: 34681890 PMCID: PMC8538307 DOI: 10.3390/ijms222011228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Hybrid nanomaterials have attracted research interest owing to their intriguing properties, which may offer new diagnostic options with triggering features, able to realize a new kind of tunable nanotherapeutics. Hybrid silica/melanin nanoparticles (NPs) containing silver seeds (Me-laSil_Ag-HSA NPs) disclosed relevant photoacoustic contrast for molecular imaging. In this study we explored therapeutic function in the same nanoplatform. For this purpose, MelaSil_Ag-HSA were loaded with doxorubicin (DOX) (MelaSil_Ag-HSA@DOX) and tested to assess the efficiency of drug delivery combined with concurrent photothermal treatment. The excellent photothermal properties allowed enhanced cytotoxic activity at significantly lower doses than neat chemotherapeutic treatment. The results revealed that MelaSil_Ag-HSA@DOX is a promising platform for an integrated photothermal (PT) chemotherapy approach, reducing the efficacy concentration of the DOX and, thus, potentially limiting the several adverse side effects of the drug in in vivo treatments.
Collapse
Affiliation(s)
- Barbara Carrese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Chiara Cavallini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (C.C.); (P.A.)
| | - Gennaro Sanità
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Naples, Italy;
| | - Paolo Armanetti
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (C.C.); (P.A.)
| | - Brigida Silvestri
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (B.S.); (G.P.); (G.L.)
| | - Gaetano Calì
- Institute of Endocrinology and Experimental Oncology, National Research Council, 80131 Naples, Italy;
| | - Giulio Pota
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (B.S.); (G.P.); (G.L.)
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (B.S.); (G.P.); (G.L.)
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (C.C.); (P.A.)
- Correspondence: (L.M.); (A.L.)
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: (L.M.); (A.L.)
| |
Collapse
|