1
|
Kang Y, Kang Y, Zhang D, Yao J. Antiangiogenic therapy exerts antitumor effects by altering the tumor microenvironment: bibliometric analysis. Front Immunol 2024; 15:1460533. [PMID: 39691714 PMCID: PMC11649635 DOI: 10.3389/fimmu.2024.1460533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
Background Antiangiogenic therapy can alter the tumor microenvironment (TME) and thus exert anti-tumor effects, and has the potential to increase the efficacy of conventional therapy and immunotherapy. The aim of this study was to examine current research hotspots and collaborative networks on the relationship between previous antiangiogenic therapies and the TME through bibliometric analysis. Method From the Web of Science Core Collection database, all publications from inception through December 2023 were downloaded. In-depth analysis was performed by Bibliometrix packages in R. Keywords and collaborative networks were analyzed using VOSviewers and Citespace. Result We obtained a total of 9027 publications. They come from 27 countries and were published in 1387 journals, with a total of 39,604 authors in the studied area. The number of publications increases dramatically from 2014 to 2023, accounting for 73.87% (6668/9027) of all publications. China and CANCERS have the highest number of publications on this topic and CANCER RESEACH is the most influential. In the last decade (2013- 2023), research has gradually shifted from studying the role of vascular endothelial growth factor in the TME to examining how antivascular therapy can contribute to the progression of cancer treatment. Furthermore, nanoparticle-based drug delivery systems and immunotherapy have been widely explored in the past five years. The findings of this study will help scientists to explore this promising field in depth by providing insight into the relationship between antiangiogenic therapy and the TME. Conclusion The relationship between the antiangiogenic therapy and the TME has been developing rapidly, but cooperation between different institutions and countries is still limited. Researchers can use this study to identify hotspots and develop trends for related research, thereby facilitating the development and cooperative exchange in this field, as well as to suggest potential future research directions.
Collapse
Affiliation(s)
| | | | | | - Jun Yao
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of
Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Fattahi AS, Jafari M, Farahavar G, Abolmaali SS, Tamaddon AM. Expanding horizons in cancer therapy by immunoconjugates targeting tumor microenvironments. Crit Rev Oncol Hematol 2024; 201:104437. [PMID: 38977144 DOI: 10.1016/j.critrevonc.2024.104437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Immunoconjugates are promising molecules combining antibodies with different agents, such as toxins, drugs, radionuclides, or cytokines that primarily aim to target tumor cells. However, tumor microenvironment (TME), which comprises a complex network of various cells and molecular cues guiding tumor growth and progression, remains a major challenge for effective cancer therapy. Our review underscores the pivotal role of TME in cancer therapy with immunoconjugates, examining the intricate interactions with TME and recent advancements in TME-targeted immunoconjugates. We explore strategies for targeting TME components, utilizing diverse antibodies such as neutralizing, immunomodulatory, immune checkpoint inhibitors, immunostimulatory, and bispecific antibodies. Additionally, we discuss different immunoconjugates, elucidating their mechanisms of action, advantages, limitations, and applications in cancer immunotherapy. Furthermore, we highlight emerging technologies enhancing the safety and efficacy of immunoconjugates, such as antibody engineering, combination therapies, and nanotechnology. Finally, we summarize current advancements, perspectives, and future developments of TME-targeted immunoconjugates.
Collapse
Affiliation(s)
- Amir Saamaan Fattahi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahboobeh Jafari
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| |
Collapse
|
3
|
Kim KM, D'Elia AM, Rodell CB. Hydrogel-based approaches to target hypersensitivity mechanisms underlying autoimmune disease. Adv Drug Deliv Rev 2024; 212:115395. [PMID: 39004347 DOI: 10.1016/j.addr.2024.115395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
A robust adaptive immune response is essential for combatting pathogens. In the wrong context such as due to genetic and environmental factors, however, the same mechanisms crucial for self-preservation can lead to a loss of self-tolerance. Resulting autoimmunity manifests in the development of a host of organ-specific or systemic autoimmune diseases, hallmarked by aberrant immune responses and tissue damage. The prevalence of autoimmune diseases is on the rise, medical management of which focuses primarily on pharmacological immunosuppression that places patients at a risk of side effects, including opportunistic infections and tumorigenesis. Biomaterial-based drug delivery systems confer many opportunities to address challenges associated with conventional disease management. Hydrogels, in particular, can protect encapsulated cargo (drug or cell therapeutics) from the host environment, afford their presentation in a controlled manner, and can be tailored to respond to disease conditions or support treatment via multiplexed functionality. Moreover, localized delivery to affected sites by these approaches has the potential to concentrate drug action at the site, reduce off-target exposure, and enhance patient compliance by reducing the need for frequent administration. Despite their many benefits for the management of autoimmune disease, such biomaterial-based approaches focus largely on the downstream effects of hypersensitivity mechanisms and have a limited capacity to eradicate the disease. In contrast, direct targeting of mechanisms of hypersensitivity reactions uniquely enables prophylaxis or the arrest of disease progression by mitigating the basis of autoimmunity. One promising approach is to induce self-antigen-specific tolerance, which specifically subdues damaging autoreactivity while otherwise retaining the normal immune responses. In this review, we will discuss hydrogel-based systems for the treatment of autoimmune disease, with a focus on those that target hypersensitivity mechanisms head-on. As the field continues to advance, it will expand the range of therapeutic choices for people coping with autoimmune diseases, providing fresh prospects for better clinical outcomes and improved quality of life.
Collapse
Affiliation(s)
- Kenneth M Kim
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
You H, Zhao P, Zhao X, Zheng Q, Ma W, Cheng K, Li M, Kou J, Feng W. Promotion of tumor angiogenesis and growth induced by low-dose antineoplastic agents via bone-marrow-derived cells in tumor tissues. Front Pharmacol 2024; 15:1414832. [PMID: 39119610 PMCID: PMC11306047 DOI: 10.3389/fphar.2024.1414832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Background More research is needed to solidify the basis for reasonable metronomic chemotherapy regimens due to the inconsistent clinical outcomes from studies on metronomic chemotherapy with antineoplastic agents, along with signs of a nonlinear dose-response relationship at low doses. The present study therefore explored the dose-response relationships of representative antineoplastic agents in low dose ranges and their underlying mechanisms. Methods Cyclophosphamide (CPA) and 5-fluorouracil (5-Fu) were employed to observe the effects of the frequent administration of low-dose antineoplastic agents on tumor growth, tumor angiogenesis, and bone-marrow-derived cell (BMDC) mobilization in mouse models. The effects of antineoplastic agents on tumor and endothelial cell functions with or without BMDCs were analyzed in vitro. Results Tumor growth and metastasis were significantly promoted after the administration of CPA or 5-Fu at certain low dose ranges, and were accompanied by enhanced tumor angiogenesis and proangiogenic factor expression in tumor tissues, increased proangiogenic BMDC release in the circulating blood, and augmented proangiogenic BMDC retention in tumor tissues. Low concentrations of CPA or 5-Fu were found to significantly promote tumor cell migration and invasion, and enhance BMDC adhesion to endothelial cells in vitro. Conclusion These results suggest that there are risks in empirical metronomic chemotherapy using low-dose antineoplastic agents and the optimal dosage and administration schedule of antineoplastic agents need to be determined through further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Kirti A, Simnani FZ, Jena S, Lenka SS, Kalalpitiya C, Naser SS, Singh D, Choudhury A, Sahu RN, Yadav A, Sinha A, Nandi A, Panda PK, Kaushik NK, Suar M, Verma SK. Nanoparticle-mediated metronomic chemotherapy in cancer: A paradigm of precision and persistence. Cancer Lett 2024; 594:216990. [PMID: 38801886 DOI: 10.1016/j.canlet.2024.216990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Current methods of cancer therapy have demonstrated enormous potential in tumor inhibition. However, a high dosage regimen of chemotherapy results in various complications which affect the normal body cells. Tumor cells also develop resistance against the prescribed drugs in the whole treatment regimen increasing the risk of cancer relapse. Metronomic chemotherapy is a modern treatment method that involves administering drugs at low doses continuously, allowing the drug sufficient time to take its effect. This method ensures that the toxicity of the drugs is to a minimum in comparison to conventional chemotherapy. Nanoparticles have shown efficacy in delivering drugs to the tumor cells in various cancer therapies. Combining nanoparticles with metronomic chemotherapy can yield better treatment results. This combination stimulates the immune system, improving cancer cells recognition by immune cells. Evidence from clinical and pre-clinical trials supports the use of metronomic delivery for drug-loaded nanoparticles. This review focuses on the functionalization of nanoparticles for improved drug delivery and inhibition of tumor growth. It emphasizes the mechanisms of metronomic chemotherapy and its conjunction with nanotechnology. Additionally, it explores tumor progression and the current methods of chemotherapy. The challenges associated with nano-based metronomic chemotherapy are outlined, paving the way for prospects in this dynamic field.
Collapse
Affiliation(s)
- Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Rudra Narayan Sahu
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India; Instituto de Investigaciones en Materiales, UNAM, 04510, CDMX, Mexico
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
6
|
Xu M, Li S. Nano-drug delivery system targeting tumor microenvironment: A prospective strategy for melanoma treatment. Cancer Lett 2023; 574:216397. [PMID: 37730105 DOI: 10.1016/j.canlet.2023.216397] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Melanoma, the most aggressive form of cutaneous malignancy arising from melanocytes, is frequently characterized by metastasis. Despite considerable progress in melanoma therapies, patients with advanced-stage disease often have a poor prognosis due to the limited efficacy, off-target effects, and toxicity associated with conventional drugs. Nanotechnology has emerged as a promising approach to address these challenges with nanoparticles capable of delivering therapeutic agents specifically to the tumor microenvironment (TME). However, the clinical approval of nanomedicines for melanoma treatment remains limited, necessitating further research to develop nanoparticles with improved biocompatibility and precise targeting capabilities. This comprehensive review provides an overview of the current research on nano-drug delivery systems for melanoma treatment, focusing on liposomes, polymeric nanoparticles, and inorganic nanoparticles. It discusses the potential of these nanoparticles for targeted drug delivery, as well as their ability to enhance the efficacy of conventional drugs while minimizing toxicity. Furthermore, this review emphasizes the significance of interdisciplinary collaboration between researchers from various fields to advance the development of nanomedicines. Overall, this review serves as a valuable resource for researchers and clinicians interested in the potential of nano-drug delivery systems for melanoma treatment and offers insights into future directions for research in this field.
Collapse
Affiliation(s)
- Mengdan Xu
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, China.
| |
Collapse
|
7
|
Fudalej M, Kwaśniewska D, Nurzyński P, Badowska-Kozakiewicz A, Mękal D, Czerw A, Sygit K, Deptała A. New Treatment Options in Metastatic Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15082327. [PMID: 37190255 DOI: 10.3390/cancers15082327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer death across the world. Poor prognosis of PC is associated with several factors, such as diagnosis at an advanced stage, early distant metastases, and remarkable resistance to most conventional treatment options. The pathogenesis of PC seems to be significantly more complicated than originally assumed, and findings in other solid tumours cannot be extrapolated to this malignancy. To develop effective treatment schemes prolonging patient survival, a multidirectional approach encompassing different aspects of the cancer is needed. Particular directions have been established; however, further studies bringing them all together and connecting the strengths of each therapy are needed. This review summarises the current literature and provides an overview of new or emerging therapeutic strategies for the more effective management of metastatic PC.
Collapse
Affiliation(s)
- Marta Fudalej
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Daria Kwaśniewska
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Paweł Nurzyński
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | | | - Dominika Mękal
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Katarzyna Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Andrzej Deptała
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
8
|
Chen S, Lv Y, Wang Y, Kong D, Xia J, Li J, Zhou Q. Tumor Acidic Microenvironment-Responsive Promodulator Iron Oxide Nanoparticles for Photothermal-Enhanced Chemodynamic Immunotherapy of Cancer. ACS Biomater Sci Eng 2023; 9:773-783. [PMID: 36598463 DOI: 10.1021/acsbiomaterials.2c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer nanomedicine combined with immunotherapy has emerged as a promising strategy for the treatment of cancer. However, precise regulation of the activation of antitumor immunity in targeting tissues for safe and effective cancer immunotherapy remains challenging. Herein, we report a tumor acidic microenvironment-responsive promodulator iron oxide nanoparticle (termed as FGR) with pH-activated action for photothermal-enhanced chemodynamic immunotherapy of cancer. FGR is formed via surface-modifying iron oxide nanoparticles with a dextran-conjugated Toll-like receptor agonist (R848) containing an acid-labile bond. In an acidic tumor microenvironment, the acid-responsive bonds are hydrolyzed to trigger the specific release of R848 to promote the maturation of dendritic cells. In addition, iron oxide nanoparticles within FGR exert photothermal and chemodynamic effects under near-infrared laser irradiation to directly kill tumor cells and induce immunogenic cell death. The synergistic effect of the released immunogenic factors and the acid-activated TLR7/8 pathway stimulates the formation of strong antitumor immunity, resulting in increased infiltration of cytotoxic CD8+ T cells into tumor tissues. As a result, FGR achieves acid-responsive on-demand release and activation of modulators in tumor sites and mediates photothermal-enhanced chemodynamic immunotherapy to inhibit the growth and metastasis of melanoma. Therefore, this work proposes a general strategy for designing prodrug nanomedicines to accurately regulate cancer immunotherapy.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, Guangdong 510630, P. R. China
| | - Yicheng Lv
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, P. R. China
| | - Deping Kong
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, P. R. China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Quan Zhou
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, Guangdong 510630, P. R. China
| |
Collapse
|
9
|
Xu Y, Zhang X, Zhou A, Cheng C, Chen K, Zhou X, Zhang G, Ding L, Wu X, Ge H, Wu H, Ning X. A Smart "Energy NanoLock" Selectively Blocks Oral Cancer Energy Metabolism through Synergistic Inhibition of Exogenous Nutrient Supply and Endogenous Energy Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207384. [PMID: 36329673 DOI: 10.1002/adma.202207384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The major challenge in oral cancer is the lack of state-of-the-art treatment modality that effectively cures cancer while preserving oral functions. Recent insights into tumor metabolic dependency provide a therapeutic opportunity for exploring optimal treatment approaches. Herein, a smart responsive "Energy NanoLock" is developed to improve cancer metabolic intervention by simultaneously inhibiting nutrient supply and energy production. NanoLock is a pomegranate-like nanocomplex of cyclicRGD-modified carboxymethyl chitosan (CyclicRC, pI = 6.7) encapsulating indocyanine green and apoptotic peptides functionalized gold nanoparticles (IK-AuNPs), which together form a dual pH- and photoresponsive therapeutic platform. NanoLock exhibits good stability under physiological conditions, but releases small-size CyclicRC and IK-AuNPs in response to the tumor acidic microenvironment, leading to deep tumor penetration. CyclicRC targets integrins to inhibit tumor angiogenesis, and consequently blocks tumor nutrient supply. Meanwhile, IK-AuNPs specifically induce apoptotic peptides and photothermally mediated mitochondrial collapse, and consequently inhibits endogenous energy production, thereby facilitating cell death. Importantly, in both xenograft and orthotopic oral cancer models, NanoLock selectively eliminates tumors with little cross-reactivity with normal tissues, especially oral functions, resulting in prolonged survival of mice. Therefore, NanoLock provides a novel metabolic therapy to exploit synergistic inhibition of exogenous nutrient supply and endogenous energy production, which potentially advances oral cancer treatment.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xiaomin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, School of Physics, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Gui Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 211101, China
| | - Likang Ding
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Xiaotong Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
10
|
Rodell CB, Spiller KL. Emerging tools and targets for immune engineering and modulation. Adv Drug Deliv Rev 2022; 191:114592. [PMID: 36328109 DOI: 10.1016/j.addr.2022.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, USA.
| |
Collapse
|
11
|
Cai Z, Mao C, Wang Y, Zhu Z, Xu S, Chen D, Chen Y, Ruan W, Fang B. Research Progress with Luteolin as an Anti-Tumor Agent. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221133579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this review, we outline the new expertise and research progress with luteolin as an antitumor agent, and clarify the related results from the aspects of tumor proliferation, apoptosis, invasion, metastasis, sensitivity to radiotherapy and chemotherapy, angiogenesis, and immunotherapy. In recent years, with the development of medical technology, the early detection rate of tumors has increased significantly. However, the number of cancer patients remains high. Therefore, a new and reasonably effective tumor therapeutic drug is urgently demanded. Luteolin, a flavonoid and widespread in nature, attracts more and more attention due to its universal biological utility, especially in the study of antitumor activity. This article reviews the work published in the past 20 years on the role and mechanism of luteolin as an antitumor agent, showing that this compound has a variety of effects for antitumor treatment by acting on different cytokines. Although clinical studies have not yet been widely carried out, a series of basic studies have confirmed that luteolin is a reasonably effective antineoplastic agent or anticancer adjuvant. Besides, derivatives of luteolin have good application prospects.
Collapse
Affiliation(s)
- Zhun Cai
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Zhejiang, China
| | - Chenyang Mao
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Zhejiang, China
| | - Yeqing Wang
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Zheyi Zhu
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Sisi Xu
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Dongqing Chen
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Yufeng Chen
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Wenjie Ruan
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Binbo Fang
- Department of Medicine, Taizhou University, Jiaojiang, China
| |
Collapse
|
12
|
Liu J, Yu Y, Liu C, Gao C, Zhuang J, Liu L, Wu Q, Ma W, Zhang Q, Sun C. Combinatorial regimens of chemotherapeutic agents: A new perspective on raising the heat of the tumor immune microenvironment. Front Pharmacol 2022; 13:1035954. [PMID: 36304169 PMCID: PMC9593050 DOI: 10.3389/fphar.2022.1035954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Harnessing the broad immunostimulatory capabilities of chemotherapy in combination with immune checkpoint inhibitors has improved immunotherapy outcomes in patients with cancer. Certain chemotherapeutic agents can extensively modify the tumor microenvironment (TME), resulting in the reprogramming of local immune responses. Although chemotherapeutic agents with an enhanced generation of potent anti-tumor immune responses have been tested in preclinical animal models and clinical trials, this strategy has not yet shown substantial therapeutic efficacy in selected difficult-to-treat cancer types. In addition, the efficacy of chemotherapeutic agent-based monotherapy in eliciting a long-term anti-tumor immune response is restricted by the immunosuppressive TME. To enhance the immunomodulatory effect of chemotherapy, researchers have made many attempts, mainly focusing on improving the targeted distribution of chemotherapeutic agents and designing combination therapies. Here, we focused on the mechanisms of the anti-tumor immune response to chemotherapeutic agents and enumerated the attempts to advance the use of chemo-immunotherapy. Furthermore, we have listed the important considerations in designing combinations of these drugs to maximize efficacy and improve treatment response rates in patients with cancer.
Collapse
Affiliation(s)
- Jingyang Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qibiao Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Qiming Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qiming Zhang, ; Changgang Sun,
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- *Correspondence: Qiming Zhang, ; Changgang Sun,
| |
Collapse
|
13
|
Li Z, Qin Z, Kong X, Chen B, Hu W, Lin Z, Feng Y, Li H, Wan Q, Li S. CCL14 exacerbates intraplaque vulnerability by promoting neovascularization in the human carotid plaque. J Stroke Cerebrovasc Dis 2022; 31:106670. [PMID: 35973397 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To examine the role of CCL14 in the neovascularization process and vulnerability progression within carotid plaques by investigating the mechanism of CCL14 regulation of VEGF-A. METHODS We first performed histological analysis and immunohistochemical staining of human carotid plaque tissue to detect the expression of CCL14, JAK2, STAT3 and VEGF-A. We next examined the protein expression of CCL14, VEGF-A, JAK2, STAT3, and phosphorylation of JAK2 and STAT3 in human carotid atherosclerotic plaques by Western blotting. Finally, we performed in vitro culture of human umbilical vein endothelial cells (HUVEC). In the tube formation assay of HUVEC, we added CCL14 siRNA or VEGF-A siRNA to the culture medium using lentiviral transfection to knock down CCL14 or VEGF-A and grouped them for control assays, and detected the changes in the expression of the above proteins using Western blotting. RESULTS Histological and Western blotting analysis of human carotid plaque samples showed that the expression of CCL14 and VEGF-A was higher in the vulnerable plaques than in stable plaques. In the in vitro cultures of HUVEC, CCL14 was found to increase the number and length of intercellularly generated tubular structures. CCL14 increases VEGF-A expression via activating JAK2/STAT3 signaling. CONCLUSION In the human carotid plaques, CCL14 promotes angiogenesis by upregulation of VEGF-A via JAK2/STAT3 pathway and thus drives the progression of carotid plaques vulnerability.
Collapse
Affiliation(s)
- Zhuo Li
- Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, China
| | - Zhen Qin
- Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Baiqiang Chen
- Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, China
| | - Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Zhiqi Lin
- Guangzhou Red Cross Hospital, affiliated with Jinan University, 396 Tongfu Middle Road, Guangzhou, China
| | - Yugong Feng
- Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, China
| | - Huanting Li
- Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Shifang Li
- Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, China.
| |
Collapse
|
14
|
Mecheliolide elicits ROS-mediated ERS driven immunogenic cell death in hepatocellular carcinoma. Redox Biol 2022; 54:102351. [PMID: 35671636 PMCID: PMC9168183 DOI: 10.1016/j.redox.2022.102351] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
The nonnegligible reason for the poor prognosis of hepatocellular carcinoma (HCC) is resistance to conventional chemotherapy. Immunogenic cell death (ICD) is a rare immunostimulatory form of cell death that can reengage the tumor-specific immune system. ICD can improve the clinical outcomes of chemotherapeutics by promoting a long-term cancer immunity. The discovery of potential ICD inducers is emerging as a promising direction. In the present study, micheliolide (MCL), a natural guaianolide sesquiterpene lactone, was screened out by the virtual screening strategies, identified as an inhibitor of thioredoxin reductase (TrxR) and was evaluated to have high potential to induce ICD. Here, we showed that MCL induced ICD-associated DAMPs (damage-associated molecular patterns, such as CRT exposure, ATP secretion and HMGB1 release). MCL significantly triggered the regression of established tumors in an immunocompetent mouse vaccine model, and induced ICD (DCs maturation, the stimulation of CD4+, and CD8+ T-cells responses) in vivo. Mechanistically, we found that the magnitude of ICD-associated effects induced upon exposure of HCC cells to MCL was dependent on the generation of reactive oxygen species (ROS)-mediated endoplasmic reticulum stress (ERS). In addition, the suppression of ROS normalized MCL-induced ERS, in contrast, the downregulation of TrxR synergized with the ERS driven by MCL. We also systematically detected the H2O2 generation using Hyper7 sensors in HCC cells exposed to MCL. Notably, MCL inhibited the development of HCC organoids. Collectively, our results reveal a potential association between the TrxR inhibitors and ICD, presenting valuable insights into the MCL-activated ICD in HCC cells.
Collapse
|
15
|
Hsieh M, Huang PJ, Chou PY, Wang SW, Lu HC, Su WW, Chung YC, Wu MH. Carbonic Anhydrase VIII (CAVIII) Gene Mediated Colorectal Cancer Growth and Angiogenesis through Mediated miRNA 16-5p. Biomedicines 2022; 10:1030. [PMID: 35625769 PMCID: PMC9138292 DOI: 10.3390/biomedicines10051030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Carbonic anhydrase VIII (CAVIII) is a member of the CA family, while CA8 is the oncogene. Here we observed increased expression of CAVIII with high expression in colorectal cancer tissues. CAVIII is also expressed in more aggressive types of human colorectal cancer cells. Upregulated CAVIII expression in SW480 cell lines increased vascular endothelial growth factor (VEGF) and reduced miRNA16-5p. Conversely, knockdown of the CAVIII results in VEGF decline by up-regulated miRNA16-5p. Moreover, the collection of different grades of CAVIII expression CRC cells supernatant co-culture with endothelial progenitor cells (EPCs) promotes the ability of tube formation in soft agar and migration in the Transwell experiment, indicating that CAVIII might facilitate cancer-cell-released VEGF via the inhibition of miRNA16-5p signaling. Furthermore, in the xenograft tumor angiogenesis model, knockdown of CAVIII significantly reduced tumor growth and tumor-associated angiogenesis. Taken together, our results prove that the CAVIII/miR-16-5p signaling pathway might function as a metastasis suppressor in CRC. Targeting CAVIII/miR-16-5p may provide a strategy for blocking its metastasis.
Collapse
Affiliation(s)
- Mingli Hsieh
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan;
- Life Science Research Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan; (P.-Y.C.); (H.-C.L.)
| | - Pei-Ju Huang
- Department of Family Medicine, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Pei-Yu Chou
- Life Science Research Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan; (P.-Y.C.); (H.-C.L.)
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan
- Senior Life and Innovation Technology Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan
| | - Shih-Wei Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Hsi-Chi Lu
- Life Science Research Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan; (P.-Y.C.); (H.-C.L.)
- Food Science Department and Graduate Institute, Tunghai University, Taichung 407, Taiwan
| | - Wei-Wen Su
- Department of Gastroenterology and Hepatology, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Yuan-Chiang Chung
- Department of Surgery, Cheng-Ching General Hospital, Taichung 407, Taiwan;
- Department of Surgery, Kuang Tien General Hospital, Taichung 407, Taiwan
| | - Min-Huan Wu
- Life Science Research Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan; (P.-Y.C.); (H.-C.L.)
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan
- Senior Life and Innovation Technology Center, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung 407, Taiwan
| |
Collapse
|
16
|
Wang JY, Chen H, Dai SZ, Huang FY, Lin YY, Wang CC, Li L, Zheng WP, Tan GH. Immunotherapy combining tumor and endothelium cell lysis with immune enforcement by recombinant MIP-3α Newcastle disease virus in a vessel-targeting liposome enhances antitumor immunity. J Immunother Cancer 2022; 10:jitc-2021-003950. [PMID: 35256516 PMCID: PMC8905871 DOI: 10.1136/jitc-2021-003950] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/30/2022] Open
Abstract
Background Several agents for oncolytic immunotherapy have been approved for clinical use, but monotherapy is modest for most oncolytic agents. The combination of several therapeutic strategies through recombinant and nanotechnology to engineer multifunctional oncolytic viruses for oncolytic immunotherapy is a promising strategy. Methods An endothelium-targeting iRGD-liposome encapsulating a recombinant Newcastle disease virus (NDV), which expresses the dendritic cell (DC) chemokine MIP-3α (iNDV3α-LP), and three control liposomes were constructed. MIP-3α, HMGB1, IgG, and ATP were detected by western blotting or ELISA. The chemotaxis of DCs was examined by Transwell chambers. The phenotypes of the immune cells were analyzed by flow cytometry. The antitumor efficiency was investigated in B16 and 4T1 tumor-bearing mice. Immunofluorescence and immunohistochemistry were used to observe the localization of liposomes, molecular expression and angiogenesis. Synergistic index was calculated using the data of tumor volume, tumor angiogenesis and tumor-infiltrating lymphocytes. Results Compared with NDV-LP, treatment with iNDV3α-LP and NDV3α-LP induced stronger virus replication and cell lysis in B16 and 4T1 tumor cells and human umbilical vein endothelial cells (HUVECs) with the best response observed following iNDV3α-LP treatment. B16 and 4T1 cells treated with iNDV3α-LP produced more damage-associated molecular pattern molecules, including secreted HMGB1, ATP, and calreticulin. Moreover, iNDV3α-LP specifically bound to αvβ3-expressing 4T1 cells and HUVECs and to tumor neovasculature. Tumor growth was significantly suppressed, and survival was longer in iNDV3α-LP-treated B16-bearing and 4T1-bearing mice. A mechanism study showed that iNDV3α-LP treatment initiated the strongest tumor-specific cellular and humoral immune response. Moreover, iNDV3α-LP treatment could significantly suppress tumor angiogenesis and reverse the tumor immune suppressive microenvironment in both B16-bearing and 4T1-bearing mice. Conclusions In this study, iNDV3α-LP had several functions, such as tumor and vessel lysis, MIP-3α immunotherapy, and binding to αvβ3-expressing tumor and its neovasculature. iNDV3α-LP treatment significantly suppressed tumor angiogenesis and reversed the tumor immunosuppressive microenvironment. These findings offer a strong rationale for further clinical investigation into a combination strategy for oncolytic immunotherapy, such as the formulation iNDV3α-LP in this study.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.,Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu-Zhen Dai
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Feng-Ying Huang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Ying-Ying Lin
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Cai-Chun Wang
- Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wu-Ping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Guang-Hong Tan
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
17
|
Guo X, Piao H. Research Progress of circRNAs in Glioblastoma. Front Cell Dev Biol 2021; 9:791892. [PMID: 34881248 PMCID: PMC8645988 DOI: 10.3389/fcell.2021.791892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded covalently closed non-coding RNAs without a 5' cap structure or 3' terminal poly (A) tail, which are expressed in a variety of tissues and cells with conserved, stable and specific characteristics. Glioblastoma (GBM) is the most aggressive and lethal tumor in the central nervous system, characterized by high recurrence and mortality rates. The specific expression of circRNAs in GBM has demonstrated their potential to become new biomarkers for the development of GBM. The specific expression of circRNAs in GBM has shown their potential as new biomarkers for GBM cell proliferation, apoptosis, migration and invasion, which provides new ideas for GBM treatment. In this paper, we will review the biological properties and functions of circRNAs and their biological roles and clinical applications in GBM.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|