1
|
DePalma TJ, Hisey CL, Hughes K, Fraas D, Tawfik M, Scharenberg J, Wiggins S, Nguyen KT, Hansford DJ, Reátegui E, Skardal A. Tuning a bioengineered hydrogel for studying astrocyte reactivity in glioblastoma. Acta Biomater 2024:S1742-7061(24)00576-2. [PMID: 39370091 DOI: 10.1016/j.actbio.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Astrocytes play many essential roles in the central nervous system (CNS) and are altered significantly in disease. These reactive astrocytes contribute to neuroinflammation and disease progression in many pathologies, including glioblastoma (GB), an aggressive form of brain cancer. Current in vitro platforms do not allow for accurate modeling of reactive astrocytes. In this study, we sought to engineer a simple bioengineered hydrogel platform that would support the growth of primary human astrocytes and allow for accurate analysis of various reactive states. After validating this platform using morphological analysis and qPCR, we then used the platform to begin investigating how astrocytes respond to GB derived extracellular vesicles (EVs) and soluble factors (SF). These studies reveal that EVs and SFs induce distinct astrocytic states. In future studies, this platform can be used to study how astrocytes transform the tumor microenvironment in GB and other diseases of the CNS. STATEMENT OF SIGNIFICANCE: Recent work has shown that astrocytes help maintain brain homeostasis and may contribute to disease progression in diseases such as glioblastoma (GB), a deadly primary brain cancer. In vitro models allow researchers to study basic mechanisms of astrocyte biology in healthy and diseased conditions, however current in vitro systems do not accurately mimic the native brain microenvironment. In this study, we show that our hydrogel system supports primary human astrocyte culture with an accurate phenotype and allows us to study how astrocytes change in response to a variety of inflammatory signals in GB. This platform could be used further investigate astrocyte behavior and possible therapeutics that target reactive astrocytes in GB and other brain diseases.
Collapse
Affiliation(s)
- Thomas J DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Colin L Hisey
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kennedy Hughes
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David Fraas
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Marie Tawfik
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Scharenberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sydney Wiggins
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kim Truc Nguyen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Derek J Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Eduardo Reátegui
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Liu Z, Yu K, Chen K, Liu J, Dai K, Zhao P. HAS2 facilitates glioma cell malignancy and suppresses ferroptosis in an FZD7-dependent manner. Cancer Sci 2024; 115:2602-2616. [PMID: 38816349 PMCID: PMC11309948 DOI: 10.1111/cas.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system, and it is crucial to uncover the factors that influence prognosis. In this study, we utilized Mfuzz to identify a gene set that showed a negative correlation with overall survival in patients with glioma. Gene Ontology (GO) enrichment analyses were then undertaken to gain insights into the functional characteristics and pathways associated with these genes. The expression distribution of Hyaluronan Synthase 2 (HAS2) was explored across multiple datasets, revealing its expression patterns. In vitro and in vivo experiments were carried out through gene knockdown and overexpression to validate the functionality of HAS2. Potential upstream transcription factors of HAS2 were predicted using transcriptional regulatory databases, and these predictions were experimentally validated using ChIP-PCR and dual-luciferase reporter gene assays. The results showed that elevated expression of HAS2 in glioma indicates poor prognosis. HAS2 was found to play a role in activating an antiferroptosis pathway in glioma cells. Inhibiting HAS2 significantly increased cellular sensitivity to ferroptosis-inducing agents. Finally, we determined that the oncogenic effect of HAS2 is mediated by the key receptor of the WNT pathway, FZD7.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kuo Yu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kaile Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinlai Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Neurosurgery, Yang ZhongJiangsu Province People's HospitalYangzhouChina
| | - Kexiang Dai
- Department of NeurosugeryEmergency General HospitalBeijingChina
| | - Peng Zhao
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
3
|
Thenuwara G, Javed B, Singh B, Tian F. Biosensor-Enhanced Organ-on-a-Chip Models for Investigating Glioblastoma Tumor Microenvironment Dynamics. SENSORS (BASEL, SWITZERLAND) 2024; 24:2865. [PMID: 38732975 PMCID: PMC11086276 DOI: 10.3390/s24092865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Glioblastoma, an aggressive primary brain tumor, poses a significant challenge owing to its dynamic and intricate tumor microenvironment. This review investigates the innovative integration of biosensor-enhanced organ-on-a-chip (OOC) models as a novel strategy for an in-depth exploration of glioblastoma tumor microenvironment dynamics. In recent years, the transformative approach of incorporating biosensors into OOC platforms has enabled real-time monitoring and analysis of cellular behaviors within a controlled microenvironment. Conventional in vitro and in vivo models exhibit inherent limitations in accurately replicating the complex nature of glioblastoma progression. This review addresses the existing research gap by pioneering the integration of biosensor-enhanced OOC models, providing a comprehensive platform for investigating glioblastoma tumor microenvironment dynamics. The applications of this combined approach in studying glioblastoma dynamics are critically scrutinized, emphasizing its potential to bridge the gap between simplistic models and the intricate in vivo conditions. Furthermore, the article discusses the implications of biosensor-enhanced OOC models in elucidating the dynamic features of the tumor microenvironment, encompassing cell migration, proliferation, and interactions. By furnishing real-time insights, these models significantly contribute to unraveling the complex biology of glioblastoma, thereby influencing the development of more accurate diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Bilal Javed
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
4
|
Rasti Boroojeni F, Naeimipour S, Lifwergren P, Abrahamsson A, Dabrosin C, Selegård R, Aili D. Proteolytic remodeling of 3D bioprinted tumor microenvironments. Biofabrication 2024; 16:025002. [PMID: 38128125 DOI: 10.1088/1758-5090/ad17d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
In native tissue, remodeling of the pericellular space is essential for cellular activities and is mediated by tightly regulated proteases. Protease activity is dysregulated in many diseases, including many forms of cancer. Increased proteolytic activity is directly linked to tumor invasion into stroma, metastasis, and angiogenesis as well as all other hallmarks of cancer. Here we show a strategy for 3D bioprinting of breast cancer models using well-defined protease degradable hydrogels that can facilitate exploration of the multifaceted roles of proteolytic extracellular matrix remodeling in tumor progression. We designed a set of bicyclo[6.1.0]nonyne functionalized hyaluronan (HA)-based bioinks cross-linked by azide-modified poly(ethylene glycol) (PEG) or matrix metalloproteinase (MMP) degradable azide-functionalized peptides. Bioprinted structures combining PEG and peptide-based hydrogels were proteolytically degraded with spatial selectivity, leaving non-degradable features intact. Bioprinting of tumor-mimicking microenvironments using bioinks comprising human breast cancer cells (MCF-7) and fibroblast in hydrogels with different susceptibilities to proteolytic degradation shows that MCF-7 proliferation and spheroid size were significantly increased in protease degradable hydrogel compartments, but only in the presence of fibroblasts. In the absence of fibroblasts in the stromal compartment, cancer cell proliferation was reduced and did not differ between degradable and nondegradable hydrogels. The interactions between spatially separated fibroblasts and MCF-7 cells consequently resulted in protease-mediated remodeling of the bioprinted structures and a significant increase in cancer cell spheroid size, highlighting the close interplay between cancer cells and stromal cells in the tumor microenvironment and the influence of proteases in tumor progression.
Collapse
Affiliation(s)
- Fatemeh Rasti Boroojeni
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Sajjad Naeimipour
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Philip Lifwergren
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Annelie Abrahamsson
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
5
|
Tzeng YDT, Hsiao JH, Tseng LM, Hou MF, Li CJ. Breast cancer organoids derived from patients: A platform for tailored drug screening. Biochem Pharmacol 2023; 217:115803. [PMID: 37709150 DOI: 10.1016/j.bcp.2023.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Breast cancer stands as the most prevalent and heterogeneous malignancy affecting women globally, posing a substantial health concern. Enhanced comprehension of tumor pathology and the development of novel therapeutics are pivotal for advancing breast cancer treatment. Contemporary breast cancer investigation heavily leans on in vivo models and conventional cell culture techniques. Nonetheless, these approaches often encounter high failure rates in clinical trials due to species disparities and tissue structure variations. To address this, three-dimensional cultivation of organoids, resembling organ-like structures, has emerged as a promising alternative. Organoids represent innovative in vitro models that mirror in vivo tissue microenvironments. They retain the original tumor's diversity and facilitate the expansion of tumor samples from diverse origins, facilitating the representation of varying tumor stages. Optimized breast cancer organoid models, under precise culture conditions, offer benefits including convenient sample acquisition, abbreviated cultivation durations, and genetic stability. These attributes ensure a faithful replication of in vivo traits of breast cancer cells. As intricate cellular entities boasting spatial arrangements, breast cancer organoid models harbor substantial potential in precision medicine, organ transplantation, modeling intricate diseases, gene therapy, and drug innovation. This review delivers an overview of organoid culture techniques and outlines future prospects for organoid modeling.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
6
|
Xie Z, Chen M, Lian J, Wang H, Ma J. Glioblastoma-on-a-chip construction and therapeutic applications. Front Oncol 2023; 13:1183059. [PMID: 37503321 PMCID: PMC10368971 DOI: 10.3389/fonc.2023.1183059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 07/29/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant type of primary intracranial tumor with a median overall survival of only 14 months, a very poor prognosis and a recurrence rate of 90%. It is difficult to reflect the complex structure and function of the GBM microenvironment in vivo using traditional in vitro models. GBM-on-a-chip platforms can integrate biological or chemical functional units of a tumor into a chip, mimicking in vivo functions of GBM cells. This technology has shown great potential for applications in personalized precision medicine and GBM immunotherapy. In recent years, there have been efforts to construct GBM-on-a-chip models based on microfluidics and bioprinting. A number of research teams have begun to use GBM-on-a-chip models for the investigation of GBM progression mechanisms, drug candidates, and therapeutic approaches. This review first briefly discusses the use of microfluidics and bioprinting technologies for GBM-on-a-chip construction. Second, we classify non-surgical treatments for GBM in pre-clinical research into three categories (chemotherapy, immunotherapy and other therapies) and focus on the use of GBM-on-a-chip in research for each category. Last, we demonstrate that organ-on-a-chip technology in therapeutic field is still in its initial stage and provide future perspectives for research directions in the field.
Collapse
Affiliation(s)
| | | | | | | | - Jingyun Ma
- *Correspondence: Hongcai Wang, ; Jingyun Ma,
| |
Collapse
|
7
|
Morris EK, Daignault-Mill S, Stehbens SJ, Genovesi LA, Lagendijk AK. Addressing blood-brain-tumor-barrier heterogeneity in pediatric brain tumors with innovative preclinical models. Front Oncol 2023; 13:1101522. [PMID: 36776301 PMCID: PMC9909546 DOI: 10.3389/fonc.2023.1101522] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Brain tumors represent the leading cause of disease-related mortality and morbidity in children, with effective treatments urgently required. One factor limiting the effectiveness of systemic therapy is the blood-brain-barrier (BBB), which limits the brain penetration of many anticancer drugs. BBB integrity is often compromised in tumors, referred to as the blood-brain-tumor-barrier (BBTB), and the impact of a compromised BBTB on the therapeutic sensitivity of brain tumors has been clearly shown for a few selected agents. However, the heterogeneity of barrier alteration observed within a single tumor and across distinct pediatric tumor types represents an additional challenge. Herein, we discuss what is known regarding the heterogeneity of tumor-associated vasculature in pediatric brain tumors. We discuss innovative and complementary preclinical model systems that will facilitate real-time functional analyses of BBTB for all pediatric brain tumor types. We believe a broader use of these preclinical models will enable us to develop a greater understanding of the processes underlying tumor-associated vasculature formation and ultimately more efficacious treatment options.
Collapse
Affiliation(s)
- Elysse K. Morris
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Sheena Daignault-Mill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha J. Stehbens
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Laura A. Genovesi
- The University of Queensland Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| | - Anne K. Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| |
Collapse
|
8
|
Anti-Vascular Endothelial Growth Factor Therapy Abolishes Glioma-Associated Endothelial Cell-Induced Tumor Invasion. J Mol Neurosci 2023; 73:104-116. [PMID: 36653624 DOI: 10.1007/s12031-023-02099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
Tumor-remodeled endothelial cells not only facilitate the formation of tumor angiogenesis but also promote tumorigenesis. In this study, we aimed to explore the interaction between glioma-associated endothelial cells (GAEs) and glioma cells. We found that different subtypes of glioma owned distinct GAE abundance. Glioma patients with high GAE abundance exhibited poor prognosis. Both the results of the bioinformatics analysis and the in vitro co-culture system assay revealed that GAE promoted glioma cell invasion. Besides, anti-vascular endothelial growth factor (VEGF) therapy partially abolished the effects of GAE on gliomas. Moreover, anti-VEGF therapy upregulated IL-2 expression in GAE, and exogenous IL-2 administration inhibits GAE-induced glioma cell invasion. Collectively, our present study provides a novel outstanding of the interaction between GAE and glioma cells.
Collapse
|
9
|
A predictive microfluidic model of human glioblastoma to assess trafficking of blood-brain barrier-penetrant nanoparticles. Proc Natl Acad Sci U S A 2022; 119:e2118697119. [PMID: 35648828 PMCID: PMC9191661 DOI: 10.1073/pnas.2118697119] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The blood–brain barrier represents a significant challenge for the treatment of high-grade gliomas, and our understanding of drug transport across this critical biointerface remains limited. To advance preclinical therapeutic development for gliomas, there is an urgent need for predictive in vitro models with realistic blood–brain-barrier vasculature. Here, we report a vascularized human glioblastoma multiforme (GBM) model in a microfluidic device that accurately recapitulates brain tumor vasculature with self-assembled endothelial cells, astrocytes, and pericytes to investigate the transport of targeted nanotherapeutics across the blood–brain barrier and into GBM cells. Using modular layer-by-layer assembly, we functionalized the surface of nanoparticles with GBM-targeting motifs to improve trafficking to tumors. We directly compared nanoparticle transport in our in vitro platform with transport across mouse brain capillaries using intravital imaging, validating the ability of the platform to model in vivo blood–brain-barrier transport. We investigated the therapeutic potential of functionalized nanoparticles by encapsulating cisplatin and showed improved efficacy of these GBM-targeted nanoparticles both in vitro and in an in vivo orthotopic xenograft model. Our vascularized GBM model represents a significant biomaterials advance, enabling in-depth investigation of brain tumor vasculature and accelerating the development of targeted nanotherapeutics.
Collapse
|
10
|
Chen H, Wu Z, Gong Z, Xia Y, Li J, Du L, Zhang Y, Gao X, Fan Z, Hu H, Qian Q, Ding Z, Guo S. Acoustic Bioprinting of Patient-Derived Organoids for Predicting Cancer Therapy Responses. Adv Healthc Mater 2022; 11:e2102784. [PMID: 35358375 DOI: 10.1002/adhm.202102784] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/12/2022] [Indexed: 12/29/2022]
Abstract
Cancer models, which are biologically representative of patient tumors, can predict the treatment responses and help determine the most appropriate cancer treatment for individual patients. Here, a point-of-care testing system called acoustically bioprinted patient-derived microtissues (PDMs) that can model cancer invasion and predict treatment response in individual patients with colorectal cancer (CRC), is reported. The PDMs are composed of patient-derived colorectal tumors and healthy organoids which can be precisely arranged by acoustic bioprinting approach for recapulating primary tissue's architecture. Particularly, these tumor organoids can be efficiently generated and can apprehend histological, genomic, and phenotypical characteristics of primary tumors. Consequently, these PDMs allow physiologically relevant in vitro drug (5-fluorouracil) screens, thus predicting the paired patient's responses to chemotherapy. A correlation between organoid invasion speed and normalized spreading speed of the paired patients is further established. It provides a quantitative indicator to help doctors make better decisions on ultimate anus-preserving operation for extremely low CRC patients. Thus, by combing acoustic bioprinting and organoid cultures, this method may open an avenue to establish complex 3D tissue models for precision and personalized medicine.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Zhuhao Wu
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Zhiyi Gong
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yu Xia
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Juan Li
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Liang Du
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yuanzheng Zhang
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Xiangyang Gao
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Zhou Fan
- Department of Colorectal and Anal Surgery Hubei Key Laboratory of Intestinal and Colorectal Diseases Zhongnan Hospital of Wuhan University Wuhan 430072 China
| | - Hang Hu
- Department of Colorectal and Anal Surgery Hubei Key Laboratory of Intestinal and Colorectal Diseases Zhongnan Hospital of Wuhan University Wuhan 430072 China
| | - Qun Qian
- Department of Colorectal and Anal Surgery Hubei Key Laboratory of Intestinal and Colorectal Diseases Zhongnan Hospital of Wuhan University Wuhan 430072 China
| | - Zhao Ding
- Department of Colorectal and Anal Surgery Hubei Key Laboratory of Intestinal and Colorectal Diseases Zhongnan Hospital of Wuhan University Wuhan 430072 China
| | - Shishang Guo
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
- Hubei Yangtze Memory Laboratories Wuhan 430205 China
| |
Collapse
|
11
|
Fong ELS, Iyer NG. Next generation in vitro tumor models guiding cancer therapy. Adv Drug Deliv Rev 2021; 179:114047. [PMID: 34763000 DOI: 10.1016/j.addr.2021.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|