1
|
Ab Aziz A, Mappiare S, Nam HY, Devi D, Johan MR, Kamarul T. Endotoxin Detection in Magnetic Resonance Imaging Contrast Agent Using Optimising Chromogenic Limulus Amebocyte Lysate Assay. Malays J Med Sci 2024; 31:284-291. [PMID: 39416745 PMCID: PMC11477474 DOI: 10.21315/mjms2024.31.5.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 10/19/2024] Open
Abstract
Endotoxin contamination in magnetic resonance imaging (MRI) contrast agents can pose a risk to patient safety causing immune reactions. Strict endotoxin limits are enforced for implants and catheters inserted into the body, but there are not clear rules for MRI contrast agents. Here, we investigated the efficacy of chromogenic LAL assay test for screening endotoxin activity in MRI contrast media manufactured in Malaysia. The powdered agent was dissolved in water for injection and endotoxin levels were measured. The coefficient of efficiency value for the standard curve, exhibiting r 2 ≥ 0.98, along with the absence of interfering substances and endotoxin activity below the regulatory threshold of 0.5 EU/mL, support the conclusion that the agent is unlikely to be pyrogenic or induce pyrogenic effect.
Collapse
Affiliation(s)
- Atiqah Ab Aziz
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sahrinanah Mappiare
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hui Yin Nam
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Durga Devi
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Xue L, Jie CVML, Desrayaud S, Auberson YP. Developing Low Molecular Weight PET and SPECT Imaging Agents. ChemMedChem 2024; 19:e202400094. [PMID: 38634545 DOI: 10.1002/cmdc.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Imaging agents for positron emission tomography (PET) and single-photon emission computerized tomography (SPECT) have shown their utility in many situations, answering clinical questions related to drug development and medical considerations. The discovery and development of imaging agents follow a well-understood process, with variations related to available starting points and to the envisaged imaging application. This article describes the general development path leading from the expression of an imaging need and project initiation to a clinically usable imaging agent. The definition of the project rationale, the design and optimization of early leads, and the assessment of the imaging potential of an imaging agent candidate are followed by preclinical and clinical development activities that differ from those required for therapeutic agents. These include radiolabeling with a positron emitter and first-in-human clinical studies, to rapidly evaluate the ability of a new imaging agent to address the questions it was designed to answer.
Collapse
Affiliation(s)
- Lian Xue
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, Victoria 3052, Australia
| | - Caitlin V M L Jie
- ETH Zürich, Department of Chemistry and Applied Biosciences Center for Radiopharmaceutical Sciences, Vladimir-Prelog Weg 1-5/10, 8093, Zürich, Switzerland
| | - Sandrine Desrayaud
- Novartis Biomedical Research, In Vivo preclinical PK/ADME, Novartis campus, WSJ-352/6/73.01, 4056, Basel, Switzerland
| | - Yves P Auberson
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis campus, WSJ-88.10.100, 4056, Basel, Switzerland
| |
Collapse
|
3
|
Zimmer L. Recent applications of positron emission tomographic (PET) imaging in psychiatric drug discovery. Expert Opin Drug Discov 2024; 19:161-172. [PMID: 37948046 DOI: 10.1080/17460441.2023.2278635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Psychiatry is one of the medical disciplines that suffers most from a lack of innovation in its therapeutic arsenal. Many failures in drug candidate trials can be explained by pharmacological properties that have been poorly assessed upstream, in terms of brain passage, brain target binding and clinical outcomes. Positron emission tomography can provide pharmacokinetic and pharmacodynamic data to help select candidate-molecules for further clinical trials. AREAS COVERED This review aims to explain and discuss the various methods using positron-emitting radiolabeled molecules to trace the cerebral distribution of the drug-candidate or indirectly measure binding to its therapeutic target. More than an exhaustive review of PET studies in psychopharmacology, this article highlights the contributions this technology can make in drug discovery applied to psychiatry. EXPERT OPINION PET neuroimaging is the only technological approach that can, in vivo in humans, measure cerebral delivery of a drug candidate, percentage and duration of target binding, and even the pharmacological effects. PET studies in a small number of subjects in the early stages of the development of a psychotropic drug can therefore provide the pharmacokinetic/pharmacodynamic data required for subsequent clinical evaluation. While PET technology is demanding in terms of radiochemical, radiopharmacological and nuclear medicine expertise, its integration into the development process of new drugs for psychiatry has great added value.
Collapse
Affiliation(s)
- Luc Zimmer
- Lyon Neuroscience Research Center, Université Claude Bernard, Lyon, France
- CERMEP, Hospices Civils de Lyon, Lyon, France
- Institut National des Sciences et Technologies Nucléaire, Saclay, France
| |
Collapse
|
4
|
Hamon N, Bridou L, Roux M, Maury O, Tripier R, Beyler M. Design of Bifunctional Pyclen-Based Lanthanide Luminescent Bioprobes for Targeted Two-Photon Imaging. J Org Chem 2023; 88:8286-8299. [PMID: 37273214 DOI: 10.1021/acs.joc.3c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the past, Lanthanide Luminescent Bioprobes (LLBs) based on pyclen-bearing π-extended picolinate antennas were synthesized and demonstrated well-adapted optical properties for biphotonic microscopy. The objective of this work is to develop a strategy to design bifunctional analogues of the previously studied LLBs presenting an additional reactive chemical group to allow their coupling to biological vectors to reach deep in vivo targeted two-photon bioimaging. Herein, we elaborated a synthetic scheme allowing the introduction of a primary amine on the para position of the macrocyclic pyridine unit. The photophysical and bioimaging studies demonstrate that the introduction of the reactive function does not alter the luminescent properties of the LLBs paving the way for further applications.
Collapse
Affiliation(s)
- Nadège Hamon
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 BREST, France
| | - Lucile Bridou
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon F-69342, France
| | - Margaux Roux
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon F-69342, France
| | - Olivier Maury
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon F-69342, France
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 BREST, France
| | - Maryline Beyler
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 BREST, France
| |
Collapse
|
5
|
Salerno KE, Roy S, Ribaudo C, Fisher T, Patel RB, Mena E, Escorcia FE. A Primer on Radiopharmaceutical Therapy. Int J Radiat Oncol Biol Phys 2023; 115:48-59. [PMID: 35970373 PMCID: PMC9772089 DOI: 10.1016/j.ijrobp.2022.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022]
Abstract
The goal of this article is to serve as a primer for the United States-based radiation oncologist who may be interested in learning more about radiopharmaceutical therapy (RPT). Specifically, we define RPT, review the data behind its current and anticipated indications, and discuss important regulatory considerations for incorporating it into clinical practice. RPT represents an opportunity for radiation oncologists to leverage 2 key areas of expertise, namely therapeutic radiation therapy and oncology, and apply them in a distinct context in collaboration with nuclear medicine and medical oncology colleagues. Although not every radiation oncologist will incorporate RPT into their day-to-day practice, it is important to understand the role for this modality and how it can be appropriately used in select patients.
Collapse
Affiliation(s)
- Kilian E Salerno
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Soumyajit Roy
- Radiation Oncology Department, Rush Medical Center, Chicago, Illinois
| | - Cathy Ribaudo
- Division of Radiation Safety, National Institutes of Health, Bethesda, Maryland
| | - Teresa Fisher
- Division of Radiation Safety, National Institutes of Health, Bethesda, Maryland
| | - Ravi B Patel
- Radiation Oncology Department, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Esther Mena
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Freddy E Escorcia
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
6
|
Nanoparticles for Therapy and Diagnostic Imaging Techniques in Cancer. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Herscovitch P. Regulatory Agencies and PET/CT Imaging in the Clinic. Curr Cardiol Rep 2022; 24:1361-1371. [PMID: 35913674 PMCID: PMC9340745 DOI: 10.1007/s11886-022-01749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE OF REVIEW The regulatory steps necessary to bring new PET radiopharmaceuticals to the clinic will be reviewed. The US Food and Drug Administration (FDA) provides approval to manufacture and use diagnostic radiopharmaceuticals, including those for cardiovascular PET/CT. Medicare not only provides insurance reimbursement for imaging procedures for its beneficiaries but also sets an example for third-party insurers to cover these procedures. RECENT FINDINGS FDA provides extensive guidance for performing studies to obtain the safety and efficacy data needed to approve PET radiopharmaceuticals, and the pace of approval has recently increased. There also has been considerable progress in insurance coverage for PET by Medicare. Several promising agents for cardiovascular PET imaging are in the development pipeline. Challenges remain, however, including low levels of reimbursement and the application of appropriate use criteria for imaging procedures. It is important for cardiologists to understand the regulatory steps involved in translating PET radiopharmaceuticals to the clinic. Recent progress in both FDA approvals and Medicare coverage should facilitate the clinical use of new PET agents for molecular imaging of the heart.
Collapse
Affiliation(s)
- Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Rm 1C-495, 10 Center DR, MSC1180, Bethesda, MD, 20892-1180, USA.
| |
Collapse
|
8
|
Venditto VJ, Sockolosky J, Nguyen J. Translational Drug Delivery: Time to be Frank for Future Success. Adv Drug Deliv Rev 2022; 189:114521. [PMID: 36030019 DOI: 10.1016/j.addr.2022.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jonathan Sockolosky
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| |
Collapse
|