1
|
Dharnipragada R, Dusenbery K, Ferreira C, Sharma M, Chen CC. Preoperative Versus Postoperative Radiosurgery of Brain Metastases: A Meta-Analysis. World Neurosurg 2024; 182:35-41. [PMID: 37918565 DOI: 10.1016/j.wneu.2023.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE While postoperative resection cavity radiosurgery (post-SRS) is an accepted treatment paradigm for brain metastasis (BM) patients who undergo surgical resection, there is emerging interest in preoperative radiosurgery (pre-SRS) followed by surgical resection as an alternative treatment paradigm. Here, we performed a meta-analysis of the available literature on this matter. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a search of all studies evaluating pre-SRS and post-SRS was completed. Local recurrence (LR), overall survival (OS), radiation necrosis (RN), and leptomeningeal disease (LMD) were evaluated from the available data. Moderator analysis and pooled effect sizes were performed using a proportional meta-analysis with R using the metafor package. Statistics are presented as mean [95% confidence interval]. RESULTS We identified 6 pre-SRS and 33 post-SRS studies with comparable tumor volume (4.5-17.6 cm3). There were significant differences in the pooled estimates of LR and LMD, favoring pre-SRS over post-SRS. Pooled aggregate for LR was 11.0% [4.9-13.7] and 17.5% [15.1-19.9] for pre- and post-SRS studies (P = 0.014). Similarly, pooled estimates of LMD favored pre-SRS, 4.4% [2.6-6.2], relative to post-SRS, 12.3% [8.9-15.7] (P = 0.019). In contrast, no significant differences were found in terms of RN and OS. Pooled estimates for RN were 6.4% [3.1-9.6] and 8.9% [6.3-11.6] for pre- and post-SRS studies (P = 0.393), respectively. Pooled estimates for OS were 60.2% [55.8-64.6] and 60.5% [56.9-64.0] for pre- and post-SRS studies (P = 0.974). CONCLUSIONS This meta-analysis supports further exploration of pre-SRS as a strategy for the treatment of BM.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA.
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Mayur Sharma
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Huang YH, Yang HC, Chiang CL, Wu HM, Luo YH, Hu YS, Lin CJ, Chung WY, Shiau CY, Guo WY, Lee CC. Gamma Knife Radiosurgery Irradiation of Surgical Cavity of Brain Metastases: Factor Analysis and Gene Mutations. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010236. [PMID: 36676186 PMCID: PMC9864800 DOI: 10.3390/life13010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
(1) Background: Surgical resection for the removal of brain metastases often fails to prevent tumor recurrence within the surgical cavity; hence, researchers are divided as to the benefits of radiation treatment following surgical resection. This retrospective study assessed the effects of post-operative stereotactic radiosurgery (SRS) on local tumor control and overall survival. (2) Methods: This study examined the demographics, original tumor characteristics, and surgical outcomes of 97 patients who underwent Gamma Knife Radiosurgery (GKRS) treatment (103 brain metastases). Kaplan-Meier plots and Cox regression were used to correlate clinical features to tumor control and overall survival. (3) Results: The overall tumor control rate was 75.0% and overall 12-month survival was 89.6%. Tumor control rates in the radiation group versus the non-radiation group were as follows: 12 months (83.1% vs. 57.7%) and 24 months (66.1% vs. 50.5%). During the 2-year follow-up period after SRS, the intracranial response rate was higher in the post-craniotomy radiation group than in the non-radiation group (p = 0.027). Cox regression multivariate analysis determined that post-craniotomy irradiation of the surgical cavity is predictive of tumor control (p = 0.035). However, EGFR mutation was not predictive of overall survival or tumor control. (4) Conclusions: Irradiating the surgical cavity after surgery can enhance local tumor control; however, it does not have a significant effect on overall survival.
Collapse
Affiliation(s)
- Yi-Han Huang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chi-Lu Chiang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsiu-Mei Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yung-Hung Luo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yong-Sin Hu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chung-Jung Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Yuh Chung
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Ying Shiau
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wan-Yuo Guo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-2-28712121
| |
Collapse
|
3
|
Li YD, Coxon AT, Huang J, Abraham CD, Dowling JL, Leuthardt EC, Dunn GP, Kim AH, Dacey RG, Zipfel GJ, Evans J, Filiput EA, Chicoine MR. Neoadjuvant stereotactic radiosurgery for brain metastases: a new paradigm. Neurosurg Focus 2022; 53:E8. [PMID: 36321291 PMCID: PMC10602665 DOI: 10.3171/2022.8.focus22367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE For patients with surgically accessible solitary metastases or oligometastatic disease, treatment often involves resection followed by postoperative stereotactic radiosurgery (SRS). This strategy has several potential drawbacks, including irregular target delineation for SRS and potential tumor "seeding" away from the resection cavity during surgery. A neoadjuvant (preoperative) approach to radiation therapy avoids these limitations and offers improved patient convenience. This study assessed the efficacy of neoadjuvant SRS as a new treatment paradigm for patients with brain metastases. METHODS A retrospective review was performed at a single institution to identify patients who had undergone neoadjuvant SRS (specifically, Gamma Knife radiosurgery) followed by resection of a brain metastasis. Kaplan-Meier survival and log-rank analyses were used to evaluate risks of progression and death. Assessments were made of local recurrence and leptomeningeal spread. Additionally, an analysis of the contemporary literature of postoperative and neoadjuvant SRS for metastatic disease was performed. RESULTS Twenty-four patients who had undergone neoadjuvant SRS followed by resection of a brain metastasis were identified in the single-institution cohort. The median age was 64 years (range 32-84 years), and the median follow-up time was 16.5 months (range 1 month to 5.7 years). The median radiation dose was 17 Gy prescribed to the 50% isodose. Rates of local disease control were 100% at 6 months, 87.6% at 12 months, and 73.5% at 24 months. In 4 patients who had local treatment failure, salvage therapy included repeat resection, laser interstitial thermal therapy, or repeat SRS. One hundred thirty patients (including the current cohort) were identified in the literature who had been treated with neoadjuvant SRS prior to resection. Overall rates of local control at 1 year after neoadjuvant SRS treatment ranged from 49% to 91%, and rates of leptomeningeal dissemination from 0% to 16%. In comparison, rates of local control 1 year after postoperative SRS ranged from 27% to 91%, with 7% to 28% developing leptomeningeal disease. CONCLUSIONS Neoadjuvant SRS for the treatment of brain metastases is a novel approach that mitigates the shortcomings of postoperative SRS. While additional prospective studies are needed, the current study of 130 patients including the summary of 106 previously published cases supports the safety and potential efficacy of preoperative SRS with potential for improved outcomes compared with postoperative SRS.
Collapse
Affiliation(s)
- Yuping Derek Li
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
| | - Andrew T. Coxon
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Christopher D. Abraham
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Joshua L. Dowling
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Eric C. Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Gavin P. Dunn
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| | - Albert H. Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Ralph G. Dacey
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - Gregory J. Zipfel
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
| | - John Evans
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
| | - Eric A. Filiput
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael R. Chicoine
- Department of Neurosurgery, Washington University School of Medicine, St. Louis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis
- Department of Neurosurgery, University of Missouri, Columbia, Missouri
| |
Collapse
|
4
|
Deep-Learning-Based Automatic Detection and Segmentation of Brain Metastases with Small Volume for Stereotactic Ablative Radiotherapy. Cancers (Basel) 2022; 14:cancers14102555. [PMID: 35626158 PMCID: PMC9139632 DOI: 10.3390/cancers14102555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary With advances in radiotherapy (RT) technique and more frequent use of stereotactic ablative radiotherapy (SABR), precise segmentation of all brain metastases (BM) including a small volume of BM is essential to choose an appropriate treatment modality. However, the process of detecting and manually delineating BM with small volumes often results in missing delineation and requires a great amount of labor. To address this issue, we present a useful deep learning (DL) model for the detection and segmentation of BMwith contrast-enhanced magnetic resonance images. Specifically, we applied effective training techniques to detect and segment a BM of less than 0.04 cc, which is relatively small compared to previous studies. The results of our DL model demonstrated that the proposed methods provide considerable benefit for BM, even small-volume BM, detection, and segmentation for SABR. Abstract Recently, several efforts have been made to develop the deep learning (DL) algorithms for automatic detection and segmentation of brain metastases (BM). In this study, we developed an advanced DL model to BM detection and segmentation, especially for small-volume BM. From the institutional cancer registry, contrast-enhanced magnetic resonance images of 65 patients and 603 BM were collected to train and evaluate our DL model. Of the 65 patients, 12 patients with 58 BM were assigned to test-set for performance evaluation. Ground-truth for BM was assigned to one radiation oncologist to manually delineate BM and another one to cross-check. Unlike other previous studies, our study dealt with relatively small BM, so the area occupied by the BM in the high-resolution images were small. Our study applied training techniques such as the overlapping patch technique and 2.5-dimensional (2.5D) training to the well-known U-Net architecture to learn better in smaller BM. As a DL architecture, 2D U-Net was utilized by 2.5D training. For better efficacy and accuracy of a two-dimensional U-Net, we applied effective preprocessing include 2.5D overlapping patch technique. The sensitivity and average false positive rate were measured as detection performance, and their values were 97% and 1.25 per patient, respectively. The dice coefficient with dilation and 95% Hausdorff distance were measured as segmentation performance, and their values were 75% and 2.057 mm, respectively. Our DL model can detect and segment BM with small volume with good performance. Our model provides considerable benefit for clinicians with automatic detection and segmentation of BM for stereotactic ablative radiotherapy.
Collapse
|
5
|
Moon HC, Park SJ, Kim YD, Kim KM, Kang H, Lee EJ, Kim MS, Kim JW, Kim YH, Park CK, Kim YG, Dho YS. Navigation of frameless fixation for gamma knife radiosurgery using fixed augmented reality. Sci Rep 2022; 12:4486. [PMID: 35296720 PMCID: PMC8927150 DOI: 10.1038/s41598-022-08390-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Augmented reality (AR) offers a new medical treatment approach. We aimed to evaluate frameless (mask) fixation navigation using a 3D-printed patient model with fixed-AR technology for gamma knife radiosurgery (GKRS). Fixed-AR navigation was developed using the inside-out method with visual inertial odometry algorithms, and the flexible Quick Response marker was created for object-feature recognition. Virtual 3D-patient models for AR-rendering were created via 3D-scanning utilizing TrueDepth and cone-beam computed tomography (CBCT) to generate a new GammaKnife Icon™ model. A 3D-printed patient model included fiducial markers, and virtual 3D-patient models were used to validate registration accuracy. Registration accuracy between initial frameless fixation and re-fixation navigated fixed-AR was validated through visualization and quantitative method. The quantitative method was validated through set-up errors, fiducial marker coordinates, and high-definition motion management (HDMM) values. A 3D-printed model and virtual models were correctly overlapped under frameless fixation. Virtual models from both 3D-scanning and CBCT were enough to tolerate the navigated frameless re-fixation. Although the CBCT virtual model consistently delivered more accurate results, 3D-scanning was sufficient. Frameless re-fixation accuracy navigated in virtual models had mean set-up errors within 1 mm and 1.5° in all axes. Mean fiducial marker differences from coordinates in virtual models were within 2.5 mm in all axes, and mean 3D errors were within 3 mm. Mean HDMM difference values in virtual models were within 1.5 mm of initial HDMM values. The variability from navigation fixed-AR is enough to consider repositioning frameless fixation without CBCT scanning for treating patients fractionated with large multiple metastases lesions (> 3 cm) who have difficulty enduring long beam-on time. This system could be applied to novel GKRS navigation for frameless fixation with reduced preparation time.
Collapse
Affiliation(s)
- Hyeong Cheol Moon
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | | | | | - Kyung Min Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Kang
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min-Sung Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Wook Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Hwy Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Gyu Kim
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.,Department of Neurosurgery, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Yun-Sik Dho
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea. .,Department of Neurosurgery, Chungbuk National University College of Medicine, Cheongju, Republic of Korea.
| |
Collapse
|
6
|
Minniti G, Niyazi M, Andratschke N, Guckenberger M, Palmer JD, Shih HA, Lo SS, Soltys S, Russo I, Brown PD, Belka C. Current status and recent advances in resection cavity irradiation of brain metastases. Radiat Oncol 2021; 16:73. [PMID: 33858474 PMCID: PMC8051036 DOI: 10.1186/s13014-021-01802-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Despite complete surgical resection brain metastases are at significant risk of local recurrence without additional radiation therapy. Traditionally, the addition of postoperative whole brain radiotherapy (WBRT) has been considered the standard of care on the basis of randomized studies demonstrating its efficacy in reducing the risk of recurrence in the surgical bed as well as the incidence of new distant metastases. More recently, postoperative stereotactic radiosurgery (SRS) to the surgical bed has emerged as an effective and safe treatment option for resected brain metastases. Published randomized trials have demonstrated that postoperative SRS to the resection cavity provides superior local control compared to surgery alone, and significantly decreases the risk of neurocognitive decline compared to WBRT, without detrimental effects on survival. While studies support the use of postoperative SRS to the resection cavity as the standard of care after surgery, there are several issues that need to be investigated further with the aim of improving local control and reducing the risk of leptomeningeal disease and radiation necrosis, including the optimal dose prescription/fractionation, the timing of postoperative SRS treatment, and surgical cavity target delineation. We provide a clinical overview on current status and recent advances in resection cavity irradiation of brain metastases, focusing on relevant strategies that can improve local control and minimize the risk of radiation-induced toxicity.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100, Siena, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Joshua D Palmer
- Department of Radiation Oncology, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Scott Soltys
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Ivana Russo
- Radiation Oncology Unit, University of Pittsburgh Medical Center Hillman Cancer Center, San Pietro Hospital FBF, Rome, and Villa Maria Hospital, Mirabella, AV, Italy
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Gui C, Grimm J, Kleinberg LR, Zaki P, Spoleti N, Mukherjee D, Bettegowda C, Lim M, Redmond KJ. A Dose-Response Model of Local Tumor Control Probability After Stereotactic Radiosurgery for Brain Metastases Resection Cavities. Adv Radiat Oncol 2020; 5:840-849. [PMID: 33083646 PMCID: PMC7557194 DOI: 10.1016/j.adro.2020.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/09/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose Recent randomized controlled trials evaluating stereotactic surgery (SRS) for resected brain metastases question the high rates of local control previously reported in retrospective studies. Tumor control probability (TCP) models were developed to quantify the relationship between radiation dose and local control after SRS for resected brain metastases. Methods and Materials Patients with resected brain metastases treated with SRS were evaluated retrospectively. Melanoma, sarcoma, and renal cell carcinoma were considered radio-resistant histologies. The planning target volume (PTV) was the region of enhancement on T1 post-gadolinium magnetic resonance imaging plus a 2-mm uniform margin. The primary outcome was local recurrence, defined as tumor progression within the resection cavity. Cox regression evaluated predictors of local recurrence. Dose-volume histograms for the PTV were obtained from treatment plans and converted to 3-fraction equivalent doses (α/β = 12 Gy). TCP models evaluated local control at 1-year follow-up as a logistic function of dose-volume histogram data. Results Among 150 cavities, 41 (27.3%) were radio-resistant. The median PTV volume was 14.6 mL (range, 1.3-65.3). The median prescription was 21 Gy (range, 15-25) in 3 fractions (range, 1-5). Local control rates at 12 and 24 months were 86% and 82%. On Cox regression, larger cavities (PTV > 12 cm3) predicted increased risk of local recurrence (P = .03). TCP modeling demonstrated relationships between improved 1-year local control and higher radiation doses delivered to radio-resistant cavities. Maximum PTV doses of 30, 35, and 40 Gy predicted 78%, 89%, and 94% local control among all radio-resistant cavities, versus 69%, 79%, and 86% among larger radio-resistant cavities. Conclusions After SRS for resected brain metastases, larger cavities are at greater risk of local recurrence. TCP models suggests that higher radiation doses may improve local control among cavities of radio-resistant histology. Given maximum tolerated doses established for single-fraction SRS, fractionated regimens may be required to optimize local control in large radio-resistant cavities.
Collapse
Affiliation(s)
- Chengcheng Gui
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Jimm Grimm
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Lawrence Richard Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Peter Zaki
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Nicholas Spoleti
- Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Kristin Janson Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
8
|
Post-operative stereotactic radiosurgery following excision of brain metastases: A systematic review and meta-analysis. Radiother Oncol 2020; 142:27-35. [DOI: 10.1016/j.radonc.2019.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/21/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022]
|
9
|
McDermott DM, Hack JD, Cifarelli CP, Vargo JA. Tumor Cavity Recurrence after Stereotactic Radiosurgery of Surgically Resected Brain Metastases: Implication of Deviations from Contouring Guidelines. Stereotact Funct Neurosurg 2019; 97:24-30. [PMID: 30763944 DOI: 10.1159/000496156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/09/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Significant heterogeneity exists in target volumes for postoperative stereotactic radiosurgery (SRS) for brain metastases. A set of contouring guidelines was recently published, and we investigated the impact of deviations. METHODS Patients (n = 41) undergoing single-fraction Gamma Knife SRS following surgical resection of brain metastases from 2011 to 2017 were retrospectively reviewed. SRS included the entire contrast-enhancing cavity with heterogeneity in inclusion of the surgical tract and no routine margin along the dura or clinical target volume margin. Follow-up MR imaging was fused with SRS plans to assess patterns of failure. RESULTS The median follow-up was 11.1 months with a median prescription of 18 Gy. There were 5 local failures: infield (n = 3, 60%), surgical tract (n = 1, 20%), and marginal > 5 mm from the resection cavity (n = 1, 20%). No marginal failures < 5 mm or dural margin failures were noted. For deep lesions (n = 13), 62% (n = 8) had the entire tract covered. The only tract recurrence was in a deep lesion without coverage of the surgical tract (n = 1/5). CONCLUSION In this small preliminary experience, despite no routine inclusion of the dural tract or bone flap, no failures were noted in these locations. Omission of the surgical tract in deep lesions may increase failure rates.
Collapse
Affiliation(s)
- David M McDermott
- Department of Radiation Oncology, West Virginia University, Morgantown, West Virginia, USA
| | - Joshua D Hack
- Department of Radiation Oncology, West Virginia University, Morgantown, West Virginia, USA
| | | | - John A Vargo
- Department of Radiation Oncology, West Virginia University, Morgantown, West Virginia, USA,
| |
Collapse
|