1
|
Eraqi WA, El-Sabbagh WA, Aziz RK, Elshahed MS, Youssef NH, Elkenawy NM. Gastroprotective and microbiome-modulating effects of ubiquinol in rats with radiation-induced enteropathy. Anim Microbiome 2024; 6:40. [PMID: 39030597 PMCID: PMC11264694 DOI: 10.1186/s42523-024-00320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/02/2024] [Indexed: 07/21/2024] Open
Abstract
Radiation enteritis is a frequently encountered issue for patients receiving radiotherapy and has a significant impact on cancer patients' quality of life. The gut microbiota plays a pivotal role in intestinal function, yet the impact of irradiation on gut microorganisms is not fully understood. This study explores the gastroprotective effect and gut microbiome-modulating potential of ubiquinol (Ubq), the reduced form of the powerful antioxidant CoQ-10. For this purpose, male albino rats were randomly assigned to four groups: Control, IRR (acute 7 Gy γ-radiation), Ubq_Post (Ubq for 7 days post-irradiation), and Ubq_Pre/Post (Ubq for 7 days pre and 7 days post-irradiation). The fecal microbiomes of all groups were profiled by 16S rRNA amplicon sequencing followed by bioinformatics and statistical analysis. Histopathological examination of intestinal tissue indicated severe damage in the irradiated group, which was mitigated by ubiquinol with enhanced regeneration, goblet cells, and intestinal alkaline phosphatase expression. Compared to the irradiated group, the Ubq-treated groups had a significant recovery of intestinal interleukin-1β, caspase-3, nitric oxide metabolites, and thio-barbituric reactive substances to near-healthy levels. Ubq_Pre/Post group displayed elevated peroxisome proliferator-activated receptor (PPAR-γ) level, suggesting heightened benefits. Serum insulin reduction in irradiated rats improved post-Ubq treatment, with a possible anti-inflammatory effect on the pancreatic tissue. Fecal microbiota profiling revealed a dysbiosis state with a reduction of bacterial diversity post-irradiation, which was re-modulated in the Ubq treated groups to profiles that are indistinguishable from the control group. These findings underscore Ubq's gastroprotective effects against radiation-induced enteritis and its potential in restoring the gut microbiota's diversity and balance.
Collapse
Affiliation(s)
- Walaa A Eraqi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, Cairo, 11617, Egypt
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Nora M Elkenawy
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| |
Collapse
|
2
|
Ivanova AY, Shirokov IV, Toshchakov SV, Kozlova AD, Obolenskaya ON, Mariasina SS, Ivlev VA, Gartseev IB, Medvedev OS. Effects of Coenzyme Q10 on the Biomarkers (Hydrogen, Methane, SCFA and TMA) and Composition of the Gut Microbiome in Rats. Pharmaceuticals (Basel) 2023; 16:ph16050686. [PMID: 37242469 DOI: 10.3390/ph16050686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The predominant route of administration of drugs with coenzyme Q10 (CoQ10) is administration per os. The bioavailability of CoQ10 is about 2-3%. Prolonged use of CoQ10 to achieve pharmacological effects contributes to the creation of elevated concentrations of CoQ10 in the intestinal lumen. CoQ10 can have an effect on the gut microbiota and the levels of biomarkers it produces. CoQ10 at a dose of 30 mg/kg/day was administered per os to Wistar rats for 21 days. The levels of gut microbiota biomarkers (hydrogen, methane, short-chain fatty acids (SCFA), and trimethylamine (TMA)) and taxonomic composition were measured twice: before the administration of CoQ10 and at the end of the experiment. Hydrogen and methane levels were measured using the fasting lactulose breath test, fecal and blood SCFA and fecal TMA concentrations were determined by NMR, and 16S sequencing was used to analyze the taxonomic composition. Administration of CoQ10 for 21 days resulted in a 1.83-fold (p = 0.02) increase in hydrogen concentration in the total air sample (exhaled air + flatus), a 63% (p = 0.02) increase in the total concentration of SCFA (acetate, propionate, butyrate) in feces, a 126% increase in butyrate (p = 0.04), a 6.56-fold (p = 0.03) decrease in TMA levels, a 2.4-fold increase in relative abundance of Ruminococcus and Lachnospiraceae AC 2044 group by 7.5 times and a 2.8-fold decrease in relative representation of Helicobacter. The mechanism of antioxidant effect of orally administered CoQ10 can include modification of the taxonomic composition of the gut microbiota and increased generation of molecular hydrogen, which is antioxidant by itself. The evoked increase in the level of butyric acid can be followed by protection of the gut barrier function.
Collapse
Affiliation(s)
- Anastasiia Yu Ivanova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
- National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Laboratory of Experimental Pharmacology, Moscow 121552, Russia
| | - Ivan V Shirokov
- Medical and Technical Information Technologies, Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Stepan V Toshchakov
- Center for Genome Research, National Research Center "Kurchatov Institute", Moscow 123098, Russia
| | - Aleksandra D Kozlova
- Center for Genome Research, National Research Center "Kurchatov Institute", Moscow 123098, Russia
| | - Olga N Obolenskaya
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofia S Mariasina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Functional Genomics, Moscow State University, Moscow 119991, Russia
| | - Vasily A Ivlev
- Pharmacy Resource Center, Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Ilya B Gartseev
- The Institute of Artificial Intelligence of Russian Technological University MIREA, Moscow 119454, Russia
| | - Oleg S Medvedev
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
- National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Laboratory of Experimental Pharmacology, Moscow 121552, Russia
| |
Collapse
|
3
|
Salah M, Akasaka H, Shimizu Y, Morita K, Nishimura Y, Kubota H, Kawaguchi H, Sogawa T, Mukumoto N, Ogino C, Sasaki R. Reactive oxygen species-inducing titanium peroxide nanoparticles as promising radiosensitizers for eliminating pancreatic cancer stem cells. J Exp Clin Cancer Res 2022; 41:146. [PMID: 35428310 PMCID: PMC9013114 DOI: 10.1186/s13046-022-02358-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Despite recent advances in radiotherapy, radioresistance in patients with pancreatic cancer remains a crucial dilemma for clinical treatment. Cancer stem cells (CSCs) represent a major factor in radioresistance. Developing a potent radiosensitizer may be a novel candidate for the eradication of pancreatic CSCs. METHODS CSCs were isolated from MIA PaCa-2 and PANC1 human pancreatic cancer cell lines. Titanium peroxide nanoparticles (TiOxNPs) were synthesized from titanium dioxide nanoparticles (TiO2NPs) and utilized as radiosensitizers when added one hour prior to radiation exposure. The antitumor activity of this novel therapeutic strategy was evaluated against well-established pancreatic CSCs model both in vitro and in vivo. RESULTS It is shown that TiOxNPs combined with ionizing radiation exhibit anti-cancer effects on radioresistant CSCs both in vitro and in vivo. TiOxNPs exhibited a synergistic effect with radiation on pancreatic CSC-enriched spheres by downregulating self-renewal regulatory factors and CSC surface markers. Moreover, combined treatment suppressed epithelial-mesenchymal transition, migration, and invasion properties in primary and aggressive pancreatic cancer cells by reducing the expression of proteins relevant to these processes. Notably, radiosensitizing TiOxNPs suppressed the growth of pancreatic xenografts following primary or dissociating sphere MIA PaCa-2 cell implantation. It is inferred that synergy is formed by generating intolerable levels of reactive oxygen species (ROS) and inactivating the AKT signaling pathway. CONCLUSIONS Our data suggested the use of TiOxNPs in combination with radiation may be considered an attractive therapeutic strategy to eliminate pancreatic CSCs.
Collapse
Grants
- 21K07594, 20KK0192, 20K21576, 20K08108 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 19K08121 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20K08134 Ministry of Education, Culture, Sports, Science, and Technology of Japan
Collapse
Affiliation(s)
- Mohammed Salah
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83522, Egypt.
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yasuyuki Shimizu
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, 650-0017, Japan
| | - Yuya Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, 650-0017, Japan
| | - Hikaru Kubota
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Hiroki Kawaguchi
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tomomi Sogawa
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Naritoshi Mukumoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, 650-0017, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| |
Collapse
|
4
|
Kiremitli T, Kiremitli S, Akselim B, Yilmaz B, Mammadov R, Tor IH, Yazici GN, Gulaboglu M. Protective effect of Coenzyme Q10 on oxidative ovarian and uterine damage induced by methotrexate in rats. Hum Exp Toxicol 2021; 40:1537-1544. [PMID: 33745333 DOI: 10.1177/09603271211002891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methotrexate (MTX) has toxic effects on the uterus and ovaries via oxidative stress. Coenzyme Q10 (CoQ10) is an important component in electron transport in the mitochondria and an antioxidant in cellular metabolism through the inhibition of lipid peroxidation. The aim of this study was to investigate the preventive effects of CoQ10 on MTX-induced utero-ovarian damage and oxidative stress in rats.In this experimental study, 30 albino Wistar female rats were divided randomly into three groups. Once a day for a month, 10 mg/kg of CoQ10 was orally administered to the rats in the MTX+CoQ10 group, while the same volume of olive oil was administered orally to the other two groups. One hour thereafter, 20 mg/kg of MTX was injected intraperitoneally into the rats in the MTX and MTX+CoQ10 groups; the remaining group was the control. At the end of the month, biochemical and histopathologic examinations were performed on the extracted uteri and ovaries. In the uterine ovarian tissues of the animals in the MTX group, there was an increase in oxidative stress mediators and a decrease in antioxidant and anti-inflammatory mediators, but these trends were reversed in the MTX+CoQ10 group, demonstrating the antioxidant effects of CoQ10. MTX leads to oxidative stress-related ovarian and uterine injury, and CoQ10 may be useful for protecting ovarian and uterine tissue from such injury.
Collapse
Affiliation(s)
- T Kiremitli
- Medical Faculty, Department of Obstetrics and Gynaecology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - S Kiremitli
- Medical Faculty, Department of Obstetrics and Gynaecology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - B Akselim
- Department of Gynaecology and Obstetrics, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - B Yilmaz
- Medical Faculty, Department of Obstetrics and Gynaecology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - R Mammadov
- Medical Faculty, Department of Pharmacology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - I H Tor
- Department of Anesthesia, Erzurum Regional Education and Research Hospital, University of Health Sciences, Erzurum, Turkey
| | - G N Yazici
- Medical Faculty, Department of Histology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - M Gulaboglu
- Medical Faculty, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Nakaoka A, Nakahana M, Inubushi S, Akasaka H, Salah M, Fujita Y, Kubota H, Hassan M, Nishikawa R, Mukumoto N, Ishihara T, Miyawaki D, Sasayama T, Sasaki R. Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species. Oncol Rep 2021; 45:13. [PMID: 33649776 PMCID: PMC7877005 DOI: 10.3892/or.2021.7964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The precise mechanism of intercellular communication between cancer cells following radiation exposure is unclear. Exosomes are membrane‑enclosed small vesicles comprising lipid bilayers and are mediators of intercellular communication that transport a variety of intracellular components, including microRNAs (miRNAs or miRs). The present study aimed to identify novel roles of exosomes released from irradiated cells to neighboring cancer cells. In order to confirm the presence of exosomes in the human pancreatic cancer cell line MIAPaCa‑2, ultracentrifugation was performed followed by transmission electron microscopy and nanoparticle tracking analysis (NanoSight) using the exosome‑specific surface markers CD9 and CD63. Subsequent endocytosis of exosomes was confirmed by fluorescent microscopy. Cell survival following irradiation and the addition of exosomes was evaluated by colony forming assay. Expression levels of miRNAs in exosomes were then quantified by microarray analysis, while protein expression levels of Cu/Zn‑ and Mn‑superoxide dismutase (SOD1 and 2, respectively) enzymes in MIAPaCa‑2 cells were evaluated by western blotting. Results showed that the uptake of irradiated exosomes was significantly higher than that of non‑irradiated exosomes. Notably, irradiated exosomes induced higher intracellular levels of reactive oxygen species (ROS) and a higher frequency of DNA damage in MIAPaCa‑2 cells, as determined by fluorescent microscopy and immunocytochemistry, respectively. Moreover, six up‑ and five downregulated miRNAs were identified in 5 and 8 Gy‑irradiated cells using miRNA microarray analyses. Further analysis using miRNA mimics and reverse transcription‑quantitative PCR identified miR‑6823‑5p as a potential candidate to inhibit SOD1, leading to increased intracellular ROS levels and DNA damage. To the best of our knowledge, the present study is the first to demonstrate that irradiated exosomes enhance the radiation effect via increasing intracellular ROS levels in cancer cells. This contributes to improved understanding of the bystander effect of neighboring cancer cells.
Collapse
Affiliation(s)
- Ai Nakaoka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Makiko Nakahana
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Sachiko Inubushi
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Mohammed Salah
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Yoshiko Fujita
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hikaru Kubota
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Mennaallah Hassan
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Department of Clinical Oncology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Ryo Nishikawa
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Naritoshi Mukumoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takeaki Ishihara
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Daisuke Miyawaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
6
|
Mohamed HA, Said RS. Coenzyme Q10 attenuates inflammation and fibrosis implicated in radiation enteropathy through suppression of NF-kB/TGF-β/MMP-9 pathways. Int Immunopharmacol 2021; 92:107347. [PMID: 33418245 DOI: 10.1016/j.intimp.2020.107347] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/01/2023]
Abstract
Radiation enteropathy is one the most common clinical issue for patients receiving radiotherapy for abdominal/pelvic tumors which severely affect the quality of life of cancer patients due to dysplastic lesions (ischemia, ulcer, or fibrosis) that aggravate the radiation damage. Herein, this study demonstrated the prophylactic role of coenzyme Q10 (CoQ10), a powerful antioxidant, against radiotherapy-induced gastrointestinal injury. Male Sprague Dawley rats were divided into four groups: group 1 was defined as control, and group 2 was the irradiated group. Group 3 and 4 were CoQ10 control and radiation plus CoQ10 groups, respectively. CoQ10 (10 mg/kg) was orally administered for 10 days before 10 Gy whole-body radiation and was continued for 4 days post-irradiation. CoQ10 administration protected rats delivered a lethal dose of ϒ-radiation from changes in crypt-villus structures and promoted regeneration of the intestinal epithelium. CoQ10 attenuated radiation-induced oxidative stress by decreasing lipid peroxidation and increasing the antioxidant enzyme catalase activity and reduced glutathione level. CoQ10 also counteracts inflammatory response mediated after radiation exposure through downregulating intestinal NF-ĸB expression which subsequently decreased the level of inflammatory cytokine IL-6 and the expression of COX-2. Radiation-induced intestinal fibrosis confirmed via Masson's trichrome staining occurred through upregulating transforming growth factor (TGF)-β1 and matrix metalloproteinase (MMP)-9 expression, while CoQ10 administration significantly diminishes these effects which further confirmed the anti-fibrotic property of CoQ10. Therefore, CoQ10 is a promising radioprotector that could prevent intestinal complications and enhance the therapeutic ratio of radiotherapy in patients with pelvic tumors through suppressing the NF-kB/TGF-β1/MMP-9 signaling pathway.
Collapse
Affiliation(s)
- Heba A Mohamed
- Department of Drug Radiation Research, National Center for Radiation Research & Technology, Atomic Energy Authority, Cairo, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research & Technology, Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
7
|
Salah M, Osuga S, Nakahana M, Irino Y, Shinohara M, Shimizu Y, Mukumoto N, Akasaka H, Nakaoka A, Miyawaki D, Ishihara T, Yoshida K, Okamoto Y, Sasaki R. Elucidation of gastrointestinal dysfunction in response to irradiation using metabolomics. Biochem Biophys Rep 2020; 23:100789. [PMID: 32775703 PMCID: PMC7393574 DOI: 10.1016/j.bbrep.2020.100789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022] Open
Abstract
Gastrointestinal toxicity is frequently observed secondary to accidental or therapeutic radiation exposure. However, the variation in the intestinal metabolites after abdominal radiation exposure remains ambiguous. In the present study, C57BL/6 mice were exposed to 0, 2, and 20 Gy irradiation dose. The Head and chest of each mouse were covered with a lead shield before x-ray irradiation. 24 h post-irradiation treatment, intestinal tissue of each mouse was excised and prepared for metabolites measurement using gas chromatography-mass spectrometry (GC-MS). Our comprehensive analysis of metabolites in the intestinal tissues detected 44 metabolites after irradiation, including amino acids, carbohydrates, organic acids, and sugars. Amino acid levels in the intestinal tissue gradually rose, dependent on the radiation dose, perhaps as an indication of oxidative stress. Our findings raise the possibility that amino acid metabolism may be a potential target for the development of treatments to alleviate or mitigate the harmful effects of oxidative stress-related gastrointestinal toxicity due to radiation exposure. Gastrointestinal damage frequently results from radiation exposure. We analyzed the metabolic profile after local irradiation to the intestine. Amino acid levels in the intestinal tissue rose dependent on the radiation dose. Amino acid metabolism may be a good target for future therapies.
Collapse
Affiliation(s)
- Mohammed Salah
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Saki Osuga
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Makiko Nakahana
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Japan
| | - Masakazu Shinohara
- Division of Epidemiology and the Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Japan.,The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Japan
| | - Yasuyuki Shimizu
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naritoshi Mukumoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ai Nakaoka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Daisuke Miyawaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takeaki Ishihara
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kenji Yoshida
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshiaki Okamoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Radiation Therapy, Osaka Police Hospital, Osaka, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
8
|
Hassan M, Nakayama M, Salah M, Akasaka H, Kubota H, Nakahana M, Tagawa T, Morita K, Nakaoka A, Ishihara T, Miyawaki D, Yoshida K, Nishimura Y, Ogino C, Sasaki R. A Comparative Assessment of Mechanisms and Effectiveness of Radiosensitization by Titanium Peroxide and Gold Nanoparticles. NANOMATERIALS 2020; 10:nano10061125. [PMID: 32517328 PMCID: PMC7353194 DOI: 10.3390/nano10061125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
The development of potentially safe radiosensitizing agents is essential to enhance the treatment outcomes of radioresistant cancers. The titanium peroxide nanoparticle (TiOxNP) was originally produced using the titanium dioxide nanoparticle, and it showed excellent reactive oxygen species (ROS) generation in response to ionizing radiation. Surface coating the TiOxNPs with polyacrylic acid (PAA) showed low toxicity to the living body and excellent radiosensitizing effect on cancer cells. Herein, we evaluated the mechanism of radiosensitization by PAA-TiOxNPs in comparison with gold nanoparticles (AuNPs) which represent high-atomic-number nanoparticles that show a radiosensitizing effect through the emission of secondary electrons. The anticancer effects of both nanoparticles were compared by induction of apoptosis, colony-forming assay, and the inhibition of tumor growth. PAA-TiOxNPs showed a significantly more radiosensitizing effect than that of AuNPs. A comparison of the types and amounts of ROS generated showed that hydrogen peroxide generation by PAA-TiOxNPs was the major factor that contributed to the nanoparticle radiosensitization. Importantly, PAA-TiOxNPs were generally nontoxic to healthy mice and caused no histological abnormalities in the liver, kidney, lung, and heart tissues.
Collapse
Affiliation(s)
- Mennaallah Hassan
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Department of Clinical Oncology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Discipline of Medical Radiations, School of Biomedical & Health Sciences, RMIT University, Bundoora Campus, Victoria 3083, Australia
| | - Mohammed Salah
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena 83522, Egypt
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Hikaru Kubota
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Makiko Nakahana
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Tatsuichiro Tagawa
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
- Research Facility Center for Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Ai Nakaoka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Takeaki Ishihara
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Daisuke Miyawaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Kenji Yoshida
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Yuya Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Correspondence: ; Tel.: +81-78-3825687; Fax: +81-78-3826734
| |
Collapse
|