1
|
Rudà R, Pellerino A, Soffietti R. Blood and cerebrospinal fluid biomarkers in neuro-oncology. Curr Opin Neurol 2024; 37:693-701. [PMID: 39329301 DOI: 10.1097/wco.0000000000001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the value of blood and CSF biomarkers in primary CNS tumors. RECENT FINDINGS Several analytes can be assessed with liquid biopsy techniques, including circulating tumor cells, circulating cell-free tumor DNA, circulating cell-free RNA, circulating proteins and metabolites, extracellular vesicles and tumor-educated platelets. Among diffuse gliomas of the adult, ctDNA in blood or CSF has represented the most used analyte, with the detection of molecular alterations such as MGMT promoter, PTEN, EGFRVIII, TERT promoter mutation and IDH R132H mutation. In general, CSF is enriched for ctDNA as compared with plasma. The use of MRI-guided focused ultrasounds to disrupt the blood-brain barrier could enhance the level of biomarkers in both blood and CSF. The detection of MYD88 L265P mutation with digital droplet PCR and the detection of ctDNA with next generation sequencing represent the best tools to diagnose and monitoring CNS lymphomas under treatment. In meningiomas, the low concentration of ctDNA is a limiting factor for the detection of driver mutations, such as NF2, AKTs, SMO, KLF4, TRAF7, SMARCB1, SMARCE1, PTEN, and TERT; an alternative approach could be the isolation of ctDNA through circulating extracellular vesicles. Liquid biopsies are being used extensively for diagnosis and surveillance of diffuse midline gliomas, in particular with the detection of the driver mutation H3K27M. Last, specific methylome patterns in CSF may allow the distinction of glioblastomas from CNS lymphomas or meningiomas. SUMMARY This review summarizes the current knowledge and future perspectives of liquid biopsy of blood and CSF for diagnosis and monitoring of primary CNS tumors.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University and City of Health and Science Hospital
| | - Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University and City of Health and Science Hospital
| | | |
Collapse
|
2
|
Ronsley R, Karvonen KA, Cole B, Paulson V, Stevens J, Crotty EE, Hauptman J, Lee A, Stasi SM, Lockwood CM, Leary SES. Detection of tumor-derived cell-free DNA in cerebrospinal fluid using a clinically validated targeted sequencing panel for pediatric brain tumors. J Neurooncol 2024; 168:215-224. [PMID: 38755519 DOI: 10.1007/s11060-024-04645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Clinical sequencing of tumor DNA is necessary to render an integrated diagnosis and select therapy for children with primary central nervous system (CNS) tumors, but neurosurgical biopsy is not without risk. In this study, we describe cell-free DNA (cfDNA) in blood and cerebrospinal fluid (CSF) as sources for "liquid biopsy" in pediatric brain tumors. METHODS CSF samples were collected by lumbar puncture, ventriculostomy, or surgery from pediatric patients with CNS tumors. Following extraction, CSF-derived cfDNA was sequenced using UW-OncoPlex™, a clinically validated next-generation sequencing platform. CSF-derived cfDNA results and paired plasma and tumor samples concordance was also evaluated. RESULTS Seventeen CSF samples were obtained from 15 pediatric patients with primary CNS tumors. Tumor types included medulloblastoma (n = 7), atypical teratoid/rhabdoid tumor (n = 2), diffuse midline glioma with H3 K27 alteration (n = 4), pilocytic astrocytoma (n = 1), and pleomorphic xanthoastrocytoma (n = 1). CSF-derived cfDNA was detected in 9/17 (53%) of samples, and sufficient for sequencing in 8/10 (80%) of extracted samples. All somatic mutations and copy-number variants were also detected in matched tumor tissue, and tumor-derived cfDNA was absent in plasma samples and controls. Tumor-derived cfDNA alterations were detected in the absence of cytological evidence of malignant cells in as little as 200 µl of CSF. Several clinically relevant alterations, including a KIAA1549::BRAF fusion were detected. CONCLUSIONS Clinically relevant genomic alterations are detectable using CSF-derived cfDNA across a range of pediatric brain tumors. Next-generation sequencing platforms are capable of producing a high yield of DNA alterations with 100% concordance rate with tissue analysis.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, US.
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, US.
- Fred Hutchinson Cancer Research Center, Seattle, WA, US.
- Seattle Children's Hospital, Mail Stop MB.8.501, 4800 Sand Point Way NE, Seattle, WA, 98105, USA.
| | - Kristine A Karvonen
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, US
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, US
- Fred Hutchinson Cancer Research Center, Seattle, WA, US
| | - Bonnie Cole
- Department of Laboratories, Seattle Children's Hospital, University of Washington, Seattle, WA, US
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, US
| | - Vera Paulson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, US
- Genetics and Solid Tumor Laboratory, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeff Stevens
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, US
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, US
| | - Erin E Crotty
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, US
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, US
- Fred Hutchinson Cancer Research Center, Seattle, WA, US
| | - Jason Hauptman
- Division of Neurosurgery, Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA, US
| | - Amy Lee
- Division of Neurosurgery, Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA, US
| | - Shannon M Stasi
- Department of Laboratories, Seattle Children's Hospital, University of Washington, Seattle, WA, US
| | - Christina M Lockwood
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, US
- Genetics and Solid Tumor Laboratory, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Sarah E S Leary
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, US
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, US
- Fred Hutchinson Cancer Research Center, Seattle, WA, US
| |
Collapse
|
3
|
Fernando D, Ahmed AU, Williams BRG. Therapeutically targeting the unique disease landscape of pediatric high-grade gliomas. Front Oncol 2024; 14:1347694. [PMID: 38525424 PMCID: PMC10957575 DOI: 10.3389/fonc.2024.1347694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Pediatric high-grade gliomas (pHGG) are a rare yet devastating malignancy of the central nervous system's glial support cells, affecting children, adolescents, and young adults. Tumors of the central nervous system account for the leading cause of pediatric mortality of which high-grade gliomas present a significantly grim prognosis. While the past few decades have seen many pediatric cancers experiencing significant improvements in overall survival, the prospect of survival for patients diagnosed with pHGGs has conversely remained unchanged. This can be attributed in part to tumor heterogeneity and the existence of the blood-brain barrier. Advances in discovery research have substantiated the existence of unique subgroups of pHGGs displaying alternate responses to different therapeutics and varying degrees of overall survival. This highlights a necessity to approach discovery research and clinical management of the disease in an alternative subtype-dependent manner. This review covers traditional approaches to the therapeutic management of pHGGs, limitations of such methods and emerging alternatives. Novel mutations which predominate the pHGG landscape are highlighted and the therapeutic potential of targeting them in a subtype specific manner discussed. Collectively, this provides an insight into issues in need of transformative progress which arise during the management of pHGGs.
Collapse
Affiliation(s)
- Dasun Fernando
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Afsar U. Ahmed
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Bryan R. G. Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
Borba LAB, Passos G, Oliveira I. Liquid biopsy and tumor DNA/RNA detection in the cerebrospinal fluid of patients diagnosed with central nervous system glioma - A review article. Surg Neurol Int 2023; 14:183. [PMID: 37292399 PMCID: PMC10246314 DOI: 10.25259/sni_52_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Background Gliomas are the most common primary malignant neoplasms of the central nervous system and their characteristic genetic heterogeneity implies in a prominent complexity in their management. The definition of the genetic/molecular profile of gliomas is currently essential for the classification of the disease, prognosis, choice of treatment, and it is still dependent on surgical biopsies, which in many cases become unfeasible. Liquid biopsy with detection and analysis of biomarkers such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from the tumor and circulating in the bloodstream or cerebrospinal fluid (CSF) has emerged as a minimally invasive alternative to aid in diagnosis, follow-up, and response to treatment of gliomas. Methods Through a systematic search in the PubMed MEDLINE, Cochrane Library, and Embase databases, we reviewed the evidence on the use of liquid biopsy to detect tumor DNA/RNA in the CSF of patients diagnosed with central nervous system gliomas. Results After a systematic review applying all inclusion and exclusion criteria, as well as a double review by independent authors, 14 studies specifically addressing the detection of tumor DNA/RNA in the CSF of patients diagnosed with central nervous system glioma were selected in the final analysis. Conclusion Sensitivity and specificity of liquid biopsy in CSF are still very variable depending on factors such as the diagnostic method, collection timing, biomarker (DNA and RNA), tumor type, extension and volume of the tumor, collection method, and contiguity from neoplasm to CSF. Despite the technical limitations that still exist and prevent the routine and validated use of liquid biopsy in CSF, the growing number of studies around the world is increasingly improving this technic, resulting in promising prospects for its use in diagnosis, evolutionary follow-up, and response to the treatment of complex diseases such as central nervous system gliomas.
Collapse
Affiliation(s)
| | | | - Irlon Oliveira
- Corresponding author: Irlon Oliveira, Department of Neurosurgery, Hospital Universitário Evangelico de Curitiba, Curitiba, Parana, Brazil.
| |
Collapse
|
5
|
Varkey J, Nicolaides T. Tumor-Educated Platelets: A Review of Current and Potential Applications in Solid Tumors. Cureus 2021; 13:e19189. [PMID: 34873529 PMCID: PMC8635758 DOI: 10.7759/cureus.19189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
In this current era of precision medicine, liquid biopsy poses a unique opportunity for an easily accessible, comprehensive molecular profile that would allow for the identification of therapeutic targets and sequential monitoring. Solid tumors are definitively diagnosed by analyzing primary tumor tissue, but surgical sampling is not always sufficient to generate a comprehensive genetic fingerprint at the time of diagnosis, or an appropriate means for continued monitoring. Platelets are known to have a dynamic, bidirectional relationship with tumors, acting beyond their role of hemostasis. Tumor-educated platelets (TEP) are modified by the tumor in multiple ways and act as a carrier and protector of metastasis. Data so far have shown that the mRNA in TEP can be harnessed for cancer diagnostics, with many potential applications.
Collapse
Affiliation(s)
- Joyce Varkey
- Pediatric Hematology Oncology, New York University Langone, New York, USA
| | | |
Collapse
|
6
|
Zhao Y, Jiang F, Wang Q, Wang B, Han Y, Yang J, Wang J, Wang K, Ao J, Guo X, Liang X, Ma J. Cytoplasm protein GFAP magnetic beads construction and application as cell separation target for brain tumors. J Nanobiotechnology 2020; 18:169. [PMID: 33208163 PMCID: PMC7673097 DOI: 10.1186/s12951-020-00729-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/05/2020] [Indexed: 01/15/2023] Open
Abstract
Background It is very important to develop a highly efficient cerebrospinal fluid (CSF) detection system with diagnosis and prediction function, for which the detection of circulating tumor cells (CTCs) in CSF is a good choice. In contrast to the past use of epithelial EpCAM as CTCs separation target, a cytoplasm protein of GFAP antibody was first selected to construct highly-sensitive immunomagnetic liposome beads (IMLs). The validation and efficiency of this system in capturing CTCs for brain tumors were measured both in vitro and in vivo. The associations between the numbers of CTCs in patients with their clinical characteristics were further analyzed. Results Our data show that CTCs can be successfully isolated from CSF and blood samples from 32 children with brain tumors. The numbers of CTCs in CSF were significantly higher than those in blood. The level of CTCs in CSF was related to the type and location of the tumor rather than its stage. The higher the CTCs number is, the more possibly the patient will suffer from poor prognosis. Genetic testing in GFAP CTC-DNA by sanger sequencing, q-PCR and NGS methods indicated that the isolated CTCs (GFAP+/EGFR+) are the related tumor cell. For example, the high expression of NPR3 gene in CSF CTCs was consistent with that of tumor tissue. Conclusions The results indicated that GFAP-IML CTCs isolation system, combined with an EGFR immunofluorescence assay of antitumor marker, can serve as a brand-new method for the identification of CTCs for brain tumors. Via lumbar puncture, a minimally invasive procedure, this technique may play a significant role in the clinical diagnosis and drug evaluation of brain tumors.![]()
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Feng Jiang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qinhua Wang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Baocheng Wang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yipeng Han
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jian Yang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jiajia Wang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Kai Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln 2200 Xie Tu Road, Shanghai, 200032, China
| | - Junping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln 2200 Xie Tu Road, Shanghai, 200032, China
| | - Xunxiang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln 2200 Xie Tu Road, Shanghai, 200032, China. .,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jie Ma
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|