1
|
Price AT, Schiff JP, Laugeman E, Maraghechi B, Schmidt M, Zhu T, Reynoso F, Hao Y, Kim T, Morris E, Zhao X, Hugo GD, Vlacich G, DeSelm CJ, Samson PP, Baumann BC, Badiyan SN, Robinson CG, Kim H, Henke LE. Initial clinical experience building a dual CT- and MR-guided adaptive radiotherapy program. Clin Transl Radiat Oncol 2023; 42:100661. [PMID: 37529627 PMCID: PMC10388162 DOI: 10.1016/j.ctro.2023.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Our institution was the first in the world to clinically implement MR-guided adaptive radiotherapy (MRgART) in 2014. In 2021, we installed a CT-guided adaptive radiotherapy (CTgART) unit, becoming one of the first clinics in the world to build a dual-modality ART clinic. Herein we review factors that lead to the development of a high-volume dual-modality ART program and treatment census over an initial, one-year period. Materials and Methods The clinical adaptive service at our institution is enabled with both MRgART (MRIdian, ViewRay, Inc, Mountain View, CA) and CTgART (ETHOS, Varian Medical Systems, Palo Alto, CA) platforms. We analyzed patient and treatment information including disease sites treated, radiation dose and fractionation, and treatment times for patients on these two platforms. Additionally, we reviewed our institutional workflow for creating, verifying, and implementing a new adaptive workflow on either platform. Results From October 2021 to September 2022, 256 patients were treated with adaptive intent at our institution, 186 with MRgART and 70 with CTgART. The majority (106/186) of patients treated with MRgART had pancreatic cancer, and the most common sites treated with CTgART were pelvis (23/70) and abdomen (20/70). 93.0% of treatments on the MRgART platform were stereotactic body radiotherapy (SBRT), whereas only 72.9% of treatments on the CTgART platform were SBRT. Abdominal gated cases were allotted a longer time on the CTgART platform compared to the MRgART platform, whereas pelvic cases were allotted a shorter time on the CTgART platform when compared to the MRgART platform. Our adaptive implementation technique has led to six open clinical trials using MRgART and seven using CTgART. Conclusions We demonstrate the successful development of a dual platform ART program in our clinic. Ongoing efforts are needed to continue the development and integration of ART across platforms and disease sites to maximize access and evidence for this technique worldwide.
Collapse
Affiliation(s)
- Alex T. Price
- University Hospitals/Case Western Reserve University, Department of Radiation Oncology, Cleveland, OH, USA
| | - Joshua P. Schiff
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Eric Laugeman
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Borna Maraghechi
- City of Hope Orange County, Department of Radiation Oncology, Irvine, CA, USA
| | - Matthew Schmidt
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Tong Zhu
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Francisco Reynoso
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Yao Hao
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Taeho Kim
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Eric Morris
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Xiaodong Zhao
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Geoffrey D. Hugo
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Gregory Vlacich
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Carl J. DeSelm
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Pamela P. Samson
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Brian C. Baumann
- Springfield Clinic, Department of Radiation Oncology, Springfield, IL, USA
| | - Shahed N. Badiyan
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, USA
| | - Clifford G. Robinson
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Hyun Kim
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO, USA
| | - Lauren E. Henke
- University Hospitals/Case Western Reserve University, Department of Radiation Oncology, Cleveland, OH, USA
| |
Collapse
|
2
|
Towards Accurate and Precise Image-Guided Radiotherapy: Clinical Applications of the MR-Linac. J Clin Med 2022; 11:jcm11144044. [PMID: 35887808 PMCID: PMC9324978 DOI: 10.3390/jcm11144044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Advances in image-guided radiotherapy have brought about improved oncologic outcomes and reduced toxicity. The next generation of image guidance in the form of magnetic resonance imaging (MRI) will improve visualization of tumors and make radiation treatment adaptation possible. In this review, we discuss the role that MRI plays in radiotherapy, with a focus on the integration of MRI with the linear accelerator. The MR linear accelerator (MR-Linac) will provide real-time imaging, help assess motion management, and provide online adaptive therapy. Potential advantages and the current state of these MR-Linacs are highlighted, with a discussion of six different clinical scenarios, leading into a discussion on the future role of these machines in clinical workflows.
Collapse
|