1
|
Chang C, Bohannon D, Tian Z, Wang Y, Mcdonald MW, Yu DS, Liu T, Zhou J, Yang X. A retrospective study on the investigation of potential dosimetric benefits of online adaptive proton therapy for head and neck cancer. J Appl Clin Med Phys 2024; 25:e14308. [PMID: 38368614 PMCID: PMC11087169 DOI: 10.1002/acm2.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/28/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024] Open
Abstract
PURPOSE Proton therapy is sensitive to anatomical changes, often occurring in head-and-neck (HN) cancer patients. Although multiple studies have proposed online adaptive proton therapy (APT), there is still a concern in the radiotherapy community about the necessity of online APT. We have performed a retrospective study to investigate the potential dosimetric benefits of online APT for HN patients relative to the current offline APT. METHODS Our retrospective study has a patient cohort of 10 cases. To mimic online APT, we re-evaluated the dose of the in-use treatment plan on patients' actual treatment anatomy captured by cone-beam CT (CBCT) for each fraction and performed a templated-based automatic replanning if needed, assuming that these were performed online before treatment delivery. Cumulative dose of the simulated online APT course was calculated and compared with that of the actual offline APT course and the designed plan dose of the initial treatment plan (referred to as nominal plan). The ProKnow scoring system was employed and adapted for our study to quantify the actual quality of both courses against our planning goals. RESULTS The average score of the nominal plans over the 10 cases is 41.0, while those of the actual offline APT course and our simulated online course is 25.8 and 37.5, respectively. Compared to the offline APT course, our online course improved dose quality for all cases, with the score improvement ranging from 0.4 to 26.9 and an average improvement of 11.7. CONCLUSION The results of our retrospective study have demonstrated that online APT can better address anatomical changes for HN cancer patients than the current offline replanning practice. The advanced artificial intelligence based automatic replanning technology presents a promising avenue for extending potential benefits of online APT.
Collapse
Affiliation(s)
- Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Duncan Bohannon
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Zhen Tian
- Department of Radiation and Cellular OncologyUniversity of ChicagoChicagoIllinoisUSA
| | - Yinan Wang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Mark W. Mcdonald
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - David S. Yu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation OncologyMount Sinai Medical CenterNew YorkNew YorkUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Chang CW, Peng J, Safari M, Salari E, Pan S, Roper J, Qiu RLJ, Gao Y, Shu HK, Mao H, Yang X. High-resolution MRI synthesis using a data-driven framework with denoising diffusion probabilistic modeling. Phys Med Biol 2024; 69:045001. [PMID: 38241726 PMCID: PMC10839468 DOI: 10.1088/1361-6560/ad209c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Objective. High-resolution magnetic resonance imaging (MRI) can enhance lesion diagnosis, prognosis, and delineation. However, gradient power and hardware limitations prohibit recording thin slices or sub-1 mm resolution. Furthermore, long scan time is not clinically acceptable. Conventional high-resolution images generated using statistical or analytical methods include the limitation of capturing complex, high-dimensional image data with intricate patterns and structures. This study aims to harness cutting-edge diffusion probabilistic deep learning techniques to create a framework for generating high-resolution MRI from low-resolution counterparts, improving the uncertainty of denoising diffusion probabilistic models (DDPM).Approach. DDPM includes two processes. The forward process employs a Markov chain to systematically introduce Gaussian noise to low-resolution MRI images. In the reverse process, a U-Net model is trained to denoise the forward process images and produce high-resolution images conditioned on the features of their low-resolution counterparts. The proposed framework was demonstrated using T2-weighted MRI images from institutional prostate patients and brain patients collected in the Brain Tumor Segmentation Challenge 2020 (BraTS2020).Main results. For the prostate dataset, the bicubic interpolation model (Bicubic), conditional generative-adversarial network (CGAN), and our proposed DDPM framework improved the noise quality measure from low-resolution images by 4.4%, 5.7%, and 12.8%, respectively. Our method enhanced the signal-to-noise ratios by 11.7%, surpassing Bicubic (9.8%) and CGAN (8.1%). In the BraTS2020 dataset, the proposed framework and Bicubic enhanced peak signal-to-noise ratio from resolution-degraded images by 9.1% and 5.8%. The multi-scale structural similarity indexes were 0.970 ± 0.019, 0.968 ± 0.022, and 0.967 ± 0.023 for the proposed method, CGAN, and Bicubic, respectively.Significance. This study explores a deep learning-based diffusion probabilistic framework for improving MR image resolution. Such a framework can be used to improve clinical workflow by obtaining high-resolution images without penalty of the long scan time. Future investigation will likely focus on prospectively testing the efficacy of this framework with different clinical indications.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Junbo Peng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Mojtaba Safari
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Elahheh Salari
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30308, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Hui-Kuo Shu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Hui Mao
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30308, United States of America
| |
Collapse
|
3
|
Janopaul‐Naylor JR, Corriher TJ, Switchenko J, Hanasoge S, Esdaille A, Mahal BA, Filson CP, Patel SA. Disparities in time to prostate cancer treatment initiation before and after the Affordable Care Act. Cancer Med 2023; 12:18258-18268. [PMID: 37537835 PMCID: PMC10523962 DOI: 10.1002/cam4.6419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Delayed access to care may contribute to disparities in prostate cancer (PCa). The Affordable Care Act (ACA) aimed at increasing access and reducing healthcare disparities, but its impact on timely treatment initiation for PCa men is unknown. METHODS Men with intermediate- and high-risk PCa diagnosed 2010-2016 and treated with curative surgery or radiotherapy were identified in the National Cancer Database. Multivariable logistic regression modeled the effect of race and insurance type on treatment delay >180 days after diagnosis. Cochran-Armitage test measured annual trends in delays, and joinpoint regression assessed if 2014, the year the ACA became fully operationalized, was significant for inflection in crude rates of major delays. RESULTS Of 422,506 eligible men, 18,720 (4.4%) experienced >180-day delay in treatment initiation. Compared to White patients, Black (OR 1.79, 95% CI 1.72-1.87, p < 0.001) and Hispanic (OR 1.37, 95% CI 1.28-1.48, p < 0.001) patients had higher odds of delay. Compared to uninsured, those with Medicaid had no difference in odds of delay (OR 0.94, 95% CI 0.84-1.06, p = 0.31), while those with private insurance (OR 0.57, 95% CI 0.52-0.63, p < 0.001) or Medicare (OR 0.64, 95% CI 0.58-0.70, p < 0.001) had lower odds of delay. Mean time to treatment significantly increased from 2010 to 2016 across all racial/ethnic groups (trend p < 0.001); 2014 was associated with a significant inflection for increase in rates of major delays. CONCLUSIONS Non-White and Medicaid-insured men with localized PCa are at risk of treatment delays in the United States. Treatment delays have been consistently rising, particularly after implementation of the ACA.
Collapse
Affiliation(s)
- James R. Janopaul‐Naylor
- Department of Radiation OncologyWinship Cancer Institute at Emory UniversityAtlantaGeorgiaUSA
- Department of Radiation OncologyMemorial Sloan Kettering CancerNew YorkNew YorkUSA
| | - Taylor J. Corriher
- Department of Radiation OncologyWinship Cancer Institute at Emory UniversityAtlantaGeorgiaUSA
| | - Jeffrey Switchenko
- Department of Biostatistics and BioinformaticsRollins School of Public HealthAtlantaGeorgiaUSA
| | - Sheela Hanasoge
- Department of Radiation OncologyWinship Cancer Institute at Emory UniversityAtlantaGeorgiaUSA
| | - Ashanda Esdaille
- Department of UrologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Brandon A. Mahal
- Department of Radiation OncologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | | | - Sagar A. Patel
- Department of Radiation OncologyWinship Cancer Institute at Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Chang CW, Lei Y, Wang T, Tian S, Roper J, Lin L, Bradley J, Liu T, Zhou J, Yang X. Deep learning-based Fast Volumetric Image Generation for Image-guided Proton FLASH Radiotherapy. RESEARCH SQUARE 2023:rs.3.rs-3112632. [PMID: 37546731 PMCID: PMC10402267 DOI: 10.21203/rs.3.rs-3112632/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Objective FLASH radiotherapy leverages ultra-high dose-rate radiation to enhance the sparing of organs at risk without compromising tumor control probability. This may allow dose escalation, toxicity mitigation, or both. To prepare for the ultra-high dose-rate delivery, we aim to develop a deep learning (DL)-based image-guide framework to enable fast volumetric image reconstruction for accurate target localization for proton FLASH beam delivery. Approach The proposed framework comprises four modules, including orthogonal kV x-ray projection acquisition, DL-based volumetric image generation, image quality analyses, and water equivalent thickness (WET) evaluation. We investigated volumetric image reconstruction using kV projection pairs with four different source angles. Thirty patients with lung targets were identified from an institutional database, each patient having a four-dimensional computed tomography (CT) dataset with ten respiratory phases. Leave-phase-out cross-validation was performed to investigate the DL model's robustness for each patient. Main results The proposed framework reconstructed patients' volumetric anatomy, including tumors and organs at risk from orthogonal x-ray projections. Considering all evaluation metrics, the kV projections with source angles of 135° and 225° yielded the optimal volumetric images. The patient-averaged mean absolute error, peak signal-to-noise ratio, structural similarity index measure, and WET error were 75±22 HU, 19±3.7 dB, 0.938±0.044, and -1.3%±4.1%. Significance The proposed framework has been demonstrated to reconstruct volumetric images with a high degree of accuracy using two orthogonal x-ray projections. The embedded WET module can be used to detect potential proton beam-specific patient anatomy variations. This framework can rapidly deliver volumetric images to potentially guide proton FLASH therapy treatment delivery systems.
Collapse
|
5
|
Pan S, Chang CW, Wang T, Wynne J, Hu M, Lei Y, Liu T, Patel P, Roper J, Yang X. Abdomen CT multi-organ segmentation using token-based MLP-Mixer. Med Phys 2023; 50:3027-3038. [PMID: 36463516 PMCID: PMC10175083 DOI: 10.1002/mp.16135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Manual contouring is very labor-intensive, time-consuming, and subject to intra- and inter-observer variability. An automated deep learning approach to fast and accurate contouring and segmentation is desirable during radiotherapy treatment planning. PURPOSE This work investigates an efficient deep-learning-based segmentation algorithm in abdomen computed tomography (CT) to facilitate radiation treatment planning. METHODS In this work, we propose a novel deep-learning model utilizing U-shaped multi-layer perceptron mixer (MLP-Mixer) and convolutional neural network (CNN) for multi-organ segmentation in abdomen CT images. The proposed model has a similar structure to V-net, while a proposed MLP-Convolutional block replaces each convolutional block. The MLP-Convolutional block consists of three components: an early convolutional block for local features extraction and feature resampling, a token-based MLP-Mixer layer for capturing global features with high efficiency, and a token projector for pixel-level detail recovery. We evaluate our proposed network using: (1) an institutional dataset with 60 patient cases and (2) a public dataset (BCTV) with 30 patient cases. The network performance was quantitatively evaluated in three domains: (1) volume similarity between the ground truth contours and the network predictions using the Dice score coefficient (DSC), sensitivity, and precision; (2) surface similarity using Hausdorff distance (HD), mean surface distance (MSD) and residual mean square distance (RMS); and (3) the computational complexity reported by the number of network parameters, training time, and inference time. The performance of the proposed network is compared with other state-of-the-art networks. RESULTS In the institutional dataset, the proposed network achieved the following volume similarity measures when averaged over all organs: DSC = 0.912, sensitivity = 0.917, precision = 0.917, average surface similarities were HD = 11.95 mm, MSD = 1.90 mm, RMS = 3.86 mm. The proposed network achieved DSC = 0.786 and HD = 9.04 mm on the public dataset. The network also shows statistically significant improvement, which is evaluated by a two-tailed Wilcoxon Mann-Whitney U test, on right lung (MSD where the maximum p-value is 0.001), spinal cord (sensitivity, precision, HD, RMSD where p-value ranges from 0.001 to 0.039), and stomach (DSC where the maximum p-value is 0.01) over all other competing networks. On the public dataset, the network report statistically significant improvement, which is shown by the Wilcoxon Mann-Whitney test, on pancreas (HD where the maximum p-value is 0.006), left (HD where the maximum p-value is 0.022) and right adrenal glands (DSC where the maximum p-value is 0.026). In both datasets, the proposed method can generate contours in less than 5 s. Overall, the proposed MLP-Vnet demonstrates comparable or better performance than competing methods with much lower memory complexity and higher speed. CONCLUSIONS The proposed MLP-Vnet demonstrates superior segmentation performance, in terms of accuracy and efficiency, relative to state-of-the-art methods. This reliable and efficient method demonstrates potential to streamline clinical workflows in abdominal radiotherapy, which may be especially important for online adaptive treatments.
Collapse
Affiliation(s)
- Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Jacob Wynne
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Mingzhe Hu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Tian Liu
- Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY, 10029, USA
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|