1
|
Jimenez RB. ASTRO's Advances in Radiation Oncology's Top Downloaded Articles of 2023. Adv Radiat Oncol 2024; 9:101557. [PMID: 39346694 PMCID: PMC11427731 DOI: 10.1016/j.adro.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Affiliation(s)
- Rachel B Jimenez
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
2
|
Ferrario F, Franzese C, Faccenda V, Vukcaj S, Belmonte M, Lucchini R, Baldaccini D, Badalamenti M, Andreoli S, Panizza D, Magli A, Scorsetti M, Arcangeli S. Toxicity profile and Patient-Reported outcomes following salvage Stereotactic Ablative Radiation Therapy to the prostate Bed: The POPART multicentric prospective study. Clin Transl Radiat Oncol 2024; 44:100704. [PMID: 38111610 PMCID: PMC10726256 DOI: 10.1016/j.ctro.2023.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/25/2023] [Indexed: 12/20/2023] Open
Abstract
Background While SBRT to the prostate has become a valuable option as a radical treatment, limited data support its use in the postoperative setting. Here, we report the updated results of the multicentric Post-Prostatectomy Ablative Radiation Therapy (POPART) trial, investigating possible predictors of toxicities and patient-reported outcomes. Methods Patients with PSA levels between 0.1-2.0 ng/mL after radical prostatectomy received Linac-based SBRT to the prostate bed in five fractions every other day for a total dose of 32.5 Gy (EQD21.5 = 74.3 Gy). Late toxicity was assessed using CTCAE v.5 scale, while EPIC-CP, ICIQ-SF, IIEF 5 questionnaires and PSA levels measured quality of life and biochemical control. Pre- and post-treatment scores were compared using a paired t-test, with MID established at > 0.5 pooled SD from the baseline. A logistic regression analysis was performed to evaluate potential associations between specific patient/tumor/treatment factors and outcome deterioration. Results From April 2021 to April 2023 a total of 50 pts were enrolled and treated. Median follow-up was 12.2 (3-27) months. No late ≥ G2 GI or GU toxicity was registered. Late G1 urinary and rectal toxicities occurred in 46 % and 4 % of patients, respectively. Among 47 patients completing all EPIC-CP domains, four (9 %) showed worsened QoL, and eleven (26 %) developed erectile dysfunction correlating with PTV D2% (P = 0.032). At Multivariate analysis bladder wall D10cc independently correlated with late G1 GU toxicity (P = 0.034). Median post-treatment PSA nadir was 0.04 ng/mL (0.00 - 0.84). At the last follow-up, six patients presented with biochemical failure, including two nodal relapses. Conclusions Our findings show that post-prostatectomy SBRT did not result in increased toxicity nor a significant decline in QoL measures, thus showing that it can be safely extended to the postoperative setting. Long-term follow-up and randomized comparisons with different RT schedules are needed to validate this approach.
Collapse
Affiliation(s)
- Federica Ferrario
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
- Department of Radiation Oncology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele (MI), Italy
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, 20089 Rozzano (MI), Italy
| | - Valeria Faccenda
- Department of Medical Physics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Suela Vukcaj
- Department of Radiation Oncology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Maria Belmonte
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
- Department of Radiation Oncology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Raffaella Lucchini
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
- Department of Radiation Oncology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Davide Baldaccini
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, 20089 Rozzano (MI), Italy
| | - Marco Badalamenti
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, 20089 Rozzano (MI), Italy
| | - Stefano Andreoli
- Department of Medical Physics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Denis Panizza
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
- Department of Medical Physics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Alessandro Magli
- Department of Radiation Oncology, AULSS 1 Dolomiti, 32100 Belluno, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele (MI), Italy
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, 20089 Rozzano (MI), Italy
| | - Stefano Arcangeli
- School of Medicine and Surgery, University of Milan Bicocca, 20126 Milan, Italy
- Department of Radiation Oncology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
3
|
Sahu RK, Ruhi S, Jeppu AK, Al-Goshae HA, Syed A, Nagdev S, Widyowati R, Ekasari W, Khan J, Bhattacharjee B, Goyal M, Bhattacharya S, Jangde RK. Malignant mesothelioma tumours: molecular pathogenesis, diagnosis, and therapies accompanying clinical studies. Front Oncol 2023; 13:1204722. [PMID: 37469419 PMCID: PMC10353315 DOI: 10.3389/fonc.2023.1204722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023] Open
Abstract
The pathetic malignant mesothelioma (MM) is a extremely uncommon and confrontational tumor that evolves in the mesothelium layer of the pleural cavities (inner lining- visceral pleura and outer lining- parietal pleura), peritoneum, pericardium, and tunica vaginalis and is highly resistant to standard treatments. In mesothelioma, the predominant pattern of lesions is a loss of genes that limit tumour growth. Despite the worldwide ban on the manufacture and supply of asbestos, the prevalence of mesothelioma continues to increase. Mesothelioma presents and behaves in a variety of ways, making diagnosis challenging. Most treatments available today for MM are ineffective, and the median life expectancy is between 10 and 12 months. However, in recent years, considerable progress has already been made in understanding the genetics and molecular pathophysiology of mesothelioma by addressing hippo signaling pathway. The development and progression of MM are related to many important genetic alterations. This is related to NF2 and/or LATS2 mutations that activate the transcriptional coactivator YAP. The X-rays, CT scans, MRIs, and PET scans are used to diagnose the MM. The MM are treated with surgery, chemotherapy, first-line combination chemotherapy, second-line treatment, radiation therapy, adoptive T-cell treatment, targeted therapy, and cancer vaccines. Recent clinical trials investigating the function of surgery have led to the development of innovative approaches to the treatment of associated pleural effusions as well as the introduction of targeted medications. An interdisciplinary collaborative approach is needed for the effective care of persons who have mesothelioma because of the rising intricacy of mesothelioma treatment. This article highlights the key findings in the molecular pathogenesis of mesothelioma, diagnosis with special emphasis on the management of mesothelioma.
Collapse
Affiliation(s)
- Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras, Tehri Garhwal, Uttarakhand, India
| | - Sakina Ruhi
- Department of Biochemistry, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Ayesha Syed
- Department of Anatomy, Physiology, and Biochemistry, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Sanjay Nagdev
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur, Madhya Pradesh, India
| | - Retno Widyowati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Wiwied Ekasari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | | | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras, Tehri Garhwal, Uttarakhand, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, MH, India
| | - Rajendra K. Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
4
|
Laughlin BS, Yu NY, Lo S, Duan J, Welchel Z, Tinnon K, Beckett M, Schild SE, Wong WW, Keole SR, Rwigema JCM, Vargas CE, Rong Y. Clinical Practice Evolvement for Post-Operative Prostate Cancer Radiotherapy-Part 2: Feasibility of Margin Reduction for Fractionated Radiation Treatment with Advanced Image Guidance. Cancers (Basel) 2022; 15:cancers15010040. [PMID: 36612040 PMCID: PMC9817842 DOI: 10.3390/cancers15010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose: Planning target volume (PTV) expansion for post-prostatectomy radiotherapy is typically ≥5 mm. Recent clinical trials have proved the feasibility of a reduced margin of 2−3 mm for treatments on MRI-linac. We aim to study the minimum PTV margin needed using iterative cone-beam CT (iCBCT) as image guidance on conventional linacs. Materials/Methods: Fourteen patients who received post-prostatectomy irradiation (8 with an endorectal balloon and 6 without a balloon) were included in this study. Treatment was delivered with volumetric modulated radiation therapy (VMAT). Fractional dose delivery was evaluated in 165 treatment fractions. The bladder, rectal wall, femoral heads, and prostate bed clinical tumor volume (CTV) were contoured and verified on daily iCBCT. PTV margins (0 mm, 2 mm, and 4 mm) were evaluated on daily iCBCT. CTV coverage and OAR dose parameters were assessed with each PTV margin. Results: CTV D100% was underdosed with a 0 mm margin in 32% of fractions in comparison with 2 mm (6%) and 4 mm (6%) PTV margin (p ≤ 0.001). CTV D95% > 95% was met in 93−94% fractions for all PTV expansions. CTV D95% > 95% was achieved in more patients with an endorectal balloon than those without: 0 mm—90/91 (99%) vs. 63/74 (85%); 2 mm—90/91 (99%) vs. 65/75 (87%); 4 mm—90/90 (100%) vs. 63/73 (86%). There was no difference in absolute median change in CTV D95% (0.32%) for 0-, 2-, and 4 mm margins. The maximum dose remained under 108% for 100% (0 mm), 97% (2 mm), and 98% (4 mm) of images. Rectal wall maximum dose remained under 108% for 100% (0 mm), 100% (2 mm), and 98% (4 mm) of images. Conclusions: With high-quality iCBCT image guidance, PTV margin accounting for inter-fractional uncertainties can be safely reduced for post-prostatectomy radiotherapy. For fractionated radiotherapy, an isotropic expansion of 2 mm and 4 mm may be considered for margin expansion with and without the endorectal balloon. Future application for margin reduction needs to be further evaluated and considered with the advent of shorter post-prostatectomy radiation courses.
Collapse
Affiliation(s)
- Brady S. Laughlin
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
| | - Nathan Y. Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
| | - Stephanie Lo
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
| | - Jingwei Duan
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
- Department of Radiation Oncology, University of Kentucky, Lexington, KY 40506, USA
| | - Zachary Welchel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
- Department of Nuclear and Radiological Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katie Tinnon
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
| | - Mason Beckett
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
| | - Steven E. Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
| | - Sameer R. Keole
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
| | | | - Carlos E. Vargas
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
- Correspondence: (C.E.V.); (Y.R.)
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85259, USA
- Correspondence: (C.E.V.); (Y.R.)
| |
Collapse
|
5
|
Laughlin BS, Lo S, Vargas CE, DeWees TA, Van der Walt C, Tinnon K, Beckett M, Hobbis D, Schild SE, Wong WW, Keole SR, Rwigema JCM, Yu NY, Clouser E, Rong Y. Clinical Practice Evolvement for Post-Operative Prostate Cancer Radiotherapy-Part 1: Consistent Organs at Risk Management with Advanced Image Guidance. Cancers (Basel) 2022; 15:cancers15010016. [PMID: 36612013 PMCID: PMC9817677 DOI: 10.3390/cancers15010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose: Post-operative prostate cancer patients are treated with full bladder instruction and the use of an endorectal balloon (ERB). We reassessed the efficacy of this practice based on daily image guidance and dose delivery using high-quality iterative reconstructed cone-beam CT (iCBCT). Methods: Fractional dose delivery was calculated on daily iCBCT for 314 fractions from 14 post-operative prostate patients (8 with and 6 without ERB) treated with volumetric modulated radiotherapy (VMAT). All patients were positioned using novel iCBCT during image guidance. The bladder, rectal wall, femoral heads, and prostate bed clinical tumor volume (CTV) were contoured and verified on daily iCBCT. The dose-volume parameters of the contoured organs at risk (OAR) and CTV coverage were assessed for the clinical impact of daily bladder volume variations and the use of ERB. Minimum bladder volume was studied, and a straightforward bladder instruction was explored for easy clinical adoption. Results: A “minimum bladder” contour, the overlap between the original bladder contour and a 15 mm anterior and superior expansion from prostate bed PTV, was confirmed to be effective in identifying cases that might fail a bladder constraint of V65% <60%. The average difference between the maximum and minimum bladder volumes for each patient was 277.1 mL. The daily bladder volumes varied from 62.4 to 590.7 mL and ranged from 29 to 286% of the corresponding planning bladder volume. The bladder constraint of V65% <60% was met in almost all fractions (98%). CTVs (D90%, D95%, and D98%) remained well-covered regardless of the absolute bladder volume daily variation or the presence of the endorectal balloon. Patients with an endorectal balloon showed smaller variation but a higher average maximum rectal wall dose (D0.03mL: 104.3% of the prescription) compared to patients without (103.3%). Conclusions: A “minimum bladder” contour was determined that can be easily generated and followed to ensure sufficient bladder sparing. Further analysis and validation are needed to confirm the utility of the minimal bladder contour. Accurate dose delivery can be achieved for prostate bed target coverage and OAR sparing with or without the use of ERB.
Collapse
Affiliation(s)
- Brady S. Laughlin
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - Stephanie Lo
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - Carlos E. Vargas
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - Todd A. DeWees
- Department of Qualitative Health Sciences, Section of Biostatistics, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - Charles Van der Walt
- Department of Qualitative Health Sciences, Section of Biostatistics, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - Katie Tinnon
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - Mason Beckett
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - Dean Hobbis
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - Steven E. Schild
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - Sameer R. Keole
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - Jean-Claude M. Rwigema
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - Nathan Y. Yu
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - Edward Clouser
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic, 5881 E Mayo Blvd., Phoenix, AZ 85054, USA
- Correspondence:
| |
Collapse
|