1
|
De Marco K, Sanese P, Simone C, Grossi V. Histone and DNA Methylation as Epigenetic Regulators of DNA Damage Repair in Gastric Cancer and Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:4976. [PMID: 37894343 PMCID: PMC10605360 DOI: 10.3390/cancers15204976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer (GC), one of the most common malignancies worldwide, is a heterogeneous disease developing from the accumulation of genetic and epigenetic changes. One of the most critical epigenetic alterations in GC is DNA and histone methylation, which affects multiple processes in the cell nucleus, including gene expression and DNA damage repair (DDR). Indeed, the aberrant expression of histone methyltransferases and demethylases influences chromatin accessibility to the DNA repair machinery; moreover, overexpression of DNA methyltransferases results in promoter hypermethylation, which can suppress the transcription of genes involved in DNA repair. Several DDR mechanisms have been recognized so far, with homologous recombination (HR) being the main pathway involved in the repair of double-strand breaks. An increasing number of defective HR genes are emerging in GC, resulting in the identification of important determinants of therapeutic response to DDR inhibitors. This review describes how both histone and DNA methylation affect DDR in the context of GC and discusses how alterations in DDR can help identify new molecular targets to devise more effective therapeutic strategies for GC, with a particular focus on HR-deficient tumors.
Collapse
Affiliation(s)
- Katia De Marco
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| |
Collapse
|
2
|
Zhu L, Wang J, Zhang Y, Xiang X, Liu K, Wei J, Li Z, Shao D, Li B, Ma Z, Qiu Y. A Porcine DNMT1 Variant: Molecular Cloning and Generation of Specific Polyclonal Antibody. Genes (Basel) 2023; 14:1324. [PMID: 37510229 PMCID: PMC10379332 DOI: 10.3390/genes14071324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methyltransferase 1 (DNMT1), the first-identified DNA methyltransferase in mammals, has been well studied in the control of embryo development and somatic homeostasis in mice and humans. Accumulating reports have demonstrated that DNMT1 plays an important role in the regulation of differentiation and the activation of immune cells. However, little is known about the effects of porcine DNMT1 on such functional regulation, especially the regulation of the biological functions of immune cells. In this study, we report the cloning of DNMT1 (4833 bp in length) from porcine alveolar macrophages (PAMs). According to the sequence of the cloned DNMT1 gene, the deduced protein sequence contains a total of 1611 amino acids with a 2 amino acid insertion, a 1 amino acid deletion, and 12 single amino acid mutations in comparison to the reported DNMT1 protein. A polyclonal antibody based on a synthetic peptide was generated to study the expression of the porcine DNMT1. The polyclonal antibody only recognized the cloned porcine DNMT1 and not the previously reported protein due to a single amino acid difference in the antigenic peptide region. However, the polyclonal antibody recognized the endogenous DNMT1 in several porcine cells (PAM, PK15, ST, and PIEC) and the cells of other species (HEK-293T, Marc-145, MDBK, and MDCK cells). Moreover, our results demonstrated that all the detected tissues of piglet express DNMT1, which is the same as that in porcine alveolar macrophages. In summary, we have identified a porcine DNMT1 variant with sequence and expression analyses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yafeng Qiu
- Correspondence: ; Tel.: +86-21-34293635; Fax: +86-21-54081818
| |
Collapse
|
3
|
DNMT1 Gene Expression in Patients with Helicobacter pylori Infection. ScientificWorldJournal 2022; 2022:2386891. [PMID: 36147796 PMCID: PMC9489387 DOI: 10.1155/2022/2386891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNMT1, as a critical enzyme affecting epigenetics through methylation of DNA cytosine-rich sequences, regulates gene expression. Exterior factors including long-term infections, in this study Helicobacter pylori infection, could change host cells' epigenetics by affecting DNMT1 gene expression. This study investigated the statistical correlation between H. pylori virulence genes and DNMT1 gene expression in gastric antral epithelial cells of gastric adenocarcinoma and gastritis patients. In a case-control study, 50 and 53 gastritis and gastric adenocarcinoma antral biopsies, including 23 and 21 patients with H. pylori infection, respectively, were collected from hospitals in the west of Iran. Having extracted total RNA from gastric biopsy samples, cDNA was synthesized and virulence genes of H. pylori were detected by using the PCR method. Relative real-time RT PCR was used to detect ΔΔCt fold changes of the DNMT1 gene expression in divided groups of patients based on H. pylori infection and clinical manifestations. The results showed that along with increasing patients' age, the DNMT1 gene expression will increase in gastric antral epithelial cells of gastric cancer patients (P ≤ 0.05). On the other hand, the biopsy samples with infection of H. pylori cagA, cagY, and cagE genotypes revealed a direct correlation along with increased DNMT1 gene expression. This study revealed the correlations of H. pylori cag pathogenicity island genes with increased DNMT1 gene expression.
Collapse
|
4
|
Wan Z, Gong F, Zhang M, He L, Wang Y, Yu S, Liu J, Wu Y, Liu L, Wu Y, Qu L, Sun J, Yu F. Detection of the level of DNMT1 based on self-assembled probe signal amplification technique in plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120020. [PMID: 34119770 DOI: 10.1016/j.saa.2021.120020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
DNA (cytosine-5)-methyltransferase1 (DNMT1) is the most abundant DNA methyltransferase in somatic cells, and it plays an important role in the initiation, occurrence, and rehabilitation of tumors. Herein, we developed a novel strategy for the detection of the level of DNMT1 in human plasma using the self-assembled nucleic acid probe signal amplification technology. In this method, the DNMT1 monoclonal antibody (McAbDNMT1) was immobilized on carboxyl magnetic beads to form immunomagnetic beads and then captured DNMT1 specifically. After that, DNMT1 polyclonal antibody (PcAbDNMT1) and biotinylated sheep anti-rabbit IgG (sheep anti rabbit IgG-Biotin) were sequentially added into the system to react with DNMT1 and form biotinylated double antibody sandwich immunomagnetic beads. In the presence of the bridging medium streptavidin, the biotinylated double antibody sandwich immunomagnetic beads would form a complex with biotinylated poly-fluorescein (Biotin-poly FAM), and the fluorescence intensity of the complex was proportional to the concentration of DNMT1. Immunomagnetic beads can capture the target DNMT1 in the sample, and Biotin-poly FAM can realize signal amplification. Using these strategies, we got a linear range of the system for DNMT1 level detection was from 2 nmol/L to 200 nmol/L, and the limit of detection (LOD) was 0.05 nmol/L. The method was successfully applied for the determination of DNMT1 in human plasma with the recovery of 101.3-106.0%. Therefore, this method has the potential for the detection of DNMT1 level in clinical diagnosis.
Collapse
Affiliation(s)
- Zhenzhen Wan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fangfang Gong
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Gumei Community Health Service Center, Minhang District, Shanghai 201100, China
| | - Mimi Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuming Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Li'e Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiaqi Sun
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Purkait S, Patra S, Mitra S, Behera MM, Panigrahi MK, Kumar P, Kar M, Hallur V, Chandra Samal S. Elevated Expression of DNA Methyltransferases and Enhancer of Zeste Homolog 2 in Helicobacter pylori - Gastritis and Gastric Carcinoma. Dig Dis 2021; 40:156-167. [PMID: 33895728 DOI: 10.1159/000516478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/08/2021] [Indexed: 02/02/2023]
Abstract
AIM The aim of this study was to study the role of key epigenetic regulators pertaining to DNA methylation and histone-modification systems in Helicobacter pylori (HP)-associated gastritis and gastric carcinogenesis. METHODS The expression of DNA methyltransferase (DNMT-1, 3A, and 3B) and the catalytic subunit of polycomb repressive complex-2 (enhancer of zeste homolog 2 [EZH2]) in gastric carcinomas (n = 104), mucosa adjacent to carcinoma (n = 104), HP-associated gastritis (n = 95), and histologically normal mucosa (n = 31) was assessed by immunohistochemistry and qRT-PCR. RESULTS The expression of all 3 DNMTs and EZH2 was significantly higher in HP-associated gastritis and carcinoma cases than in those with adjacent and normal mucosa. The expression of DNMT-1 and 3B was maximum in HP-associated gastritis. DNMT-3A showed higher expression in carcinoma-adjacent mucosa than in normal mucosa. Interestingly, the expression of EZH2 was higher in cases of HP-associated gastritis with metaplasia than in those without metaplasia and also in cases of intestinal type of adenocarcinoma. Significant positive correlation of EZH2 was identified with DNMT-1, DNMT-3A, and DNMT-3B. However, none of these markers was associated with survival outcome. CONCLUSION This study establishes an important role of the key epigenetic regulators in the pathogenesis of both HP-associated gastritis and gastric carcinoma. Higher expression of all the epigenetic markers in the gastritis and their persistence in the carcinoma point toward their implications in HP-driven gastric carcinogenesis. Further, an inter-relation between the 2 arms of epigenetics, namely, DNA methylation and histone-modification in the pathogenesis of gastric carcinoma, is also documented. Given the reversibility of epigenetic phenomenon, these molecules may be of important therapeutic use.
Collapse
Affiliation(s)
- Suvendu Purkait
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Susama Patra
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Suvradeep Mitra
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Minakshi M Behera
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Manas Kumar Panigrahi
- Department of Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pankaj Kumar
- Department of General Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Madhabananda Kar
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vinaykumar Hallur
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Subash Chandra Samal
- Department of Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
6
|
Sarne V, Braunmueller S, Rakob L, Seeboeck R. The Relevance of Gender in Tumor-Influencing Epigenetic Traits. EPIGENOMES 2019; 3:epigenomes3010006. [PMID: 34991275 PMCID: PMC8594720 DOI: 10.3390/epigenomes3010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Tumorigenesis as well as the molecular orchestration of cancer progression are very complex mechanisms that comprise numerous elements of influence and regulation. Today, many of the major concepts are well described and a basic understanding of a tumor's fine-tuning is given. Throughout the last decade epigenetics has been featured in cancer research and it is now clear that the underlying mechanisms, especially DNA and histone modifications, are important regulators of carcinogenesis and tumor progression. Another key regulator, which is well known but has been neglected in scientific approaches as well as molecular diagnostics and, consequently, treatment conceptualization for a long time, is the subtle influence patient gender has on molecular processes. Naturally, this is greatly based on hormonal differences, but from an epigenetic point of view, the diverse susceptibility to stress and environmental influences is of prime interest. In this review we present the current view on which and how epigenetic modifications, emphasizing DNA methylation, regulate various tumor diseases. It is our aim to elucidate gender and epigenetics and their interconnectedness, which will contribute to understanding of the prospect molecular orchestration of cancer in individual tumors.
Collapse
|
7
|
DNMT1 overexpression predicting gastric carcinogenesis, subsequent progression and prognosis: a meta and bioinformatic analysis. Oncotarget 2017; 8:96396-96408. [PMID: 29221215 PMCID: PMC5707109 DOI: 10.18632/oncotarget.21480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023] Open
Abstract
DNMT1 is important in maintaining DNA methylation, and participates in the oncogenesis via up- or down-regulation leading to hyper-methylation or hypo-methylation. In the meta and bioinformatic analysis, we found that DNMT1 expression was higher in gastric cancer, compared with normal (p < 0.00001), para-cancerous (p = 0.0004) and dysplasia (p < 0.00001) tissues. DNMT1 up-regulation was associated with gender (OR = 2.27, p = 0.006), differentiation (OR = 0.21, p = 0.01) and TNM stage (OR = 0.31, p = 0.0005). Through TCGA database, DNMT1 overexpression increased gastric cancer risk, but unrelated with clinicopathological parameters and prognosis. Kaplan-Meier plotter showed, an increasing expression of DNMT1 was positive for overall survival rates of patients with stage III and IV (P = 0.044; P = 0.047), N2 and N1-3 phases of lymph node metastasis (P = 0.023; P = 0.032), as well as those with or without distant metastasis (P = 0.0052; P = 0.021). For DNMT1 negative patients, the progression-free survival rates was better in patients with Her2+ or Her2- than positive ones (P = 0.00015; P = 0.031). Besides, surgery alone was effective for the overall survival rates in patients with DNMT1 high expression (P = 0.035), while 5-Fu was useful for those with low expression (P < 0.05). In conclusion, these findings provided evidence that DNMT1 expression might be employed as a potential marker to indicate gastric carcinogenesis and subsequent progression, even prognosis.
Collapse
|
8
|
Lai J, Wang H, Luo Q, Huang S, Lin S, Zheng Y, Chen Q. The relationship between DNA methylation and Reprimo gene expression in gastric cancer cells. Oncotarget 2017; 8:108610-108623. [PMID: 29312555 PMCID: PMC5752468 DOI: 10.18632/oncotarget.21296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/13/2017] [Indexed: 12/31/2022] Open
Abstract
Reprimo (RPRM) is a tumor suppressor involved in the development of a number of malignant tumors including gastric cancer which is highly related to its gene hypermethylation. However, the regulation of RPRM gene expression by DNA methylation in gastric cancer is not well understood. We examined the RPRM gene methylation in gastric cancer tissues or plasma samples by bisulfite sequencing, and investigated the relationship between DNA methylation and the RPRM gene expression by quantitative reverse transcription-PCR and Western blotting. We found that the RPRM gene promoter region is hypermethylated in gastric cancer tissues (75%, 45/60), plasma samples (86.3%, 44/51) and various cancer cell lines (75%, 3/4), which is correlated with the decrease of RPRM gene expression. The hypermethylation-induced RPRM reduction can be recovered by treating with zebularine, a demethylating agent, and by inhibition of the DNA methyltransferases via RNA interference and CRISPR/Cas9-mediated gene knockout. In addition, we generated RPRM gene-knockout cells and studied the effects of the RPRM deficiency on tumor formation by inoculating these cells in mice. The data show that the loss of RPRM can promote tumorigenesis. These data suggest that the RPRM expression is inhibited by DNA methyltransferases and the RPRM normal function can be restored by treating with DNA methylation inhibitors. The study provides important information regarding the role of RPRM and its methylation related to gastric cancer development.
Collapse
Affiliation(s)
- Junzhong Lai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Hanze Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Qianping Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Shanlu Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Shujin Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| | - Yansong Zheng
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
| |
Collapse
|
9
|
Zhao S, Wu J, Tang Q, Zheng F, Yang L, Chen Y, Li L, Hann SS. Chinese herbal medicine Xiaoji decoction inhibited growth of lung cancer cells through AMPKα-mediated inhibition of Sp1 and DNA methyltransferase 1. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:172-181. [PMID: 26850724 DOI: 10.1016/j.jep.2016.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoji decoction (XJD), which was considered as a Chinese herbal prescription, has been used for cancer treatment, especially lung cancer, for decades to improve quality of life and prolong the patient survival. However, the molecular mechanisms underlying the therapeutic potential have not been well elucidated. MATERIALS AND METHODS The cell viability was examined by MTT assays. The phosphorylation and expression of AMP-activated protein kinase alpha (AMPKα), DNA methyltransferase 1 (DNMT1) and transcription factor Sp1 proteins were assessed by Western Blot. Exogenous expression of Sp1 and DNMT1 were performed by transient transfection methods. The effects of XJD on the growth of xenograft tumors were evaluated by in vivo bioluminescence imaging. RESULTS We showed that XJD inhibited growth of human non small cell lung cancer (NSCLC) cells in vitro. We also found that XJD increased phosphorylation of AMPKα and inhibited protein expression of DNTM1, the latter was not observed in the presence of the inhibitor of AMPK (compound C). Overexpression of DNTM1 reversed the effect of XJD on cell growth. In addition, XJD decreased Sp1 protein expression, which was eliminated by compound C. Conversely, exogenous expressed Sp1 abrogated XJD-inhibited DNTM1 protein expression. Interestingly, exogenous expression of DNMT1 feedback antagonized the XJD-induced phosphorylation of AMPKα. In in vivo studies, we found that XJD inhibited tumor growth in xenograft nude mice model, which was accompanied by induction of phosphorylation of AMPKα and suppression of DNMT1 protein from xenograft tumors. CONCLUSION Our results show that XJD inhibits NSCLC cell growth via AMPKα-mediated inhibition of transcription of Sp1, followed by the reduction of DNMT1 expression both in vitro and in vivo. The negative feedback regulation loop of AMPKα further demonstrates the critical role of DNMT1 in mediating the overall effects of XJD in this process. This study unveils novel molecular mechanism by which XJD controls NSCLC cell growth.
Collapse
Affiliation(s)
- ShunYu Zhao
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Jingjing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - LiJun Yang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - YuQin Chen
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Liuning Li
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|