1
|
Shakeel F, Al-Shdefat R, Altamimi MA, Ahmad U. Solubility and thermodynamic analysis of aceclofenac in different {Carbitol + water} mixtures at various temperatures. BMC Chem 2024; 18:168. [PMID: 39267153 PMCID: PMC11397009 DOI: 10.1186/s13065-024-01287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
The solubility and thermodynamic properties of the anti-inflammatory drug aceclofenace (ACF) have been assessed in a range of {2-(2-ethoxyethoxy)ethanol (Carbitol) + water} combinations at temperatures ranging from 298.2 K to 318.2 K and atmospheric pressure of 101.1 kPa. The shake flask method was employed to determine the solubility of ACF, and various models including "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models" were used to validate the results. The computational models demonstrated a strong correlation with the experimental ACF solubility data, as indicated by the error values of < 3.0%. In the compositions of {Carbitol + water}, the ACF mole fraction solubility was enhanced by temperature and Carbitol mass fraction. The solubility of ACF in mole fraction was found to be lowest in pure water (1.07 × 10- 6 at 298.2 K), and highest in pure Carbitol (1.04 × 10- 1 at 318.2 K). Based on the positive values of the calculated thermodynamic parameters, the dissolution of ACF was determined to be "endothermic and entropy-driven" in all of the {Carbitol + water} solutions that were studied. It was also observed that enthalpy controls the solvation of ACF in solutions containing {Carbitol + water}. ACF-Carbitol had the strongest molecular interactions in contrast to ACF-water. Based on the results of this study, Carbitol holds significant potential for enhancing the solubility of ACF in water.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Ramadan Al-Shdefat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, P.O. Box 733, Irbid, 21110, Jordan
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Usama Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
2
|
Kadir NHA, Murugan N, Khan AA, Sandrasegaran A, Khan AU, Alam M. Evaluation of the cytotoxicity, antioxidant activity, and molecular docking of biogenic zinc oxide nanoparticles derived from pumpkin seeds. Microsc Res Tech 2024; 87:602-615. [PMID: 38018343 DOI: 10.1002/jemt.24437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023]
Abstract
This study aimed to investigate the characterization of zinc oxide nanoparticles (ZnONPs) produced from Cucurbita pepo L. (pumpkin seeds) and their selective cytotoxic effectiveness on human colon cancer cells (HCT 116) and African Green Monkey Kidney, Vero cells. The study also investigated the antioxidant activity of ZnONPs. The study also examined ZnONPs' antioxidant properties. This was motivated by the limited research on the comparative cytotoxic effects of ZnO NPs on normal and HCT116 cells. The ZnO NPs were characterized using Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Transmission Electron Microscope/Selected Area Electron Diffraction (TEM/SAED), and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) for determination of chemical fingerprinting, heat stability, size, and morphology of the elements, respectively. Based on the results, ZnO NPs from pumpkins were found to be less than 5 μm and agglomerates in nature. Furthermore, the ZnO NPs fingerprinting and SEM-EDX element analysis were similar to previous literature, suggesting the sample was proven as ZnO NPs. The ZnO NPs also stable at a temperature of 380°C indicating that the green material is quite robust at 60-400°C. The cell viability of Vero cells and HCT 116 cell line were measured at two different time points (24 and 48 h) to assess the cytotoxicity effects of ZnO NP on these cells using AlamarBlue assay. Cytotoxic results have shown that ZnO NPs did not inhibit Vero cells but were slightly toxic to cancer cells, with a dose-response curve IC50 = ~409.7 μg/mL. This green synthesis of ZnO NPs was found to be non-toxic to normal cells but has a slight cytotoxicity effect on HCT 116 cells. A theoretical study used molecular docking to investigate nanoparticle interaction with cyclin-dependent kinase 2 (CDK2), exploring its mechanism in inhibiting CDK2's role in cancer. Further study should be carried out to determine suitable concentrations for cytotoxicity studies. Additionally, DPPH has a significant antioxidant capacity, with an IC50 of 142.857 μg/mL. RESEARCH HIGHLIGHTS: Pumpkin seed extracts facilitated a rapid, high-yielding, and environmentally friendly synthesis of ZnO nanoparticles. Spectrophotometric analysis was used to investigate the optical properties, scalability, size, shape, dispersity, and stability of ZnO NPs. The cytotoxicity of ZnO NPs on Vero and HCT 116 cells was assessed, showing no inhibition of Vero cells and cytotoxicity of cancer cells. The DPPH assay was also used to investigate the antioxidant potential of biogenic nanoparticles. A molecular docking study was performed to investigate the interaction of ZnO NPs with CDK2 and to explore the mechanism by which they inhibit CDK2's role in cancer.
Collapse
Affiliation(s)
- Nurul Huda Abd Kadir
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Navindran Murugan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Azhar U Khan
- Department of Chemistry, School of Life and Basic Sciences, SIILAS Campus, Jaipur National University, Jaipur, India
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University Wise, Gyeongju-si, Gyeongbuk, South Korea
| |
Collapse
|
3
|
Dong Q, Yu S, Wang X, Ding S, Li E, Cai Y, Xue F. Solubility Measurement and Correlation of Itraconazole Hydroxy Isobutyltriazolone in Four Kinds of Binary Solvent Mixtures with Temperature from 283.15 to 323.15 K. ACS OMEGA 2023; 8:39390-39400. [PMID: 37901582 PMCID: PMC10601064 DOI: 10.1021/acsomega.3c04987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 10/31/2023]
Abstract
The solubility of itraconazole hydroxy isobutyltriazolone (IHI) in four commonly used binary solvent mixtures of N,N-dimethylformamide (DMF) + water, DMF + ethanol, tetrahydrofuran (THF) + water, and THF + ethanol was determined with gravimetric method at temperatures ranging from 283.15 to 323.15 K under atmospheric pressure. The solubility of IHI in all selected solvents increases with the increase of temperature. The maximum solubility of IHI exists in the solvent of DMF + ethanol (0.06523 mol·mol-1, x20 = 0.7, T = 323.15 K), while the minimum solubility exists in DMF + water (0.0003723 mol·mol-1, x20 = 0.3, T = 283.15 K). There is a co-solvency phenomenon in the mixed solvents of DMF+ ethanol, THF + water, and THF + ethanol. Four thermodynamic models, including the modified Apelblat model, the Yaws model, the Sun model, and the modified Jouyban-Acree model, were selected to fit the solubility data of IHI. All the RAD values are less than 0.0484, and RMSD values are not more than 0.001319. The Yaws model and the modified Apelblat model fit the solubility data of IHI better than the other two models. All the selected four models can fit the solubility data of IHI well.
Collapse
Affiliation(s)
- Qi Dong
- School of Material
Science and Engineering, Shandong Jianzhu
University, Jinan 250101, P. R. China
- School of Pharmaceutical Sciences (Shandong Analysis and Test Center), Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250014, P. R. China
| | - Shuai Yu
- School of Pharmaceutical Sciences (Shandong Analysis and Test Center), Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250014, P. R. China
| | - Xingzhu Wang
- School of Pharmaceutical Sciences (Shandong Analysis and Test Center), Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250014, P. R. China
| | - Shangzhi Ding
- School of Pharmaceutical Sciences (Shandong Analysis and Test Center), Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250014, P. R. China
| | - Enxia Li
- School of Pharmaceutical Sciences (Shandong Analysis and Test Center), Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250014, P. R. China
| | - Yuanxing Cai
- School of Material
Science and Engineering, Shandong Jianzhu
University, Jinan 250101, P. R. China
| | - Fumin Xue
- School of Pharmaceutical Sciences (Shandong Analysis and Test Center), Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250014, P. R. China
| |
Collapse
|
4
|
Shakeel F, Haq N, Alshehri S, Alenazi M, Alwhaibi A, Alsarra IA. Solubility and Thermodynamic Analysis of Isotretinoin in Different (DMSO + Water) Mixtures. Molecules 2023; 28:7110. [PMID: 37894589 PMCID: PMC10609013 DOI: 10.3390/molecules28207110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The solubility and solution thermodynamics of isotretinoin (ITN) (3) in numerous {dimethyl sulfoxide (DMSO) (1) + water (H2O) (2)} combinations were studied at 298.2-318.2 K under fixed atmospheric pressure of 101.1 kPa. A shake flask methodology was used to determine ITN solubility, and correlations were made using the "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models". In mixtures of {(DMSO (1) + H2O (2)}, the solubility of ITN in mole fractions was enhanced with the temperature and DMSO mass fraction. The mole fraction solubility of ITN was highest in neat DMSO (1.02 × 10-1 at 318.2 K) and lowest in pure H2O (3.14 × 10-7 at 298.2 K). The output of computational models revealed good relationships between the solubility data from the experiments. The dissolution of ITN was "endothermic and entropy-driven" in all of the {(DMSO (1) + H2O (2)} mixtures examined, according to the positive values of measured thermodynamic parameters. Enthalpy was discovered to be the driving force behind ITN solvation in {(DMSO (1) + H2O (2)} combinations. ITN-DMSO displayed the highest molecular interactions when compared to ITN-H2O. The outcomes of this study suggest that DMSO has a great potential for solubilizing ITN in H2O.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (N.H.); (S.A.); (I.A.A.)
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (N.H.); (S.A.); (I.A.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (N.H.); (S.A.); (I.A.A.)
| | - Miteb Alenazi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.); (A.A.)
| | - Abdulrahman Alwhaibi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.); (A.A.)
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (N.H.); (S.A.); (I.A.A.)
| |
Collapse
|
5
|
Bhola R, Ghumara R, Patel C, Parsana V, Bhatt K, Kundariya D, Vaghani H. Solubility and Thermodynamics Profile of Benzethonium Chloride in Pure and Binary Solvents at Different Temperatures. ACS OMEGA 2023; 8:14430-14439. [PMID: 37125112 PMCID: PMC10134217 DOI: 10.1021/acsomega.2c07877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Benzethonium chloride (BTC) has various applications in several industries. The solubility and solution thermodynamic properties of BTC were measured. The solubility of BTC in methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, water, dimethyl sulfoxide, acetic acid, and dimethyl formamide neat solvents and methanol + water and ethanol + water binary solvents at 298.15-318.15 K over an atmospheric pressure was measured. The solubility data of BTC is positively related to the temperature in all selected solvents. The solubility data was fitted by the Apelblat model, λh model, Yaws model, Van't Hoff equation, CNIBS/R-K model, and modified Jouyban-Acree equation. The RMSD and ARD were chosen to evaluate the fitting of each model. The dissolution thermodynamic parameters, enthalpy of the solution, entropy of the solution, and Gibbs energy of the solution were calculated. The solubility data and dissolution thermodynamic parameters of BTC will provide significant guidance for purification, crystallization, and separation in various areas.
Collapse
Affiliation(s)
- Ravibhai Bhola
- Department
of Chemistry, Ganpat University, Kherva 384012, Gujarat, India
| | - Rizwan Ghumara
- Department
of Chemistry, Tolani College of Arts and
Sciences, Adipur 370205, Gujarat, India
| | - Chirag Patel
- Department
of Chemistry, Krantiguru Shyamji Krishna
Verma Kachchh University, Bhuj 370001, Gujarat, India
| | - Vyomesh Parsana
- Chemical
Engineering Department, VVP Engineering College, Gujarat Technological University, Rajkot 360005, Gujarat, India
| | - Keyur Bhatt
- Department
of Chemistry, Ganpat University, Kherva 384012, Gujarat, India
- ,
| | - Dinesh Kundariya
- Department
of Chemistry, Tolani College of Arts and
Sciences, Adipur 370205, Gujarat, India
| | - Hasit Vaghani
- Department
of Chemistry, Ganpat University, Kherva 384012, Gujarat, India
| |
Collapse
|
6
|
Guo P, Ma X, Ni C, Pang Z, Yang Z. Measurement and thermodynamic analysis of the solubility of iodine-containing organoaluminum supported by nitrogenous ligands in pure solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Shakeel F, Haq N, Mahdi WA, Alsarra IA, Alshehri S, Alenazi M, Alwhaibi A. Solubilization and Thermodynamic Analysis of Isotretinoin in Eleven Different Green Solvents at Different Temperatures. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8274. [PMID: 36431759 PMCID: PMC9692401 DOI: 10.3390/ma15228274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The solubilization and thermodynamic analysis of isotretinoin (ITN) in eleven distinct green solvents, such as water, methyl alcohol (MeOH), ethyl alcohol (EtOH), 1-butyl alcohol (1-BuOH), 2-butyl alcohol (2-BuOH), ethane-1,2-diol (EG), propane-1,2-diol (PG), polyethylene glycol-400 (PEG-400), ethyl acetate (EA), Transcutol-HP (THP), and dimethyl sulfoxide (DMSO) was studied at several temperatures and a fixed atmospheric pressure. The equilibrium approach was used to measure the solubility of ITN, and the Apelblat, van’t Hoff, and Buchowski−Ksiazczak λh models were used to correlate the results. The overall uncertainties were less than 5.0% for all the models examined. The highest ITN mole fraction solubility was achieved as 1.01 × 10−1 in DMSO at 318.2 K; however, the least was achieved as 3.16 × 10−7 in water at 298.2 K. ITN solubility was found to be enhanced with an increase in temperature and the order in which it was soluble in several green solvents at 318.2 K was as follows: DMSO (1.01 × 10−1) > EA (1.73 × 10−2) > PEG-400 (1.66 × 10−2) > THP (1.59 × 10−2) > 2-BuOH (6.32 × 10−3) > 1-BuOH (5.88 × 10−3) > PG (4.83 × 10−3) > EtOH (3.51 × 10−3) > EG (3.49 × 10−3) > MeOH (2.10 × 10−3) > water (1.38 × 10−6). ITN−DMSO showed the strongest solute−solvent interactions when compared to the other ITN and green solvent combinations. According to thermodynamic studies, ITN dissolution was endothermic and entropy-driven in all of the green solvents tested. The obtained outcomes suggested that DMSO appears to be the best green solvent for ITN solubilization.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Miteb Alenazi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alwhaibi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Alghaith AF, Mahdi WA, Haq N, Alshehri S, Shakeel F. Solubility and Thermodynamic Properties of Febuxostat in Various (PEG 400 + Water) Mixtures. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7318. [PMID: 36295383 PMCID: PMC9607168 DOI: 10.3390/ma15207318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The solubility of the poorly soluble medicine febuxostat (FXT) (3) in various {polyethylene glycol 400 (PEG 400) (1) + water (H2O) (2)} mixtures has been examined at 298.2-318.2 K and 101.1 kPa. FXT solubility was measured using an isothermal method and correlated with "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models". FXT mole fraction solubility was enhanced via an increase in temperature and PEG 400 mass fraction in {(PEG 400 (1) + H2O (2)} mixtures. Neat PEG 400 showed the highest mole fraction solubility of FXT (3.11 × 10-2 at 318.2 K), while neat H2O had the lowest (1.91 × 10-7 at 298.2 K). The overall error value was less than 6.0% for each computational model, indicating good correlations. Based on the positive values of apparent standard enthalpies (46.72-70.30 kJ mol-1) and apparent standard entropies (106.4-118.5 J mol-1 K-1), the dissolution of FXT was "endothermic and entropy-driven" in all {PEG 400 (1) + H2O (2)} mixtures examined. The main mechanism for FXT solvation in {PEG 400 (1) + H2O (2)} mixtures was discovered to be an enthalpy-driven process. In comparison to FXT-H2O, FXT-PEG 400 showed the strongest molecular interactions. In conclusion, these results suggested that PEG 400 has considerable potential for solubilizing a poorly soluble FXT in H2O.
Collapse
|