1
|
Asano T, Tanigaki T, Ikeda K, Ono M, Yokoi H, Kobayashi Y, Kozuma K, Tanaka N, Kawase Y, Matsuo H. Consensus document on the clinical application of invasive functional coronary angiography from the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc Interv Ther 2024; 39:109-125. [PMID: 38367157 PMCID: PMC10940478 DOI: 10.1007/s12928-024-00988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Invasive functional coronary angiography (FCA), an angiography-derived physiological index of the functional significance of coronary obstruction, is a novel physiological assessment tool for coronary obstruction that does not require the utilization of a pressure wire. This technology enables operators to rapidly evaluate the functional relevance of coronary stenoses during and even after angiography while reducing the burden of cost and complication risks related to the pressure wire. FCA can be used for treatment decision-making for revascularization, strategy planning for percutaneous coronary intervention, and procedure optimization. Currently, various software-computing FCAs are available worldwide, with unique features in their computation algorithms and functions. With the emerging application of this novel technology in various clinical scenarios, the Japanese Association of Cardiovascular Intervention and Therapeutics task force was created to outline expert consensus on the clinical use of FCA. This consensus document advocates optimal clinical applications of FCA according to currently available evidence while summarizing the concept, history, limitations, and future perspectives of FCA along with globally available software.
Collapse
Affiliation(s)
- Taku Asano
- Department of Cardiovascular Medicine, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, P.O. Box 104-8560, Tokyo, Japan.
| | - Toru Tanigaki
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Kazumasa Ikeda
- Department of Cardiology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Masafumi Ono
- Department of Cardiovascular Medicine, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, P.O. Box 104-8560, Tokyo, Japan
| | - Hiroyoshi Yokoi
- Department of Cardiovascular Medicine, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University, Chiba, Japan
| | - Ken Kozuma
- Department of Cardiology, Teikyo University, Tokyo, Japan
| | - Nobuhiro Tanaka
- Department of Cardiology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Yoshiaki Kawase
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| |
Collapse
|
2
|
Park J, Kweon J, Kim YI, Back I, Chae J, Roh JH, Kang DY, Lee PH, Ahn JM, Kang SJ, Park DW, Lee SW, Lee CW, Park SW, Park SJ, Kim YH. Selective ensemble methods for deep learning segmentation of major vessels in invasive coronary angiography. Med Phys 2023; 50:7822-7839. [PMID: 37310802 DOI: 10.1002/mp.16554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 03/29/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Invasive coronary angiography (ICA) is a primary imaging modality that visualizes the lumen area of coronary arteries for diagnosis and interventional guidance. In the current practice of quantitative coronary analysis (QCA), semi-automatic segmentation tools require labor-intensive and time-consuming manual correction, limiting their application in the catheterization room. PURPOSE This study aims to propose rank-based selective ensemble methods that improve the segmentation performance and reduce morphological errors that limit fully automated quantification of coronary artery using deep-learning segmentation of ICA. METHODS Two selective ensemble methods proposed in this work integrated the weighted ensemble approach with per-image quality estimation. The segmentation outcomes from five base models with different loss functions were ranked either by mask morphology or estimated dice similarity coefficient (DSC). The final output was determined by imposing different weights according to the ranks. The ranking criteria based on mask morphology were formulated from empirical insight to avoid frequent types of segmentation errors (MSEN), while the estimation of DSCs was performed by comparing the pseudo-ground truth generated from a meta-learner (ESEN). Five-fold cross-validation was performed with the internal dataset of 7426 coronary angiograms from 2924 patients, and prediction model was externally validated with 556 images of 226 patients. RESULTS The selective ensemble methods improved the segmentation performance with DSCs up to 93.07% and provided a better delineation of coronary lesion with local DSCs of up to 93.93%, outperforming all individual models. Proposed methods also minimized the chances of mask disconnection in the most narrowed regions to 2.10%. The robustness of the proposed methods was also evident in the external validation. Inference time for major vessel segmentation was approximately one-sixth of a second. CONCLUSION Proposed methods successfully reduced morphological errors in the predicted masks and were able to enhance the robustness of the automatic segmentation. The results suggest better applicability of real-time QCA-based diagnostic methods in routine clinical settings.
Collapse
Affiliation(s)
- Jeeone Park
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jihoon Kweon
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young In Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Inwook Back
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| | - Jihye Chae
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| | - Jae-Hyung Roh
- Department of Cardiology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Do-Yoon Kang
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| | - Pil Hyung Lee
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| | - Jung-Min Ahn
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| | - Soo-Jin Kang
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| | - Duk-Woo Park
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| | - Seung-Whan Lee
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| | - Cheol Whan Lee
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| | - Seong-Wook Park
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| | - Seung-Jung Park
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| | - Young-Hak Kim
- Division of Cardiology, Department of Internal Medicine, Medical Center, University of Ulsan College of Medicine, Asan, Seoul, South Korea
| |
Collapse
|
3
|
Terentes-Printzios D, Oikonomou D, Gkini KP, Gardikioti V, Aznaouridis K, Dima I, Tsioufis K, Vlachopoulos C. Angiography-based estimation of coronary physiology: A frame is worth a thousand words. Trends Cardiovasc Med 2021; 32:366-374. [PMID: 34329733 DOI: 10.1016/j.tcm.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/04/2021] [Accepted: 07/21/2021] [Indexed: 02/04/2023]
Abstract
Cumulative evidence has shown that coronary revascularization should be guided by functional significance of coronary lesions. Fractional flow reserve (FFR) is the gold standard for assessment of hemodynamic significance of coronary stenosis and FFR-guided percutaneous coronary intervention has improved clinical outcomes in patients with coronary artery disease. However, limitations of FFR such as increased operational time and cost, requirement of pressure wire and adenosine and technical difficulties have led to significant underutilization of the method in clinical practice. In the last few years, several methods of FFR estimation based on coronary angiography images have emerged to overcome invasive FFR limitations. The common elements of the novel indices include a 3D anatomical reconstruction of coronary vessels by angiographic projections and various approaches to fluid dynamics computation. Angiography-derived FFR methods have shown high diagnostic accuracy compared to invasive FFR. Although there are promising results regarding their prognostic role, large randomized trials evaluating clinical outcomes are lacking. The aim of this review is to present currently available angiography-derived FFR indices and highlight their differences, advantages, disadvantages and potential clinical implications.
Collapse
Affiliation(s)
- Dimitrios Terentes-Printzios
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece.
| | - Dimitrios Oikonomou
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Konstantia-Paraskevi Gkini
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Vasiliki Gardikioti
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Konstantinos Aznaouridis
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Ioanna Dima
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Charalambos Vlachopoulos
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| |
Collapse
|