1
|
Petersen MC, Smith GI, Palacios HH, Farabi SS, Yoshino M, Yoshino J, Cho K, Davila-Roman VG, Shankaran M, Barve RA, Yu J, Stern JH, Patterson BW, Hellerstein MK, Shulman GI, Patti GJ, Klein S. Cardiometabolic characteristics of people with metabolically healthy and unhealthy obesity. Cell Metab 2024; 36:745-761.e5. [PMID: 38569471 PMCID: PMC11025492 DOI: 10.1016/j.cmet.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).
Collapse
Affiliation(s)
- Max C Petersen
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA; Division of Endocrinology, Metabolism, and Lipid Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Gordon I Smith
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA
| | - Hector H Palacios
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah S Farabi
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA; Goldfarb School of Nursing at Barnes-Jewish College, St. Louis, MO, USA
| | - Mihoko Yoshino
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA; Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Victor G Davila-Roman
- Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Ruteja A Barve
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Jinsheng Yu
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Jennifer H Stern
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Huang F, Ji X, Wang Z, Yin Y, Fan L, Li J, Zhou Z, Li X. Fat-to-muscle ratio is associated with insulin resistance and cardiometabolic disorders in adults with type 1 diabetes mellitus. Diabetes Obes Metab 2023; 25:3181-3191. [PMID: 37455673 DOI: 10.1111/dom.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
AIMS This study aimed to investigate the correlation of the fat-to-muscle ratio (FMR) with insulin resistance (IR) and cardiometabolic disorders (CMD) in patients with type 1 diabetes mellitus (T1DM). MATERIALS AND METHODS We retrospectively recruited 420 adults with T1DM [52.6% men, median age 32.4 (24.5, 43.0) years]. Body composition was assessed by bioelectrical impedance analysis and FMR was calculated. The characteristics of the overall participants were compared between tertiles of FMR. Logistic regression analyses were performed to assess the association of FMR tertiles with IR and cardiometabolic risk factors. RESULTS Median age and median haemoglobin A1c of all participants were 32.4 (24.5, 43.0) years and 7.4 (6.5, 8.7)%, respectively. The prevalence of IR and CMD was 18% and 38.6%. The FMR significantly differed between men and women [0.39 (0.31, 0.53) vs. 0.74 (0.63, 0.92), respectively, p < .001]. The proportion of IR and CMD gradually increased as the FMR increased. The multivariable-adjusted odd ratios for IR and CMD in FMR tertile 3 compared with tertile 1 were 4.8 [95% confidence interval (CI): (1.9, 12.1)] and 9.7 (95% CI: 4.2, 22.3), respectively, in men. For women, the corresponding odd ratios were 4.0 (95% CI: 1.2, 12.9) for IR and 5.8 (95% CI: 2.4, 13.6) for CMD. CONCLUSIONS FMR is associated with IR and CMD in adults with T1DM and could be used as a promising parameter for targeting treatment in T1DM.
Collapse
Affiliation(s)
- Fansu Huang
- Department of Nutrition, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaolin Ji
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yixuan Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Fan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|