1
|
Jaff S, Zeraattalab-Motlagh S, Amiri Khosroshahi R, Gubari M, Mohammadi H, Djafarian K. The effect of selenium therapy in critically ill patients: an umbrella review of systematic reviews and meta-analysis of randomized controlled trials. Eur J Med Res 2023; 28:104. [PMID: 36849891 PMCID: PMC9972714 DOI: 10.1186/s40001-023-01075-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/19/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Selenium is an essential nutrient with antioxidant, anti-inflammatory, and immuno-regulatory properties. Studies have displayed that in critically ill patients, selenium supplementation may be a potentially promising adjunctive therapy. OBJECTIVE We aimed to present an overview of the effects of selenium supplementation in adult critically ill patients based on published systematic reviews and meta-analyses (SRMAs) of randomized controlled trials (RCTs). METHODS A literature search in three electronic databases, PubMed, Scopus, and Web of Science, was performed to find eligible SRMAs until July 2022. For each outcome, the risk ratios (RRs) or mean differences (MDs) and 95% confidence intervals (CIs) were recalculated using either random or fixed effect models. The methodological quality and quality of evidence of the SRMAs were assessed by applying "A Measurement Tool to Assess Systematic Reviews" (AMSTAR2) and Grading of Recommendations Assessment, Development, and Evaluation(GRADE) tools, respectively. RESULTS We included 17 meta-analyses containing 24 RCTs based on inclusion criteria. Selenium supplementation can reduce the incidence of mortality (RR: 0.83, 95% CI 0.71, 0.98, P = 0.024) and incidence of acute renal failure (RR: 0.67, 95% CI 0.46, 0.98, P: 0.038) significantly; however, the certainty of evidence was low. Moreover, with moderate to very low certainty of evidence, no significant effects were found for risk of infection (RR: 0.92, 95% CI 0.80, 1.05, P: 0.207), pneumonia (RR: 1.11, 95% CI 0.72, 1.72, P: 0.675), as well as the length of ICU (MD: 0.15, 95% CI - 1.75, 2.05, P: 0.876) and hospital stay (MD: - 0.51, 95% CI - 3.74, 2.72, P: 0.757) and days on ventilation (MD: - 0.98, 95% CI - 2.93, 0.98, P: 0.329). CONCLUSIONS With low quality of evidence, the use of selenium supplementation could improve the risk of mortality and acute renal failure, but not other outcomes in critically ill patients.
Collapse
Affiliation(s)
- Salman Jaff
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Reza Amiri Khosroshahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Mohammed Gubari
- Department of Community and Family Medicine, School of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran.
| |
Collapse
|
4
|
Bayır H, Anthonymuthu TS, Tyurina YY, Patel SJ, Amoscato AA, Lamade AM, Yang Q, Vladimirov GK, Philpott CC, Kagan VE. Achieving Life through Death: Redox Biology of Lipid Peroxidation in Ferroptosis. Cell Chem Biol 2020; 27:387-408. [PMID: 32275865 DOI: 10.1016/j.chembiol.2020.03.014] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Redox balance is essential for normal brain, hence dis-coordinated oxidative reactions leading to neuronal death, including programs of regulated death, are commonly viewed as an inevitable pathogenic penalty for acute neuro-injury and neurodegenerative diseases. Ferroptosis is one of these programs triggered by dyshomeostasis of three metabolic pillars: iron, thiols, and polyunsaturated phospholipids. This review focuses on: (1) lipid peroxidation (LPO) as the major instrument of cell demise, (2) iron as its catalytic mechanism, and (3) thiols as regulators of pro-ferroptotic signals, hydroperoxy lipids. Given the central role of LPO, we discuss the engagement of selective and specific enzymatic pathways versus random free radical chemical reactions in the context of the phospholipid substrates, their biosynthesis, intracellular location, and related oxygenating machinery as participants in ferroptotic cascades. These concepts are discussed in the light of emerging neuro-therapeutic approaches controlling intracellular production of pro-ferroptotic phospholipid signals and their non-cell-autonomous spreading, leading to ferroptosis-associated necroinflammation.
Collapse
Affiliation(s)
- Hülya Bayır
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Tamil S Anthonymuthu
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarju J Patel
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew M Lamade
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Qin Yang
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Georgy K Vladimirov
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Caroline C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Valerian E Kagan
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| |
Collapse
|
7
|
Geocadin RG, Wijdicks E, Armstrong MJ, Damian M, Mayer SA, Ornato JP, Rabinstein A, Suarez JI, Torbey MT, Dubinsky RM, Lazarou J. Practice guideline summary: Reducing brain injury following cardiopulmonary resuscitation: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2017; 88:2141-2149. [PMID: 28490655 DOI: 10.1212/wnl.0000000000003966] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/01/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the evidence and make evidence-based recommendations for acute interventions to reduce brain injury in adult patients who are comatose after successful cardiopulmonary resuscitation. METHODS Published literature from 1966 to August 29, 2016, was reviewed with evidence-based classification of relevant articles. RESULTS AND RECOMMENDATIONS For patients who are comatose in whom the initial cardiac rhythm is either pulseless ventricular tachycardia (VT) or ventricular fibrillation (VF) after out-of-hospital cardiac arrest (OHCA), therapeutic hypothermia (TH; 32-34°C for 24 hours) is highly likely to be effective in improving functional neurologic outcome and survival compared with non-TH and should be offered (Level A). For patients who are comatose in whom the initial cardiac rhythm is either VT/VF or asystole/pulseless electrical activity (PEA) after OHCA, targeted temperature management (36°C for 24 hours, followed by 8 hours of rewarming to 37°C, and temperature maintenance below 37.5°C until 72 hours) is likely as effective as TH and is an acceptable alternative (Level B). For patients who are comatose with an initial rhythm of PEA/asystole, TH possibly improves survival and functional neurologic outcome at discharge vs standard care and may be offered (Level C). Prehospital cooling as an adjunct to TH is highly likely to be ineffective in further improving neurologic outcome and survival and should not be offered (Level A). Other pharmacologic and nonpharmacologic strategies (applied with or without concomitant TH) are also reviewed.
Collapse
Affiliation(s)
- Romergryko G Geocadin
- From the Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (E.W., A.R.), Mayo Clinic, Rochester, MN; Department of Neurology (M.J.A.), University of Florida-McKnight Brain Institute, Gainesville; Department of Neurology and Neurocritical Care Unit (M.D.), Cambridge University Hospitals; The Ipswich Hospital (M.D.), Cambridge, UK; Departments of Neurology and Neurosurgery (S.A.M.), Mount Sinai-Icahn School of Medicine, New York, NY; Departments of Emergency Medicine and Internal Medicine (Cardiology) (J.P.O.), Virginia Commonwealth University College of Medicine, Richmond; Department of Neurology (J.I.S.), Baylor College of Medicine, Houston, TX; Department of Neurology and Neurosurgery (M.T.T.), Ohio State University, Columbus; Department of Neurology (R.M.D.), Kansas University Medical Center, Kansas City; and Department of Neurology (J.L.), University of Toronto, Canada
| | - Eelco Wijdicks
- From the Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (E.W., A.R.), Mayo Clinic, Rochester, MN; Department of Neurology (M.J.A.), University of Florida-McKnight Brain Institute, Gainesville; Department of Neurology and Neurocritical Care Unit (M.D.), Cambridge University Hospitals; The Ipswich Hospital (M.D.), Cambridge, UK; Departments of Neurology and Neurosurgery (S.A.M.), Mount Sinai-Icahn School of Medicine, New York, NY; Departments of Emergency Medicine and Internal Medicine (Cardiology) (J.P.O.), Virginia Commonwealth University College of Medicine, Richmond; Department of Neurology (J.I.S.), Baylor College of Medicine, Houston, TX; Department of Neurology and Neurosurgery (M.T.T.), Ohio State University, Columbus; Department of Neurology (R.M.D.), Kansas University Medical Center, Kansas City; and Department of Neurology (J.L.), University of Toronto, Canada
| | - Melissa J Armstrong
- From the Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (E.W., A.R.), Mayo Clinic, Rochester, MN; Department of Neurology (M.J.A.), University of Florida-McKnight Brain Institute, Gainesville; Department of Neurology and Neurocritical Care Unit (M.D.), Cambridge University Hospitals; The Ipswich Hospital (M.D.), Cambridge, UK; Departments of Neurology and Neurosurgery (S.A.M.), Mount Sinai-Icahn School of Medicine, New York, NY; Departments of Emergency Medicine and Internal Medicine (Cardiology) (J.P.O.), Virginia Commonwealth University College of Medicine, Richmond; Department of Neurology (J.I.S.), Baylor College of Medicine, Houston, TX; Department of Neurology and Neurosurgery (M.T.T.), Ohio State University, Columbus; Department of Neurology (R.M.D.), Kansas University Medical Center, Kansas City; and Department of Neurology (J.L.), University of Toronto, Canada
| | - Maxwell Damian
- From the Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (E.W., A.R.), Mayo Clinic, Rochester, MN; Department of Neurology (M.J.A.), University of Florida-McKnight Brain Institute, Gainesville; Department of Neurology and Neurocritical Care Unit (M.D.), Cambridge University Hospitals; The Ipswich Hospital (M.D.), Cambridge, UK; Departments of Neurology and Neurosurgery (S.A.M.), Mount Sinai-Icahn School of Medicine, New York, NY; Departments of Emergency Medicine and Internal Medicine (Cardiology) (J.P.O.), Virginia Commonwealth University College of Medicine, Richmond; Department of Neurology (J.I.S.), Baylor College of Medicine, Houston, TX; Department of Neurology and Neurosurgery (M.T.T.), Ohio State University, Columbus; Department of Neurology (R.M.D.), Kansas University Medical Center, Kansas City; and Department of Neurology (J.L.), University of Toronto, Canada
| | - Stephan A Mayer
- From the Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (E.W., A.R.), Mayo Clinic, Rochester, MN; Department of Neurology (M.J.A.), University of Florida-McKnight Brain Institute, Gainesville; Department of Neurology and Neurocritical Care Unit (M.D.), Cambridge University Hospitals; The Ipswich Hospital (M.D.), Cambridge, UK; Departments of Neurology and Neurosurgery (S.A.M.), Mount Sinai-Icahn School of Medicine, New York, NY; Departments of Emergency Medicine and Internal Medicine (Cardiology) (J.P.O.), Virginia Commonwealth University College of Medicine, Richmond; Department of Neurology (J.I.S.), Baylor College of Medicine, Houston, TX; Department of Neurology and Neurosurgery (M.T.T.), Ohio State University, Columbus; Department of Neurology (R.M.D.), Kansas University Medical Center, Kansas City; and Department of Neurology (J.L.), University of Toronto, Canada
| | - Joseph P Ornato
- From the Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (E.W., A.R.), Mayo Clinic, Rochester, MN; Department of Neurology (M.J.A.), University of Florida-McKnight Brain Institute, Gainesville; Department of Neurology and Neurocritical Care Unit (M.D.), Cambridge University Hospitals; The Ipswich Hospital (M.D.), Cambridge, UK; Departments of Neurology and Neurosurgery (S.A.M.), Mount Sinai-Icahn School of Medicine, New York, NY; Departments of Emergency Medicine and Internal Medicine (Cardiology) (J.P.O.), Virginia Commonwealth University College of Medicine, Richmond; Department of Neurology (J.I.S.), Baylor College of Medicine, Houston, TX; Department of Neurology and Neurosurgery (M.T.T.), Ohio State University, Columbus; Department of Neurology (R.M.D.), Kansas University Medical Center, Kansas City; and Department of Neurology (J.L.), University of Toronto, Canada
| | - Alejandro Rabinstein
- From the Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (E.W., A.R.), Mayo Clinic, Rochester, MN; Department of Neurology (M.J.A.), University of Florida-McKnight Brain Institute, Gainesville; Department of Neurology and Neurocritical Care Unit (M.D.), Cambridge University Hospitals; The Ipswich Hospital (M.D.), Cambridge, UK; Departments of Neurology and Neurosurgery (S.A.M.), Mount Sinai-Icahn School of Medicine, New York, NY; Departments of Emergency Medicine and Internal Medicine (Cardiology) (J.P.O.), Virginia Commonwealth University College of Medicine, Richmond; Department of Neurology (J.I.S.), Baylor College of Medicine, Houston, TX; Department of Neurology and Neurosurgery (M.T.T.), Ohio State University, Columbus; Department of Neurology (R.M.D.), Kansas University Medical Center, Kansas City; and Department of Neurology (J.L.), University of Toronto, Canada
| | - José I Suarez
- From the Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (E.W., A.R.), Mayo Clinic, Rochester, MN; Department of Neurology (M.J.A.), University of Florida-McKnight Brain Institute, Gainesville; Department of Neurology and Neurocritical Care Unit (M.D.), Cambridge University Hospitals; The Ipswich Hospital (M.D.), Cambridge, UK; Departments of Neurology and Neurosurgery (S.A.M.), Mount Sinai-Icahn School of Medicine, New York, NY; Departments of Emergency Medicine and Internal Medicine (Cardiology) (J.P.O.), Virginia Commonwealth University College of Medicine, Richmond; Department of Neurology (J.I.S.), Baylor College of Medicine, Houston, TX; Department of Neurology and Neurosurgery (M.T.T.), Ohio State University, Columbus; Department of Neurology (R.M.D.), Kansas University Medical Center, Kansas City; and Department of Neurology (J.L.), University of Toronto, Canada
| | - Michel T Torbey
- From the Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (E.W., A.R.), Mayo Clinic, Rochester, MN; Department of Neurology (M.J.A.), University of Florida-McKnight Brain Institute, Gainesville; Department of Neurology and Neurocritical Care Unit (M.D.), Cambridge University Hospitals; The Ipswich Hospital (M.D.), Cambridge, UK; Departments of Neurology and Neurosurgery (S.A.M.), Mount Sinai-Icahn School of Medicine, New York, NY; Departments of Emergency Medicine and Internal Medicine (Cardiology) (J.P.O.), Virginia Commonwealth University College of Medicine, Richmond; Department of Neurology (J.I.S.), Baylor College of Medicine, Houston, TX; Department of Neurology and Neurosurgery (M.T.T.), Ohio State University, Columbus; Department of Neurology (R.M.D.), Kansas University Medical Center, Kansas City; and Department of Neurology (J.L.), University of Toronto, Canada
| | - Richard M Dubinsky
- From the Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (E.W., A.R.), Mayo Clinic, Rochester, MN; Department of Neurology (M.J.A.), University of Florida-McKnight Brain Institute, Gainesville; Department of Neurology and Neurocritical Care Unit (M.D.), Cambridge University Hospitals; The Ipswich Hospital (M.D.), Cambridge, UK; Departments of Neurology and Neurosurgery (S.A.M.), Mount Sinai-Icahn School of Medicine, New York, NY; Departments of Emergency Medicine and Internal Medicine (Cardiology) (J.P.O.), Virginia Commonwealth University College of Medicine, Richmond; Department of Neurology (J.I.S.), Baylor College of Medicine, Houston, TX; Department of Neurology and Neurosurgery (M.T.T.), Ohio State University, Columbus; Department of Neurology (R.M.D.), Kansas University Medical Center, Kansas City; and Department of Neurology (J.L.), University of Toronto, Canada
| | - Jason Lazarou
- From the Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery (R.G.G.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (E.W., A.R.), Mayo Clinic, Rochester, MN; Department of Neurology (M.J.A.), University of Florida-McKnight Brain Institute, Gainesville; Department of Neurology and Neurocritical Care Unit (M.D.), Cambridge University Hospitals; The Ipswich Hospital (M.D.), Cambridge, UK; Departments of Neurology and Neurosurgery (S.A.M.), Mount Sinai-Icahn School of Medicine, New York, NY; Departments of Emergency Medicine and Internal Medicine (Cardiology) (J.P.O.), Virginia Commonwealth University College of Medicine, Richmond; Department of Neurology (J.I.S.), Baylor College of Medicine, Houston, TX; Department of Neurology and Neurosurgery (M.T.T.), Ohio State University, Columbus; Department of Neurology (R.M.D.), Kansas University Medical Center, Kansas City; and Department of Neurology (J.L.), University of Toronto, Canada
| |
Collapse
|