1
|
Ikeda A, Shimokawa A, Harada K, Tsukahara-Kawamura T, Huang J, Ozaki H, Uchio E. Computer Modelling Study of Volume Kinetics in Intraocular Segments Following Airbag Impact Using Finite Element Analysis. Clin Ophthalmol 2024; 18:2575-2582. [PMID: 39263254 PMCID: PMC11389705 DOI: 10.2147/opth.s479607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background We have previously studied the physiological and mechanical responses of the eye to blunt trauma in various situations using finite element analysis (FEA). In this study, we evaluated the volume kinetics of an airbag impact on the eye using FEA to sequentially determine the volume change rates of intraocular segments at various airbag deployment velocities. Methods The human eye model we created was used in simulations with the FEA program PAM-GENERISTM (Nihon ESI, Tokyo, Japan). Different airbag deployment velocities, 30, 40, 50, 60 and 70 m/s, were applied in the forward direction. The volume of the deformed eye impacted by the airbag was calculated as the integrated value of all meshes in each segment, and the decrease rate was calculated as the ratio of the decreased volume of each segment at particular timepoints to the value before the airbag impact. Results The minimum volume of the anterior chamber was 63%, 69% and 50% at 50, 60 and 70 m/s airbag impact velocity, respectively, showing a curve with a sharp decline followed by gradual recovery. In contrast to the anterior chamber, the volume of the lens recovered promptly, reaching 80-90% at the end of observation, except for the case of 60 m/s. Following the decrease, the volume increased to more than that of baseline at 60 m/s. The rate of volume change of the vitreous was distributed in a narrow range, 99.2-100.4%. Conclusion In this study, we found a large, prolonged decrease of volume in the anterior chamber, a similar large decrease followed by prompt recovery of volume in the lens, and a time-lag in the volume decrease between these tissues. These novel findings may provide an important insight into the pathophysiological mechanism of airbag ocular injuries through this further evaluation, employing a refined FEA model representing cuboidal deformation, to develop a more safe airbag system.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Asami Shimokawa
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kazuhiro Harada
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Jane Huang
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hiroaki Ozaki
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
2
|
Suzuki S, Ikeda A, Uemura T, Harada K, Takahashi R, Huang J, Tsukahara-Kawamura T, Ozaki H, Kadonosono K, Uchio E. Simulation of Changes in Tensile Strain by Airbag Impact on Eyes After Trabeculectomy by Using Finite Element Analysis. Clin Ophthalmol 2024; 18:1353-1370. [PMID: 38765458 PMCID: PMC11102099 DOI: 10.2147/opth.s459925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose We studied the kinetic phenomenon of an airbag impact on eyes after trabeculectomy using finite element analysis (FEA), a computerized method for predicting how an object reacts to real-world physical effects and showing whether an object will break, to sequentially determine the responses at various airbag deployment velocities. Methods A human eye model was used in the simulations using the FEA program PAM-GENERISTM (Nihon ESI, Tokyo, Japan). A half-thickness incised scleral flap was created on the limbus and the strength of its adhesion to the outer sclera was set at 30%, 50%, and 100%. The airbag was set to hit the surface of the post-trabeculectomy eye at various velocities in two directions: perpendicular to the corneal center or perpendicular to the scleral flap (30° gaze-down position), at initial velocities of 20, 30, 40, 50, and 60 m/s. Results When the airbag impacted at 20 m/s or 30 m/s, the strain on the cornea and sclera did not reach the mechanical threshold and globe rupture was not observed. Scleral flap lacerations were observed at 40 m/s or more in any eye position, and scleral rupture extending posteriorly from the scleral flap edge and rupture of the scleral flap resulting from extension of the corneal laceration through limbal damage were observed. Even in the case of 100% scleral flap adhesion strength, scleral flap rupture occurred at 50 m/s impact velocity in the 30° gaze-down position, whereas in eyes with 30% or 50% scleral flap adhesion strength, scleral rupture was observed at an impact velocity of 40 m/s or more in both eye positions. Conclusion An airbag impact of ≥40 m/s might induce scleral flap rupture, indicating that current airbags may induce globe rupture in the eyes after trabeculectomy. The considerable damage caused by an airbag on the eyes of short-stature patients with glaucoma who have undergone trabeculectomy might indicate the necessity of ocular protection to avoid permanent eye damage.
Collapse
Affiliation(s)
- Shuji Suzuki
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Aya Ikeda
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Takashi Uemura
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kazuhiro Harada
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Rie Takahashi
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Jane Huang
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Hiroaki Ozaki
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kazuaki Kadonosono
- Department of Ophthalmology, Yokohama City University Medical Center, Yokohama, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
3
|
Ueno T, Fujita H, Ikeda A, Harada K, Tsukahara-Kawamura T, Ozaki H, Uchio E. Finite Element Analysis of Changes in Deformation of Intraocular Segments by Airbag Impact in Eyes of Various Axial Lengths. Clin Ophthalmol 2024; 18:699-712. [PMID: 38468913 PMCID: PMC10926924 DOI: 10.2147/opth.s445253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Background We studied the kinetic phenomenon of an airbag impact on eyes with different axial lengths using finite element analysis (FEA) to sequentially determine the physical and mechanical responses of intraocular segments at various airbag deployment velocities. Methods The human eye model we created was used in simulations with the FEA program PAM-GENERISTM. The airbag was set to impact eyes with axial lengths of 21.85 mm (hyperopia), 23.85 mm (emmetropia) and 25.85 mm (myopia), at initial velocities of 20, 30, 40, 50 and 60 m/s. The deformation rate was calculated as the ratio of the length of three segments, anterior chamber, lens and vitreous, to that at the baseline from 0.2 ms to 2.0 ms after the airbag impact. Results Deformation rate of the anterior chamber was greater than that of other segments, especially in the early phase, 0.2-0.4 ms after the impact (P < 0.001), and it reached its peak, 80%, at 0.8 ms. A higher deformation rate in the anterior chamber was found in hyperopia compared with other axial length eyes in the first half period, 0.2-0.8 ms, followed by the rate in emmetropia (P < 0.001). The lens deformation rate was low, its peak ranging from 40% to 75%, and exceeded that of the anterior chamber at 1.4 ms and 1.6 ms after the impact (P < 0.01). The vitreous deformation rate was lower throughout the simulation period than that of the other segments and ranged from a negative value (elongation) in the later phase. Conclusion Airbag impact on the eyeball causes evident deformation, especially in the anterior chamber. The results obtained in this study, such as the time lag of the peak deformation between the anterior chamber and lens, suggest a clue to the pathophysiological mechanism of airbag ocular injury.
Collapse
Affiliation(s)
- Tomohiro Ueno
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hideaki Fujita
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Aya Ikeda
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kazuhiro Harada
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Hiroaki Ozaki
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
4
|
Iannucci V, Manni P, Alisi L, Mecarelli G, Lambiase A, Bruscolini A. Bilateral Angle Recession and Chronic Post-Traumatic Glaucoma: A Review of the Literature and a Case Report. Life (Basel) 2023; 13:1814. [PMID: 37763218 PMCID: PMC10532958 DOI: 10.3390/life13091814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Ocular trauma affects millions of people worldwide and is a leading cause of secondary glaucoma. Angle recession is the main cause of post-traumatic glaucoma after blunt eye trauma, and it is usually unilateral. The aim of this paper is to investigate the possible causes of angle recession with a bilateral presentation. Airbag activation during traffic accidents is a likely cause to be ruled out, along with repeated head or eye trauma, due to contact sports or a history of physical abuse. These aspects can aid in early detection, appropriate management, and improved outcomes for patients with ocular trauma. Finally, we report the case of a 75-year-old Caucasian man who developed a bilateral angle recession after an airbag impact, with advanced glaucoma in the right eye and ocular hypertension in the left eye. To our knowledge, this is the first case in the literature of chronic post-traumatic glaucoma probably caused by an airbag.
Collapse
Affiliation(s)
| | | | | | | | - Alessandro Lambiase
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (V.I.); (P.M.); (L.A.); (G.M.)
| | | |
Collapse
|
5
|
Yılmaz F, Baltacıoğlu B, Akça E, Yavuz YF. A case of retinal detachment resulting from air bag deployment. EMERGENCY CARE JOURNAL 2023. [DOI: 10.4081/ecj.2023.11039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
ABSTRACT
A motor vehicle accident (MVA) can result in death or serious injury to the driver and passengers in case the airbags are not deployed. There are, however, several reasons why an airbag can injure a passenger even when there is no accident involved. A 41-year-old female patient who suffered facial bone fractures and an retinal perforation after her air bag deflated during a minor car accident. The complaints of the patient on admission to the emergency department (ED) were facial pain, swelling and redness in the eye. Orbital CT imaging revealed fragmented fracture line displaced into the maxillary sinus at the floor of right orbit, posttraumatic changes in preorbital skin and In the right globe vitreous, an appearance thought to belong to hyperdense hemorrhage. The patient was taken to emergency operation due to corneal perforation in the right eye. All patients who present with air bag-related ocular trauma should undergo a complete ophthalmologic examination because ocular injuries that may be more serious than they initially appear.
Collapse
|
6
|
Porter AJ, Hayes R, Lee L, O'Hagan S. Driver's side curtain air bag-related globe rupture. BMJ Case Rep 2018; 2018:bcr-2017-224152. [PMID: 29866677 DOI: 10.1136/bcr-2017-224152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 35-year-old man presented after a high-speed motor vehicle accident and the driver's side curtain air bag causing blunt force trauma rupturing his right globe. The tangential force of the air bag resulted in an unusual arcuate horseshoe-shaped rupture through the lateral rectus insertion, causing avulsion of the muscle and tearing the sclera, with the apices of the tear extending anteriorly towards the limbus. Repair of the globe rupture was undertaken, and secondary vitrectomy revealed that the scleral tear had not involved the retina abutting the ora serrata. Silicone oil tamponade was used to fill the globe and the postoperative best corrected vision was 6/9. This is the first reported case of a ruptured globe caused by a side curtain air bag, resulting in a uniquely shaped arcuate scleral wound combined with lateral rectus avulsion, not associated with rhegmatogenous retinal damage, and is the first air bag-related globe rupture with scleral involvement to report a final best-corrected visual acuity better than 6/60.
Collapse
Affiliation(s)
- Ashley J Porter
- Ophthalmology Department, Cairns and Hinterland Hospital and Health Service, Cairns, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Rylan Hayes
- Ophthalmology Department, Cairns and Hinterland Hospital and Health Service, Cairns, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Lawrence Lee
- School of Medicine, University of Queensland, Herston, Queensland, Australia.,City Eye Centre, Spring Hill, Queensland, Australia
| | - Stephen O'Hagan
- Ophthalmology Department, Cairns and Hinterland Hospital and Health Service, Cairns, Queensland, Australia.,Cairns Eye and Laser Centre, Edge Hill, Queensland, Australia
| |
Collapse
|
7
|
Ogun OA, Ikyaa SY, Ogun GO. Rethinking airbag safety: airbag injury causing bilateral blindness. Middle East Afr J Ophthalmol 2014; 21:196-9. [PMID: 24791116 PMCID: PMC4005189 DOI: 10.4103/0974-9233.129777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A healthy 40-year-old man, restrained in the front passenger seat, suffered visually disabling blunt ocular trauma following spontaneous release of the passenger side air-bag module, during vehicular deceleration, without an automobile crash. Though the driver-side airbag was also released, the driver was unharmed. The passenger suffered bilateral hyphema, bilateral vitreous hemorrhage and suspected posterior scleral rupture in the left eye and also had an eyebrow laceration, from impact with the dashboard panel covering the air-bag module, which was detached by the force of airbag deployment. This is the first reported case from West Africa and the first case in which part of the airbag module detached to cause additional trauma. This report adds to the growing burden of evidence world-wide, for a review of the safety aspects of the automobile airbag. This case clearly illustrates that although airbags reduce mortality, they carry a high risk of ocular morbidity, even with seat belt restraint.
Collapse
Affiliation(s)
- Olufunmilola Abimbola Ogun
- Department of Ophthalmology, College of Medicine/University College Hospital, University of Ibadan, Ibadan, Nigeria
| | - Sewuese Yangi Ikyaa
- Department of Ophthalmology, College of Medicine/University College Hospital, University of Ibadan, Ibadan, Nigeria
| | - Gabriel Olabiyi Ogun
- Department of Pathology, College of Medicine/University College Hospital, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Abbott J, Shah P. The epidemiology and etiology of pediatric ocular trauma. Surv Ophthalmol 2014; 58:476-85. [PMID: 23969021 DOI: 10.1016/j.survophthal.2012.10.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 11/25/2022]
Abstract
Eighteen million people worldwide have uniocular blindness from traumatic injury. Injuries occur disproportionally commonly in childhood. Every year a quarter of a million children present with serious ocular trauma. For the vast majority the injury is preventable. We review the international literature that identifies high-risk circumstances.
Collapse
Affiliation(s)
- Joseph Abbott
- Moorfields Eye Hospital, University College London Partners, London, UK.
| | | |
Collapse
|
9
|
|