1
|
Wen H, Xing L, Sun K, Xiao C, Meng X, Yang J. Loganin attenuates intestinal injury in severely burned rats by regulating the toll-like receptor 4/NF-κB signaling pathway. Exp Ther Med 2020; 20:591-598. [PMID: 32537017 DOI: 10.3892/etm.2020.8725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Severe burns may lead to intestinal inflammation and oxidative stress, resulting in intestinal barrier damage and gut dysfunction. Loganin, an iridoid glycoside compound, has been isolated from Cornus officinalis Sieb. et Zucc; however, its role in the treatment of burn injury is yet to be fully elucidated. Therefore, the present study examined the effect of loganin administration on burn-induced intestinal inflammation and oxidative stress after severe burns in male Sprague-Dawley rats. Histological injury was assessed by hematoxylin and eosin staining. Furthermore, cytokine expression in intestinal tissues was measured by ELISA and reverse transcription-quantitative PCR. Antioxidative activities were assessed by determining the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA). Apoptosis was detected by flow cytometry. Apoptosis-related proteins, toll-like receptor 4 (TLR4) protein and NF-κB translocation were examined by western blotting. Immunohistochemical staining was used to observe TLR4 and NF-κB p65 expression in intestinal tissues. The present study suggested that loganin administration significantly reduced burn injury-induced intestinal histological changes, tumor necrosis factor-α, interleukin (IL)-6 and IL-1β production and oxidative stress, evidenced by decreased ROS levels and MDA content (P<0.05). Furthermore, loganin increased SOD, CAT and GSH-Px levels and intestinal epithelial cell apoptosis. Loganin treatment also significantly inhibited activation of the TLR4/NF-κB signaling pathway in the intestine of severely burned rats (P<0.05). In conclusion, loganin reduced burns-induced intestinal inflammation and oxidative stress, potentially by regulating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hailing Wen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Liang Xing
- Department of Burns and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Kui Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Changshuan Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiangxi Meng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Jingzhe Yang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
2
|
Gong H, Sheng X, Xue J, Zhu D. Expression and role of TNIP2 in multiple organ dysfunction syndrome following severe trauma. Mol Med Rep 2019; 19:2906-2912. [PMID: 30720079 DOI: 10.3892/mmr.2019.9893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/30/2018] [Indexed: 11/05/2022] Open
Abstract
Severe trauma can result in secondary multiple organ dysfunction syndrome (MODS) and death. Inflammation response and oxidative stress promote the occurrence and development of MODS. TNFAIP3‑interacting protein 2 (TNIP2), which can repress the activation of nuclear factor‑κB (NF‑κB) and may be involved in MODS progression, has not been studied in regards to MODS. The present study aimed to investigate the expression, role and mechanism of TNIP2 in MODS following severe trauma. The expression level of TNIP2 was initially detected in the blood of patients with MODS using reverse transcription‑quantitative polymerase chain reaction and western blot assay. Then, to investigate the role of TNIP2 in MODS, a MODS rat model was conducted by trauma and the model rats were treated with TNIP2‑plasmid (intraperitoneal injection). Blood levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatine (Cr) and creatine kinase (CK); and tumor necrosis factor α (TNF‑α), high‑mobility group box 1 (HMGB‑1), malondialdehyde (MDA) and total antioxidant capacity (TAC) in the different groups were assessed. In addition, activation of NF‑κB was assessed by detecting the level of phospho‑p65. The results showed that TNIP2 was significantly decreased in the blood of patients with MODS. TNIP2 was also significantly downregulated in the blood and the pulmonary, renal and hepatic tissues of MODS rats. The levels of ALT, AST, LDH, BUN, Cr and CK were markedly increased in the blood of MODS rats, and these increases were inhibited by TNIP2‑plasmid administration. Moreover, blood levels of TNF‑α, HMGB‑1 and MDA were significantly increased in MODS rats, while TAC was notably decreased, and these changes were prevented by TNIP2‑plasmid administration. Furthermore, it was found that activation of NF‑κB induced by MODS was eliminated by TNIP2‑plasmid. In conclusion, the data indicated that TNIP2 is significantly decreased in MODS following severe trauma, and it plays a protective role in MODS development by inhibiting the inflammation response and oxidative stress by preventing NF‑κB activation.
Collapse
Affiliation(s)
- Hui Gong
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaomin Sheng
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianhua Xue
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Dongbo Zhu
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
3
|
Zhao D, Ma L, Shen C, Li D, Cheng W, Shang Y, Liu Z, Wang X, Yin K. Long-lasting Glucagon-like Peptide 1 Analogue Exendin-4 Ameliorates the Secretory and Synthetic Function of Islets Isolated From Severely Scalded Rats. J Burn Care Res 2018; 39:545-554. [PMID: 29579298 DOI: 10.1093/jbcr/irx014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dongxu Zhao
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Li Ma
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Chuanan Shen
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Dawei Li
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Wenfeng Cheng
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Yuru Shang
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Zhaoxing Liu
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Xin Wang
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Kai Yin
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| |
Collapse
|
4
|
Zhu Z, Hu T, Wang Z, Wang J, Liu R, Yang Q, Zhang X, Xiong Y. Anti-inflammatory and organ protective effect of insulin in scalded MODS rats without controlling hyperglycemia. Am J Emerg Med 2018; 36:202-207. [DOI: 10.1016/j.ajem.2017.07.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 11/16/2022] Open
|
5
|
Wang ZK, Chen RJ, Wang SL, Li GW, Zhu ZZ, Huang Q, Chen ZL, Chen FC, Deng L, Lan XP, Hu T. Clinical application of a novel diagnostic scheme including pancreatic β‑cell dysfunction for traumatic multiple organ dysfunction syndrome. Mol Med Rep 2017; 17:683-693. [PMID: 29115473 DOI: 10.3892/mmr.2017.7898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/22/2017] [Indexed: 11/06/2022] Open
Abstract
A novel diagnostic scheme that includes pancreatic β‑cell dysfunction analysis for the diagnosis of traumatic multiple organ dysfunction syndrome (MODS) was investigated to assist in the early diagnosis and detection of MODS. Early intervention and treatment of MODS has been associated with a reduced mortality rate. A total of 2,876 trauma patients (including patients post‑major surgery) were admitted to the intensive care unit of the authors' hospital between December 2010 and December 2015 and enrolled in the present study. There were 205 cases where the patient succumbed to their injuries. In addition to the conventional diagnostic scheme for traumatic MODS, indexes of pancreatic β‑cell dysfunction [fasting blood‑glucose (FBG), homeostatic model assessment‑β and (blood insulin concentration 30 min following glucose loading‑fasting insulin concentration)/(blood glucose concentration 30 min following glucose loading‑FBG concentration)] were included to establish an improved diagnostic scheme for traumatic MODS. The novel scheme was subsequently used in clinical practice alongside the conventional scheme and its effect was evaluated. The novel scheme had a significantly higher positive number of MODS diagnoses for all trauma patients compared with the conventional scheme (12.48 vs. 8.87%; P<0.01). No significant difference was identified in the final percentage of positive of MODS diagnoses for trauma‑associated mortality patients between the novel (88.30%) and the conventional scheme (86.34%). The novel scheme had a significantly higher positive number of MODS diagnoses for trauma‑associated mortality patients 3 days prior to patients succumbing to MODS compared with the conventional scheme (80.98 vs. 64.39%; P<0.01). The consensus of the MODS diagnosis of all trauma patients between the novel scheme and the conventional scheme was 100%; however, out of the patients diagnosed as positive by novel scheme 71.03% were positive by the conventional scheme. The consensus between the final MODS diagnosis and the MODS diagnosis 3 days prior to patients succumbing to their injuries between the novel scheme and the conventional scheme was 100%; however, out of the patients diagnosed as positive by novel scheme 97.79 were positive by the conventional scheme of the 205 patients who succumbed to MODS and out of the patients diagnosed as positive for MODS by novel scheme 3 days prior to succumbing, 79.52% were positive by the conventional scheme. The results of the present study demonstrated that the novel diagnostic scheme using the relevant indexes of pancreatic β‑cell dysfunction for diagnosis of traumatic MODS, was able to diagnose MODS early without excessively extending the diagnostic scope. Its clinical application should be promoted.
Collapse
Affiliation(s)
- Zhan-Ke Wang
- Department of Clinical Laboratory, The 94th Hospital of People's Liberation Army, Nanchang, Jiangxi 330002, P.R. China
| | - Rong-Jian Chen
- Department of General Surgery, The 94th Hospital of People's Liberation Army, Nanchang, Jiangxi 330002, P.R. China
| | - Shi-Liang Wang
- Department of Burns, Third Military Medical University, Chongqing 400038, P.R. China
| | - Guang-Wei Li
- Department of Endocrinology, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zhong-Zhen Zhu
- Department of Clinical Laboratory, The 94th Hospital of People's Liberation Army, Nanchang, Jiangxi 330002, P.R. China
| | - Qiang Huang
- Trauma Emergency Center, The 94th Hospital of People's Liberation Army, Nanchang, Jiangxi 330002, P.R. China
| | - Zi-Li Chen
- Department of Intensive Medicine, The 94th Hospital of People's Liberation Army, Nanchang, Jiangxi 330002, P.R. China
| | - Fan-Chang Chen
- Department of General Surgery, The 94th Hospital of People's Liberation Army, Nanchang, Jiangxi 330002, P.R. China
| | - Lei Deng
- Department of Neurosurgery, The 94th Hospital of People's Liberation Army, Nanchang, Jiangxi 330002, P.R. China
| | - Xiao-Peng Lan
- Department of Clinical Laboratory, Fuzhou General Hospital of Nanjing Military Region, Fuzhou, Fujian 350025, P.R. China
| | - Tian Hu
- Department of Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Centre of Postgraduate Medical School, Chinese People's Liberation Army General Hospital, Beijing 100853 P.R. China
| |
Collapse
|
6
|
Sevoflurane Ameliorates Myocardial Cell Injury by Inducing Autophagy via the Deacetylation of LC3 by SIRT1. Anal Cell Pathol (Amst) 2017; 2017:6281285. [PMID: 29104855 PMCID: PMC5635469 DOI: 10.1155/2017/6281285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/27/2017] [Indexed: 11/24/2022] Open
Abstract
Misfolded and aberrant proteins have been found to be associated with myocardial cell injury. Thus, increased clearance of misfolded or aggregated proteins via autophagy might be a potential option in preventing myocardial cell injury. Sevoflurane may ameliorate myocardial cell injury by affecting sirtuin 1- (SIRT1-) mediated autophagy. Rat models with myocardial cell injury were induced by limb ischemia reperfusion. The model rats received different treatments: sevoflurane, nicotinamide, and autophagy inhibitor 3-methyladenine (3-MA). Autophagy was observed by SEM. The levels of SIRT1 and microtubule-associated protein 1A/1B-light chain 3 (LC3) were measured. Present findings demonstrated that limb ischemia reperfusion induced autophagy. Sevoflurane increased the level of SIRT1, which deacetylated LC3 and further increased autophagic rates. On the other hand, the autophagy was inhibited by sevoflurane and or the inhibitors of SIRT1 and LC3. Present results demonstrated a novel molecular mechanism by which sevoflurane induced autophagy by increasing the level of SIRT1 and reducing the acetylation of LC3.
Collapse
|
7
|
Ma J, Wang Y, Wu Q, Chen X, Wang J, Yang L. Seawater immersion aggravates burn-associated lung injury and inflammatory and oxidative-stress responses. Burns 2017; 43:1011-1020. [PMID: 28413110 DOI: 10.1016/j.burns.2017.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 10/19/2022]
Abstract
With the increasing frequency of marine development activities and local wars at sea, the incidence of scald burns in marine accidents or wars has been increasing yearly. Various studies have indicated that immersion in seawater has a systemic impact on some organs of animals or humans with burn. Thus, for burn/scald injuries after immersion in seawater, it is desirable to study the effects and mechanisms of action on important organs. In the present study, we aimed to investigate the effect of immersion in seawater on lung injury, inflammatory and oxidative-stress responses in scalded rats. The structural damage to lungs was detected by hematoxylin and eosin staining and the results showed that seawater immersion aggravated structural lung injury in scalded rats. The expression of HMGB1 in lung tissues was detected by immunohistochemical analysis and the results showed that seawater immersion increased HMGB1 expression in lung tissues of scalded rats. Apoptosis in lung tissues was detected by terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling (TUNEL) staining and the results showed that seawater immersion increased apoptosis rate in lung tissues of scalded rats. In addition, the expression levels of TNF-α, IL-6, IL-8, SOD, and MDA in serum were analyzed by enzyme-linked immunosorbent assays (ELISAs) and the results showed that seawater immersion induced secretion of proinflammatory factors (TNF-α, IL-6, and IL-8), increased MDA protein level, and suppressed SOD activity in the serum of scalded rats. Furthermore, measurement of plasma volume and pH showed that seawater immersion decreased plasma volume and pH value. Overall, the results indicated that all effects induced by immersion in seawater in scalded rats are more pronounced than those induced by freshwater. In conclusion, seawater immersion may aggravate lung injury and enhance inflammatory and oxidative-stress responses after burn.
Collapse
Affiliation(s)
- Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Ying Wang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaowei Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jiahan Wang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|