1
|
Vallabh NA, Lane B, Simpson D, Fuchs M, Choudhary A, Criddle D, Cheeseman R, Willoughby C. Massively parallel sequencing of mitochondrial genome in primary open angle glaucoma identifies somatically acquired mitochondrial mutations in ocular tissue. Sci Rep 2024; 14:26324. [PMID: 39487142 PMCID: PMC11530638 DOI: 10.1038/s41598-024-72684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024] Open
Abstract
Glaucoma is a sight threatening neurodegenerative condition of the optic nerve head associated with ageing and marked by the loss of retinal ganglion cells. Mitochondrial dysfunction plays a crucial role in the pathogenesis of neurodegeneration in the most prevalent type of glaucoma: primary open angle glaucoma (POAG). All previous mitochondrial genome sequencing studies in POAG analyzed mitochondrial DNA (mtDNA) isolated from peripheral blood leukocytes and have not evaluated cells derived from ocular tissue, which better represent the glaucomatous disease context. In this study, we evaluated mitochondrial genome variation and heteroplasmy using massively parallel sequencing of mtDNA in a cohort of patients with POAG, and in a subset assess the role of somatic mitochondrial genome mutations in disease pathogenesis using paired samples of peripheral blood leukocytes and ocular tissue (Tenon's ocular fibroblasts). An enrichment of potentially pathogenic nonsynonymous mtDNA variants was identified in Tenon's ocular fibroblasts from participants with POAG. The absence of oxidative DNA damage and predominance of transition variants support the concept that errors in mtDNA replication represent the predominant mutation mechanism in Tenon's ocular fibroblasts from patients with POAG. Pathogenic somatic mitochondrial genome mutations were observed in people with POAG. This supports the role of somatic mitochondrial genome variants in the etiology of glaucoma.
Collapse
Affiliation(s)
- Neeru Amrita Vallabh
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK.
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK.
| | - Brian Lane
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, M20 4BX, UK
| | - David Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Marc Fuchs
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Anshoo Choudhary
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - David Criddle
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7BE, UK
| | - Robert Cheeseman
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - Colin Willoughby
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK.
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
2
|
African mitochondrial haplogroup L7: a 100,000-year-old maternal human lineage discovered through reassessment and new sequencing. Sci Rep 2022; 12:10747. [PMID: 35750688 PMCID: PMC9232647 DOI: 10.1038/s41598-022-13856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Archaeological and genomic evidence suggest that modern Homo sapiens have roamed the planet for some 300–500 thousand years. In contrast, global human mitochondrial (mtDNA) diversity coalesces to one African female ancestor (“Mitochondrial Eve”) some 145 thousand years ago, owing to the ¼ gene pool size of our matrilineally inherited haploid genome. Therefore, most of human prehistory was spent in Africa where early ancestors of Southern African Khoisan and Central African rainforest hunter-gatherers (RFHGs) segregated into smaller groups. Their subdivisions followed climatic oscillations, new modes of subsistence, local adaptations, and cultural-linguistic differences, all prior to their exodus out of Africa. Seven African mtDNA haplogroups (L0–L6) traditionally captured this ancient structure—these L haplogroups have formed the backbone of the mtDNA tree for nearly two decades. Here we describe L7, an eighth haplogroup that we estimate to be ~ 100 thousand years old and which has been previously misclassified in the literature. In addition, L7 has a phylogenetic sublineage L7a*, the oldest singleton branch in the human mtDNA tree (~ 80 thousand years). We found that L7 and its sister group L5 are both low-frequency relics centered around East Africa, but in different populations (L7: Sandawe; L5: Mbuti). Although three small subclades of African foragers hint at the population origins of L5'7, the majority of subclades are divided into Afro-Asiatic and eastern Bantu groups, indicative of more recent admixture. A regular re-estimation of the entire mtDNA haplotype tree is needed to ensure correct cladistic placement of new samples in the future.
Collapse
|
3
|
Mitochondrial Haplogroup Classification of Ancient DNA Samples Using Haplotracker. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5344418. [PMID: 35342764 PMCID: PMC8956381 DOI: 10.1155/2022/5344418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Mitochondrial DNA haplogroup classification is used to study maternal lineage of ancient human populations. The haplogrouping of ancient DNA is not easy because the DNA is usually found in small pieces in limited quantities. We have developed Haplotracker, a straightforward and efficient high-resolution haplogroup classification tool optimized specifically for ancient DNA samples. Haplotracker offers a user-friendly input interface for multiple mitochondrial DNA sequence fragments in a sample. It provides accurate haplogroup classification with full-length mitochondrial genome sequences and provides high-resolution haplogroup predictions for some fragmented control region sequences using a novel algorithm built on Phylotree mtDNA Build 17 (Phylotree) and our haplotype database (n = 118,869). Its performance for accuracy was demonstrated to be high through haplogroup classification using 8,216 Phylotree full-length and control region mitochondrial DNA sequences compared with HaploGrep 2, one of the most accurate current haplogroup classifiers. Haplotracker provides a novel haplogroup tracking solution for fragmented sequences to track subhaplogroups or verify the haplogroups efficiently. Using Haplotracker, we classified mitochondrial haplogroups to the final subhaplogroup level in nine ancient DNA samples extracted from human skeletal remains found in 2,000-year-old elite Xiongnu cemetery in Northeast Mongolia. Haplotracker can be freely accessed at https://haplotracker.cau.ac.kr.
Collapse
|
4
|
Guo H, Guo L, Yuan Y, Liang XY, Bi R. Co-occurrence of m.15992A>G and m.15077G>A Is Associated With a High Penetrance of Maternally Inherited Hypertension in a Chinese Pedigree. Am J Hypertens 2022; 35:96-102. [PMID: 34346491 DOI: 10.1093/ajh/hpab123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/25/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) pathogenic variants have been identified to be associated with maternally inherited essential hypertension (MIEH). However, the distinctive clinical features and molecular pathogenesis of MIEH are not fully understood. METHODS In this study, we collected a Chinese MIEH family with extraordinary higher penetrance of essential hypertension (88.89%) and early ages of onset (31-40 years old), and performed clinical and genetic characterization for this family. The complete mitochondrial genome of the proband was sequenced and analyzed. RESULTS The maternally related members in this family were presented with severe increased blood pressure, left ventricular remodeling, and metabolic abnormalities. Through sequencing the entire mtDNA of the proband and performing systematic analysis of the mtDNA variants with a phylogenic approach, we identified a potentially pathogenic tRNA variant (m.15992A>G in the MT-TP gene) that may account for the MIEH in this family. One nonsynonymous variant (m.15077G>A in the MT-CYB gene) was identified to play a synergistic role with m.15992A>G to cause a high penetrance of MIEH. CONCLUSIONS Our results, together with previous findings, have indicated that tRNA pathogenic variants in the mtDNA could act important roles in the pathogenesis of MIEH through reducing mitochondrial translation and disturbing mitochondrial function.
Collapse
Affiliation(s)
- Hao Guo
- Department of Cardiology, 1st Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Cardiology, Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China
| | - Li Guo
- Department of Radiology, 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong Yuan
- Department of emergency, 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xin-yue Liang
- Department of Cardiology, 1st Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Cardiology, Graduate School of the Kunming Medical University, Kunming, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
5
|
Wang Y, Zhao G, Fang Z, Pan H, Zhao Y, Wang Y, Zhou X, Wang X, Luo T, Zhang Y, Wang Z, Chen Q, Dong L, Huang Y, Zhou Q, Xia L, Li B, Guo J, Xia K, Tang B, Li J. Genetic landscape of human mitochondrial genome using whole genome sequencing. Hum Mol Genet 2021; 31:1747-1761. [PMID: 34897451 DOI: 10.1093/hmg/ddab358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022] Open
Abstract
Increasing evidences suggest that mitochondrial dysfunction is implicated in diseases and aging, and whole-genome sequencing (WGS) is the most unbiased method in analyzing the mitochondrial genome (mtDNA). However, the genetic landscape of mtDNA in the Chinese population has not been fully examined. Here, we described the genetic landscape of mtDNA using WGS data from Chinese individuals (n = 3241). We identified 3892 mtDNA variants, of which 3349 (86%) were rare variants. Interestingly, we observed a trend toward extreme heterogeneity of mtDNA variants. Our study observed a distinct purifying selection on mtDNA, which inhibits the accumulation of harmful heteroplasmies at the individual level: (1) mitochondrial dN/dS ratios were much less than 1; (2) the dN/dS ratio of heteroplasmies was higher than homoplasmies; (3) heteroplasmies had more indels and predicted deleterious variants than homoplasmies. Furthermore, we found that haplogroup M (20.27%) and D (20.15%) had the highest frequencies in the Chinese population, followed by B (18.51%) and F (16.45%). The number of variants per individual differed across haplogroup groups, with a higher number of homoplasmies for the M lineage. Meanwhile, mtDNA copy number was negatively correlated with age but positively correlated with the female sex. Finally, we developed an mtDNA variation database of Chinese populations called MTCards (http://genemed.tech/mtcards/) to facilitate the query of mtDNA variants in this study. In summary, these findings contribute to different aspects of understanding mtDNA, providing a better understanding of the genetic basis of mitochondrial-related diseases.
Collapse
Affiliation(s)
- Yijing Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenghuan Fang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Hongxu Pan
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuwen Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yige Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xun Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaomeng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Tengfei Luo
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Chen
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lijie Dong
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yuanfeng Huang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jifeng Guo
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Following the Trace of HVS II Mitochondrial Region Within the Nine Iranian Ethnic Groups Based on Genetic Population Analysis. Biochem Genet 2021; 60:987-1006. [PMID: 34661819 DOI: 10.1007/s10528-021-10141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
The Iranian gene pool is seen as an important human genetic resource for investigating the region connecting Mesopotamia and the Iranian plateau. The main objective of this study was to explore gene flow in nine Iranian ethnic/subpopulation groups (402 samples) by examining mtDNA HVS2 sequence variations. This then allowed us to detect mtDNA HVS2 sequence mutations in two independent thalassemia and cystic fibrosis patient sample groups. The patient groups did not explicitly belong to any of the aforementioned nine subpopulations. Across all subpopulations, the haplogroups B4a1c3a, H2a2a1, N10b, H2a2a2, and J1 were seen to be predominant. High haplogroup diversities along with admixture of the exotic groups were observed in this study. The Arab subpopulation was shown to be independent from the others. It was revealed that there is a far distant relationship between Arab and Azeri groups. The thalassemia patient group, represented an almost random sample of most Iranian ethnic groups, and revealed few significant differences (P < 0.05) in their HVS2 sequence. It turned out that the IVS II-I (G → A) mutation in the thalassemia β-globin gene was highly significant. Since the thalassemia patients in the present study represent many unique haplotypes, we can begin to comprehend the importance of mtDNA with this disease and the necessity for more studies in this context.
Collapse
|
7
|
Fine-Tuning Phylogenetic Alignment and Haplogrouping of mtDNA Sequences. Int J Mol Sci 2021; 22:ijms22115747. [PMID: 34072215 PMCID: PMC8198973 DOI: 10.3390/ijms22115747] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
In this paper, we present a new algorithm for alignment and haplogroup estimation of mitochondrial DNA (mtDNA) sequences. Based on 26,011 vetted full mitogenome sequences, we refined the 5435 original haplogroup motifs of Phylotree Build 17 without changing the haplogroup nomenclature. We adapted 430 motifs (about 8%) and added 966 motifs for yet undetermined subclades. In summary, this led to an 18% increase of haplogroup defining motifs for full mitogenomes and a 30% increase for the mtDNA control region that is of interest for a variety of scientific disciplines, such as medical, population and forensic genetics. The new algorithm is implemented in the EMPOP mtDNA database and is freely accessible.
Collapse
|
8
|
Taylor CR, Kiesler KM, Sturk-Andreaggi K, Ring JD, Parson W, Schanfield M, Vallone PM, Marshall C. Platinum-Quality Mitogenome Haplotypes from United States Populations. Genes (Basel) 2020; 11:genes11111290. [PMID: 33138247 PMCID: PMC7716222 DOI: 10.3390/genes11111290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
A total of 1327 platinum-quality mitochondrial DNA haplotypes from United States (U.S.) populations were generated using a robust, semi-automated next-generation sequencing (NGS) workflow with rigorous quality control (QC). The laboratory workflow involved long-range PCR to minimize the co-amplification of nuclear mitochondrial DNA segments (NUMTs), PCR-free library preparation to reduce amplification bias, and high-coverage Illumina MiSeq sequencing to produce an average per-sample read depth of 1000 × for low-frequency (5%) variant detection. Point heteroplasmies below 10% frequency were confirmed through replicate amplification, and length heteroplasmy was quantitatively assessed using a custom read count analysis tool. Data analysis involved a redundant, dual-analyst review to minimize errors in haplotype reporting with additional QC checks performed by EMPOP. Applying these methods, eight sample sets were processed from five U.S. metapopulations (African American, Caucasian, Hispanic, Asian American, and Native American) corresponding to self-reported identity at the time of sample collection. Population analyses (e.g., haplotype frequencies, random match probabilities, and genetic distance estimates) were performed to evaluate the eight datasets, with over 95% of haplotypes unique per dataset. The platinum-quality mitogenome haplotypes presented in this study will enable forensic statistical calculations and thereby support the usage of mitogenome sequencing in forensic laboratories.
Collapse
Affiliation(s)
- Cassandra R. Taylor
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19002, USA; (C.R.T.); (K.S.-A.); (J.D.R.)
- SNA International, LLC; Alexandria, VA 22314, USA
| | - Kevin M. Kiesler
- National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (K.M.K.); (P.M.V.)
| | - Kimberly Sturk-Andreaggi
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19002, USA; (C.R.T.); (K.S.-A.); (J.D.R.)
- SNA International, LLC; Alexandria, VA 22314, USA
| | - Joseph D. Ring
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19002, USA; (C.R.T.); (K.S.-A.); (J.D.R.)
- SNA International, LLC; Alexandria, VA 22314, USA
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck 6020, Austria;
- Forensic Science Program, The Pennsylvania State University, State College, PA 16801, USA
| | - Moses Schanfield
- Department of Forensic Sciences, The George Washington University, Washington, DC 20007, USA;
| | - Peter M. Vallone
- National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (K.M.K.); (P.M.V.)
| | - Charla Marshall
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19002, USA; (C.R.T.); (K.S.-A.); (J.D.R.)
- SNA International, LLC; Alexandria, VA 22314, USA
- Forensic Science Program, The Pennsylvania State University, State College, PA 16801, USA
- Correspondence: ; Tel.: +1-302-346-8519
| |
Collapse
|
9
|
Huber N, Parson W, Dür A. Next generation database search algorithm for forensic mitogenome analyses. Forensic Sci Int Genet 2018; 37:204-214. [PMID: 30241075 DOI: 10.1016/j.fsigen.2018.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA (mtDNA) variation is being reported relative to the corrected version of the first sequenced human mitochondrial genome. A review of the existing literature across disciplines that employ mtDNA demonstrates that insertions and deletions are not reported in a standardized way. This may lead to false exclusions of identical sequences, unidentified matches in missing persons mtDNA databases, biased mtDNA database frequency estimates and overestimation of the genetic evidence. Seven years ago we introduced alignment-free database search software (SAM) and implemented it into the mtDNA database EMPOP (https://empop.online) to produce reliable and conservative frequency estimates that are required in the forensic context. However, ambiguity remained in how laboratories have been reporting mitotypes, as often more than one single alignment of a given mtDNA sequence was feasible. In order to overcome this limitation we here describe a concept and provide software for producing stable, harmonized phylogenetic alignment of mtDNA sequences for database searches. The new software SAM 2 will be made available via EMPOP and provide the user with the already established conservative frequency estimates. In addition, SAM 2 offers the rCRS-coded haplotype of a given mtDNA sequence following the established and widely accepted phylogenetic alignment. This provides the user with feedback on how mitotypes are stored in EMPOP and how they should be reported in order to harmonize nomenclature. Finally, this approach does not only permit reliable mtDNA nomenclature in forensics but invites related disciplines to take advantage of a standardized way of reporting mtDNA variation, thus closing the ranks between different genetic fields and supporting dialogue and collaboration between mtDNA scholars from various disciplines.
Collapse
Affiliation(s)
- Nicole Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| | - Arne Dür
- Institute of Mathematics, University of Innsbruck, Austria
| |
Collapse
|
10
|
Abstract
BACKGROUND Given the etiologic heterogeneity of disease classification using clinical phenomenology, we employed contemporary criteria to classify variants associated with myoclonic epilepsy with ragged-red fibers (MERRF) syndrome and to assess the strength of evidence of gene-disease associations. Standardized approaches are used to clarify the definition of MERRF, which is essential for patient diagnosis, patient classification, and clinical trial design. METHODS Systematic literature and database search with application of standardized assessment of gene-disease relationships using modified Smith criteria and of variants reported to be associated with MERRF using modified Yarham criteria. RESULTS Review of available evidence supports a gene-disease association for two MT-tRNAs and for POLG. Using modified Smith criteria, definitive evidence of a MERRF gene-disease association is identified for MT-TK. Strong gene-disease evidence is present for MT-TL1 and POLG. Functional assays that directly associate variants with oxidative phosphorylation impairment were critical to mtDNA variant classification. In silico analysis was of limited utility to the assessment of individual MT-tRNA variants. With the use of contemporary classification criteria, several mtDNA variants previously reported as pathogenic or possibly pathogenic are reclassified as neutral variants. CONCLUSIONS MERRF is primarily an MT-TK disease, with pathogenic variants in this gene accounting for ~90% of MERRF patients. Although MERRF is phenotypically and genotypically heterogeneous, myoclonic epilepsy is the clinical feature that distinguishes MERRF from other categories of mitochondrial disorders. Given its low frequency in mitochondrial disorders, myoclonic epilepsy is not explained simply by an impairment of cellular energetics. Although MERRF phenocopies can occur in other genes, additional data are needed to establish a MERRF disease-gene association. This approach to MERRF emphasizes standardized classification rather than clinical phenomenology, thus improving patient diagnosis and clinical trial design.
Collapse
|
11
|
Abstract
In the human the peptide Humanin is produced from the small Humanin gene which is embedded as a gene-within-a-gene in the 16S ribosomal molecule of the mitochondrial DNA (mtDNA). The peptide itself appears to be significant in the prevention of cell death in many tissues and improve cognition in animal models. By using simple data mining techniques, it is possible to show that 99.4% of the human Humanin sequences in the GenBank database are unaffected by mutations. However, in other vertebrates, pseudogenization of the Humanin gene is a common feature; occurring apparently randomly in some species and not others. The persistence, or loss, of a functional Humanin gene may be an important factor in laboratory animals, especially if they are being used as animal models in studies of Alzheimer's disease (AD). The exact reason why Humanin underwent pseudogenization in some vertebrate species during their evolution remains to be determined. This study was originally planned to review the available information about Humanin and it was a surprise to be able to show that pseudogenization has occurred in a gene in the mtDNA and is not restricted solely to chromosomal genes.
Collapse
|
12
|
Rueda M, Torkamani A. SG-ADVISER mtDNA: a web server for mitochondrial DNA annotation with data from 200 samples of a healthy aging cohort. BMC Bioinformatics 2017; 18:373. [PMID: 28821228 PMCID: PMC5563004 DOI: 10.1186/s12859-017-1778-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/31/2017] [Indexed: 02/03/2023] Open
Abstract
Background Whole genome and exome sequencing usually include reads containing mitochondrial DNA (mtDNA). Yet, state-of-the-art pipelines and services for human nuclear genome variant calling and annotation do not handle mitochondrial genome data appropriately. As a consequence, any researcher desiring to add mtDNA variant analysis to their investigations is forced to explore the literature for mtDNA pipelines, evaluate them, and implement their own instance of the desired tool. This task is far from trivial, and can be prohibitive for non-bioinformaticians. Results We have developed SG-ADVISER mtDNA, a web server to facilitate the analysis and interpretation of mtDNA genomic data coming from next generation sequencing (NGS) experiments. The server was built in the context of our SG-ADVISER framework and on top of the MtoolBox platform (Calabrese et al., Bioinformatics 30(21):3115–3117, 2014), and includes most of its functionalities (i.e., assembly of mitochondrial genomes, heteroplasmic fractions, haplogroup assignment, functional and prioritization analysis of mitochondrial variants) as well as a back-end and a front-end interface. The server has been tested with unpublished data from 200 individuals of a healthy aging cohort (Erikson et al., Cell 165(4):1002–1011, 2016) and their data is made publicly available here along with a preliminary analysis of the variants. We observed that individuals over ~90 years old carried low levels of heteroplasmic variants in their genomes. Conclusions SG-ADVISER mtDNA is a fast and functional tool that allows for variant calling and annotation of human mtDNA data coming from NGS experiments. The server was built with simplicity in mind, and builds on our own experience in interpreting mtDNA variants in the context of sudden death and rare diseases. Our objective is to provide an interface for non-bioinformaticians aiming to acquire (or contrast) mtDNA annotations via MToolBox. SG-ADVISER web server is freely available to all users at https://genomics.scripps.edu/mtdna. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1778-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel Rueda
- The Scripps Translational Science Institute, Scripps Health, and The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Ali Torkamani
- The Scripps Translational Science Institute, Scripps Health, and The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Salas A, Martinón-Torres F, Gómez-Carballa A. 'Infertile' studies on mitochondrial DNA variation in asthenozoospermic Tunisian men. Biochem Biophys Rep 2016; 8:114-119. [PMID: 28955946 PMCID: PMC5613696 DOI: 10.1016/j.bbrep.2016.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/10/2016] [Indexed: 11/30/2022] Open
Abstract
We reviewed five studies undertaken by the same research group on the possible links between mitochondrial DNA (mtDNA) variation and asthenozoospermia, all carried out on Tunisian men. A thorough assessment of these articles reveals that all five studies were carried out on virtually the same cohort of patients, although this information was concealed by the authors. Thus, the results were ‘sliced’ in order to unjustifiably maximize the number of publications. In addition, a phylogenetic analysis of their data indicates that the reported results are notably incomplete and deficient. Overall, contrary to the original claims, the association of mtDNA variants with asthenozoospermia finds no support on this saga on Tunisian infertile men. We re-analyze the seeming association of mtDNA with infertility in Tunisians. The existing data are incomplete and deficient. The data do not support association of mtDNA and infertility.
Collapse
Affiliation(s)
- Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPop Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
- Corresponding author at: Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, 15872 Galicia, Spain.Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de CompostelaGalicia15872Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPop Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
| |
Collapse
|
14
|
Lott MT, Leipzig JN, Derbeneva O, Xie HM, Chalkia D, Sarmady M, Procaccio V, Wallace DC. mtDNA Variation and Analysis Using Mitomap and Mitomaster. ACTA ACUST UNITED AC 2016; 44:1.23.1-26. [PMID: 25489354 DOI: 10.1002/0471250953.bi0123s44] [Citation(s) in RCA: 338] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Mitomap database of human mitochondrial DNA (mtDNA) information has been an important compilation of mtDNA variation for researchers, clinicians and genetic counselors for the past twenty-five years. The Mitomap protocol shows how users may look up human mitochondrial gene loci, search for public mitochondrial sequences, and browse or search for reported general population nucleotide variants as well as those reported in clinical disease. Within Mitomap is the powerful sequence analysis tool for human mitochondrial DNA, Mitomaster. The Mitomaster protocol gives step-by-step instructions showing how to submit sequences to identify nucleotide variants relative to the rCRS, to determine the haplogroup, and to view species conservation. User-supplied sequences, GenBank identifiers and single nucleotide variants may be analyzed.
Collapse
Affiliation(s)
- Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Jeremy N Leipzig
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA; phone: 1-267-426-1375; fax: 1-215-590-5245
| | - Olga Derbeneva
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA; phone: 1-267-425-3064; fax: 1-267-426-0978; work cell: 1-215-866-8121
| | - H Michael Xie
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA; phone: 1-267-426-0675; fax: 1-215-590-5245
| | - Dimitra Chalkia
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA
| | - Mahdi Sarmady
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA; phone: 1-267-426-1373; fax: 1-215-590-5245
| | - Vincent Procaccio
- National Center for Neurodegenerative and Mitochondrial Diseases CHU Angers, Biochemistry and Genetics Department, Angers, France
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA; Department of Pathology and Laboratory Medicine; University of Pennsylvania, Philadelphia, PA; phone: 1-267-425-3078; fax: 1-267-426-0978
| |
Collapse
|
15
|
Li H, Bi R, Fan Y, Wu Y, Tang Y, Li Z, He Y, Zhou J, Tang J, Chen X, Yao YG. mtDNA Heteroplasmy in Monozygotic Twins Discordant for Schizophrenia. Mol Neurobiol 2016; 54:4343-4352. [DOI: 10.1007/s12035-016-9996-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/14/2016] [Indexed: 12/30/2022]
|
16
|
Weissensteiner H, Pacher D, Kloss-Brandstätter A, Forer L, Specht G, Bandelt HJ, Kronenberg F, Salas A, Schönherr S. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res 2016; 44:W58-63. [PMID: 27084951 PMCID: PMC4987869 DOI: 10.1093/nar/gkw233] [Citation(s) in RCA: 595] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial DNA (mtDNA) profiles can be classified into phylogenetic clusters (haplogroups), which is of great relevance for evolutionary, forensic and medical genetics. With the extensive growth of the underlying phylogenetic tree summarizing the published mtDNA sequences, the manual process of haplogroup classification would be too time-consuming. The previously published classification tool HaploGrep provided an automatic way to address this issue. Here, we present the completely updated version HaploGrep 2 offering several advanced features, including a generic rule-based system for immediate quality control (QC). This allows detecting artificial recombinants and missing variants as well as annotating rare and phantom mutations. Furthermore, the handling of high-throughput data in form of VCF files is now directly supported. For data output, several graphical reports are generated in real time, such as a multiple sequence alignment format, a VCF format and extended haplogroup QC reports, all viewable directly within the application. In addition, HaploGrep 2 generates a publication-ready phylogenetic tree of all input samples encoded relative to the revised Cambridge Reference Sequence. Finally, new distance measures and optimizations of the algorithm increase accuracy and speed-up the application. HaploGrep 2 can be accessed freely and without any registration at http://haplogrep.uibk.ac.at.
Collapse
Affiliation(s)
- Hansi Weissensteiner
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria Department of Database and Information Systems, Institute of Computer Science, University of Innsbruck, Innsbruck 6020, Austria
| | - Dominic Pacher
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Anita Kloss-Brandstätter
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Lukas Forer
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Günther Specht
- Department of Database and Information Systems, Institute of Computer Science, University of Innsbruck, Innsbruck 6020, Austria
| | | | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, Calle San Francisco s/n, C.P. 15872, Galicia, Spain
| | - Sebastian Schönherr
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
17
|
Lv FH, Peng WF, Yang J, Zhao YX, Li WR, Liu MJ, Ma YH, Zhao QJ, Yang GL, Wang F, Li JQ, Liu YG, Shen ZQ, Zhao SG, Hehua E, Gorkhali NA, Farhad Vahidi SM, Muladno M, Naqvi AN, Tabell J, Iso-Touru T, Bruford MW, Kantanen J, Han JL, Li MH. Mitogenomic Meta-Analysis Identifies Two Phases of Migration in the History of Eastern Eurasian Sheep. Mol Biol Evol 2015; 32:2515-33. [PMID: 26085518 PMCID: PMC4576706 DOI: 10.1093/molbev/msv139] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite much attention, history of sheep (Ovis aries) evolution, including its dating, demographic trajectory and geographic spread, remains controversial. To address these questions, we generated 45 complete and 875 partial mitogenomic sequences, and performed a meta-analysis of these and published ovine mitochondrial DNA sequences (n = 3,229) across Eurasia. We inferred that O. orientalis and O. musimon share the most recent female ancestor with O. aries at approximately 0.790 Ma (95% CI: 0.637-0.934 Ma) during the Middle Pleistocene, substantially predating the domestication event (∼8-11 ka). By reconstructing historical variations in effective population size, we found evidence of a rapid population increase approximately 20-60 ka, immediately before the Last Glacial Maximum. Analyses of lineage expansions showed two sheep migratory waves at approximately 4.5-6.8 ka (lineages A and B: ∼6.4-6.8 ka; C: ∼4.5 ka) across eastern Eurasia, which could have been influenced by prehistoric West-East commercial trade and deliberate mating of domestic and wild sheep, respectively. A continent-scale examination of lineage diversity and approximate Bayesian computation analyses indicated that the Mongolian Plateau region was a secondary center of dispersal, acting as a "transportation hub" in eastern Eurasia: Sheep from the Middle Eastern domestication center were inferred to have migrated through the Caucasus and Central Asia, and arrived in North and Southwest China (lineages A, B, and C) and the Indian subcontinent (lineages B and C) through this region. Our results provide new insights into sheep domestication, particularly with respect to origins and migrations to and from eastern Eurasia.
Collapse
Affiliation(s)
- Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wei-Feng Peng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ji Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yong-Xin Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Wen-Rong Li
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ming-Jun Liu
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| | - Yue-Hui Ma
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Qian-Jun Zhao
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guang-Li Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China College of Life Sciences, Shangqiu Normal University, Shangqiu, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Sheng-Guo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Eer Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Neena A Gorkhali
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China Animal Breeding Division, National Animal Science Institute, Nepal Agriculture Research Council, Kathmandu, Nepal
| | - S M Farhad Vahidi
- Agricultural Biotechnology Research Institute of Iran-North Branch (ABRII), Rasht, Iran
| | - Muhammad Muladno
- Department of Animal Technology and Production Science, Bogor Agricultural University, Darmaga Campus, Bogor, Indonesia
| | - Arifa N Naqvi
- Faculty of Life Sciences, Karakoram International University, Gilgit, Baltistan, Pakistan
| | - Jonna Tabell
- Green Technology, Natural Resources Institute Finland (LUKE), Jokioinen, Finland
| | - Terhi Iso-Touru
- Green Technology, Natural Resources Institute Finland (LUKE), Jokioinen, Finland
| | - Michael W Bruford
- School of Biosciences and Sustainable Places Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Juha Kantanen
- Green Technology, Natural Resources Institute Finland (LUKE), Jokioinen, Finland Department of Biology, University of Eastern Finland, Kuopio, Finland
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
18
|
The Genomic Legacy of the Transatlantic Slave Trade in the Yungas Valley of Bolivia. PLoS One 2015; 10:e0134129. [PMID: 26263179 PMCID: PMC4532489 DOI: 10.1371/journal.pone.0134129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 07/06/2015] [Indexed: 11/23/2022] Open
Abstract
During the period of the Transatlantic Slave Trade (TAST) some enslaved Africans were forced to move to Upper Peru (nowadays Bolivia). At first they were sent to Potosí, but later to the tropical Yungas valley where the Spanish colonizers established a so-called “hacienda system” that was based on slave labor, including African-descendants. Due to their isolation, very little attention has been paid so far to ‘Afro-Bolivian’ communities either within the research field of TAST or in genetic population studies. In this study, a total of 105 individuals from the Yungas were sequenced for their mitochondrial DNA (mtDNA) control region, and mitogenomes were obtained for a selected subset of these samples. We also genotyped 46 Ancestry Informative Markers (AIM) in order to investigate continental ancestry at the autosomal level. In addition, Y-chromosome STR and SNP data for a subset of the same individuals was also available from the literature. The data indicate that the partitioning of mtDNA ancestry in the Yungas differs significantly from that in the rest of the country: 81% Native American, 18% African, and 1% European. Interestingly, the great majority of ‘Afro-descendant’ mtDNA haplotypes in the Yungas (84%) concentrates in the locality of Tocaña. This high proportion of African ancestry in the Tocaña is also manifested in the Y-chromosome (44%) and in the autosomes (56%). In sharp contrast with previous studies on the TAST, the ancestry of about 1/3 of the ‘Afro-Bolivian’ mtDNA haplotypes can be traced back to East and South East Africa, which may be at least partially explained by the Arab slave trade connected to the TAST.
Collapse
|
19
|
Yao YG, Kajigaya S, Young NS. Mitochondrial DNA mutations in single human blood cells. Mutat Res 2015; 779:68-77. [PMID: 26149767 DOI: 10.1016/j.mrfmmm.2015.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/07/2023]
Abstract
Determination mitochondrial DNA (mtDNA) sequences from extremely small amounts of DNA extracted from tissue of limited amounts and/or degraded samples is frequently employed in medical, forensic, and anthropologic studies. Polymerase chain reaction (PCR) amplification followed by DNA cloning is a routine method, especially to examine heteroplasmy of mtDNA mutations. In this review, we compare the mtDNA mutation patterns detected by three different sequencing strategies. Cloning and sequencing methods that are based on PCR amplification of DNA extracted from either single cells or pooled cells yield a high frequency of mutations, partly due to the artifacts introduced by PCR and/or the DNA cloning process. Direct sequencing of PCR product which has been amplified from DNA in individual cells is able to detect the low levels of mtDNA mutations present within a cell. We further summarize the findings in our recent studies that utilized this single cell method to assay mtDNA mutation patterns in different human blood cells. Our data show that many somatic mutations observed in the end-stage differentiated cells are found in hematopoietic stem cells (HSCs) and progenitors within the CD34(+) cell compartment. Accumulation of mtDNA variations in the individual CD34+ cells is affected by both aging and family genetic background. Granulocytes harbor higher numbers of mutations compared with the other cells, such as CD34(+) cells and lymphocytes. Serial assessment of mtDNA mutations in a population of single CD34(+) cells obtained from the same donor over time suggests stability of some somatic mutations. CD34(+) cell clones from a donor marked by specific mtDNA somatic mutations can be found in the recipient after transplantation. The significance of these findings is discussed in terms of the lineage tracing of HSCs, aging effect on accumulation of mtDNA mutations and the usage of mtDNA sequence in forensic identification.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China.
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Söchtig J, Álvarez-Iglesias V, Mosquera-Miguel A, Gelabert-Besada M, Gómez-Carballa A, Salas A. Genomic insights on the ethno-history of the Maya and the 'Ladinos' from Guatemala. BMC Genomics 2015; 16:131. [PMID: 25887241 PMCID: PMC4422311 DOI: 10.1186/s12864-015-1339-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 02/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background Guatemala is a multiethnic and multilingual country located in Central America. The main population groups separate ‘Ladinos’ (mixed Native American-African-Spanish), and Native indigenous people of Maya descent. Among the present-day Guatemalan Maya, there are more than 20 different ethnic groups separated by different languages and cultures. Genetic variation of these communities still remains largely unexplored. The principal aim of this study is to explore the genetic variability of the Maya and ‘Ladinos’ from Guatemala by means of uniparental and ancestry informative markers (AIMs). Results Analyses of uniparental genetic markers indicate that Maya have a dominant Native American ancestry (mitochondrial DNA [mtDNA]: 100%; Y-chromosome: 94%). ‘Ladino’, however, show a clear gender-bias as indicated by the large European ancestry observed in the Y-chromosome (75%) compared to the mtDNA (0%). Autosomal polymorphisms (AIMs) also mirror this marked gender-bias: (i) Native American ancestry: 92% for the Maya vs. 55% for the ‘Ladino’, and (ii) European ancestry: 8% for the Maya vs. 41% for the ‘Ladino’. In addition, the impact of the Trans-Atlantic slave trade on the present-day Guatemalan population is very low (and only occurs in the ‘Ladino’; mtDNA: 9%; AIMs: 4%), in part mirroring the fact that Guatemala has a predominant orientation to the Pacific Ocean instead of a Caribbean one. Sequencing of entire Guatemalan mitogenomes has led to improved Native American phylogeny via the addition of new haplogroups that are mainly observed in Mesoamerica and/or the North of South America. Conclusions The data reveal the existence of a fluid gene flow in the Mesoamerican area and a predominant unidirectional flow towards South America, most likely occurring during the Pre-Classic (1800 BC-200 AD) and the Classic (200–1000 AD) Eras of the Mesoamerican chronology, coinciding with development of the most distinctive and advanced Mesoamerican civilization, the Maya. Phylogenetic features of mtDNA data also suggest a demographic scenario that is compatible with moderate local endogamy and isolation in the Maya combined with episodes of gene exchange between ethnic groups, suggesting an ethno-genesis in the Guatemalan Maya that is recent and supported on a cultural rather than a biological basis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1339-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jens Söchtig
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Ana Mosquera-Miguel
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Miguel Gelabert-Besada
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| |
Collapse
|
21
|
Ren Z, Luo H, Song F, Wei W, Yang Y, Zhai X, Chen X, Hou Y. Developing a multiplex mtSNP assay for forensic application in Han Chinese based on mtDNA phylogeny and hot spot. Electrophoresis 2015; 36:633-9. [PMID: 25382174 DOI: 10.1002/elps.201400396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/20/2014] [Accepted: 10/31/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Zheng Ren
- Institute of Forensic Medicine; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu Sichuan China
| | - Haibo Luo
- Institute of Forensic Medicine; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu Sichuan China
| | - Feng Song
- Institute of Forensic Medicine; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu Sichuan China
| | - Wei Wei
- Institute of Forensic Medicine; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu Sichuan China
| | - Yuyou Yang
- Institute of Forensic Medicine; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu Sichuan China
| | - Xiandun Zhai
- Institute of Forensic Medicine; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu Sichuan China
- Institute of Forensic Medicine; Hennan University of Science and Technology; Luoyang Henan China
| | - Xiaogang Chen
- Institute of Forensic Medicine; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu Sichuan China
| | - Yiping Hou
- Institute of Forensic Medicine; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu Sichuan China
| |
Collapse
|
22
|
Shi NN, Fan L, Yao YG, Peng MS, Zhang YP. Mitochondrial genomes of domestic animals need scrutiny. Mol Ecol 2014; 23:5393-7. [PMID: 25294192 DOI: 10.1111/mec.12955] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022]
Abstract
More than 1000 complete or near-complete mitochondrial DNA (mtDNA) sequences have been deposited in GenBank for eight common domestic animals (cattle, dog, goat, horse, pig, sheep, yak and chicken) and their close wild ancestors or relatives, as well. Nevertheless, few efforts have been performed to evaluate the sequence data quality. Herein, we conducted a phylogenetic survey of these complete or near-complete mtDNA sequences based on mtDNA haplogroup trees for the eight animals. We show that errors due to artificial recombination, surplus of mutations and phantom mutations do exist in 14.5% (194/1342) of mtDNA sequences and all of them should be treated with wide caution. We propose some caveats for future mtDNA studies of domestic animals.
Collapse
Affiliation(s)
- Ni-Ni Shi
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | | | | | | | | |
Collapse
|
23
|
Sevini F, Giuliani C, Vianello D, Giampieri E, Santoro A, Biondi F, Garagnani P, Passarino G, Luiselli D, Capri M, Franceschi C, Salvioli S. mtDNA mutations in human aging and longevity: controversies and new perspectives opened by high-throughput technologies. Exp Gerontol 2014; 56:234-44. [PMID: 24709341 DOI: 10.1016/j.exger.2014.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/14/2014] [Accepted: 03/26/2014] [Indexed: 12/21/2022]
Abstract
The last 30 years of research greatly contributed to shed light on the role of mitochondrial DNA (mtDNA) variability in aging, although contrasting results have been reported, mainly due to bias regarding the population size and stratification, and to the use of analysis methods (haplogroup classification) that resulted to be not sufficiently adequate to grasp the complexity of the phenomenon. A 5-years European study (the GEHA EU project) collected and analyzed data on mtDNA variability on an unprecedented number of long-living subjects (enriched for longevity genes) and a comparable number of controls (matched for gender and ethnicity) in Europe. This very large study allowed a reappraisal of the role of both the inherited and the somatic mtDNA variability in aging, as an association with longevity emerged only when mtDNA variants in OXPHOS complexes co-occurred. Moreover, the availability of data from both nuclear and mitochondrial genomes on a large number of subjects paves the way for an evaluation at a very large scale of the epistatic interactions at a higher level of complexity. This scenario is expected to be even more clarified in the next future with the use of next generation sequencing (NGS) techniques, which are becoming applicable to evaluate mtDNA variability and, then, new mathematical/bioinformatic analysis methods are urgently needed. Recent advances of association studies on age-related diseases and mtDNA variability will also be discussed in this review, taking into account the bias hidden by population stratification. Finally, very recent findings in terms of mtDNA heteroplasmy (i.e. the coexistence of wild type and mutated copies of mtDNA) and aging as well as mitochondrial epigenetic mechanisms will also be discussed.
Collapse
Affiliation(s)
- Federica Sevini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy.
| | - Cristina Giuliani
- Department of Biological, Geological and Environmental Sciences, Laboratory of Anthropology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; Department of Biological, Geological and Environmental Sciences, Centre for Genome Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Dario Vianello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy
| | - Enrico Giampieri
- Department of Physics and Astronomy, Viale Berti Pichat 6/2, 40126 Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy
| | - Fiammetta Biondi
- C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| | - Donata Luiselli
- Department of Biological, Geological and Environmental Sciences, Laboratory of Anthropology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; Department of Biological, Geological and Environmental Sciences, Centre for Genome Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Ospedale Bellaria, Via Altura 3, 40139 Bologna, Italy; CNR, Institute of Organic Synthesis and Photoreactivity (ISOF), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| |
Collapse
|
24
|
Verscheure S, Backeljau T, Desmyter S. Reviewing population studies for forensic purposes: Dog mitochondrial DNA. Zookeys 2013:381-411. [PMID: 24453568 PMCID: PMC3890688 DOI: 10.3897/zookeys.365.5859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/14/2013] [Indexed: 02/02/2023] Open
Abstract
The identification of dog hair through mtDNA analysis has become increasingly important in the last 15 years, as it can provide associative evidence connecting victims and suspects. The evidential value of an mtDNA match between dog hair and its potential donor is determined by the random match probability of the haplotype. This probability is based on the haplotype’s population frequency estimate. Consequently, implementing a population study representative of the population relevant to the forensic case is vital to the correct evaluation of the evidence. This paper reviews numerous published dog mtDNA studies and shows that many of these studies vary widely in sampling strategies and data quality. Therefore, several features influencing the representativeness of a population sample are discussed. Moreover, recommendations are provided on how to set up a dog mtDNA population study and how to decide whether or not to include published data. This review emphasizes the need for improved dog mtDNA population data for forensic purposes, including targeting the entire mitochondrial genome. In particular, the creation of a publicly available database of qualitative dog mtDNA population studies would improve the genetic analysis of dog traces in forensic casework.
Collapse
Affiliation(s)
- Sophie Verscheure
- National Institute of Criminalistics and Criminology, Vilvoordsesteenweg 100, B-1120, Brussels, Belgium ; University of Antwerp (Evolutionary Ecology Group), Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Thierry Backeljau
- University of Antwerp (Evolutionary Ecology Group), Groenenborgerlaan 171, B-2020, Antwerp, Belgium ; Royal Belgian Institute of Natural Sciences (OD "Taxonomy and Phylogeny" and JEMU), Vautierstraat 29, B-1000, Brussels, Belgium
| | - Stijn Desmyter
- National Institute of Criminalistics and Criminology, Vilvoordsesteenweg 100, B-1120, Brussels, Belgium
| |
Collapse
|
25
|
Bandelt HJ, Kloss-Brandstätter A, Richards MB, Yao YG, Logan I. The case for the continuing use of the revised Cambridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies. J Hum Genet 2013; 59:66-77. [PMID: 24304692 DOI: 10.1038/jhg.2013.120] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 09/29/2013] [Accepted: 10/25/2013] [Indexed: 02/06/2023]
Abstract
Since the determination in 1981 of the sequence of the human mitochondrial DNA (mtDNA) genome, the Cambridge Reference Sequence (CRS), has been used as the reference sequence to annotate mtDNA in molecular anthropology, forensic science and medical genetics. The CRS was eventually upgraded to the revised version (rCRS) in 1999. This reference sequence is a convenient device for recording mtDNA variation, although it has often been misunderstood as a wild-type (WT) or consensus sequence by medical geneticists. Recently, there has been a proposal to replace the rCRS with the so-called Reconstructed Sapiens Reference Sequence (RSRS). Even if it had been estimated accurately, the RSRS would be a cumbersome substitute for the rCRS, as the new proposal fuses--and thus confuses--the two distinct concepts of ancestral lineage and reference point for human mtDNA. Instead, we prefer to maintain the rCRS and to report mtDNA profiles by employing the hitherto predominant circumfix style. Tree diagrams could display mutations by using either the profile notation (in conventional short forms where appropriate) or in a root-upwards way with two suffixes indicating ancestral and derived nucleotides. This would guard against misunderstandings about reporting mtDNA variation. It is therefore neither necessary nor sensible to change the present reference sequence, the rCRS, in any way. The proposed switch to RSRS would inevitably lead to notational chaos, mistakes and misinterpretations.
Collapse
Affiliation(s)
| | - Anita Kloss-Brandstätter
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Martin B Richards
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | | |
Collapse
|
26
|
Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM, Souto L, Fendt L, Delport R, Langit R, Wootton S, Lagacé R, Irwin J. Reprint of: Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 2013; 7:632-639. [PMID: 24119954 DOI: 10.1016/j.fsigen.2013.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics.
Collapse
Affiliation(s)
- Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria; Penn State Eberly College of Science, University Park, PA, USA.
| | - Christina Strobl
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Gabriela Huber
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Bettina Zimmermann
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Sibylle M Gomes
- Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Luis Souto
- Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Liane Fendt
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria; Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria
| | - Rhena Delport
- Department of Chemical Pathology, School of Medicine, University of Pretoria, South Africa
| | | | | | | | | |
Collapse
|
27
|
Indian signatures in the westernmost edge of the European Romani diaspora: new insight from mitogenomes. PLoS One 2013; 8:e75397. [PMID: 24143169 PMCID: PMC3797067 DOI: 10.1371/journal.pone.0075397] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
In agreement with historical documentation, several genetic studies have revealed ancestral links between the European Romani and India. The entire mitochondrial DNA (mtDNA) of 27 Spanish Romani was sequenced in order to shed further light on the origins of this population. The data were analyzed together with a large published dataset (mainly hypervariable region I [HVS-I] haplotypes) of Romani (N=1,353) and non-Romani worldwide populations (N>150,000). Analysis of mitogenomes allowed the characterization of various Romani-specific clades. M5a1b1a1 is the most distinctive European Romani haplogroup; it is present in all Romani groups at variable frequencies (with only sporadic findings in non-Romani) and represents 18% of their mtDNA pool. Its phylogeographic features indicate that M5a1b1a1 originated 1.5 thousand years ago (kya; 95% CI: 1.3-1.8) in a proto-Romani population living in Northwest India. U3 represents the most characteristic Romani haplogroup of European/Near Eastern origin (12.4%); it appears at dissimilar frequencies across the continent (Iberia: ≈ 31%; Eastern/Central Europe: ≈ 13%). All U3 mitogenomes of our Iberian Romani sample fall within a new sub-clade, U3b1c, which can be dated to 0.5 kya (95% CI: 0.3-0.7); therefore, signaling a lower bound for the founder event that followed admixture in Europe/Near East. Other minor European/Near Eastern haplogroups (e.g. H24, H88a) were also assimilated into the Romani by introgression with neighboring populations during their diaspora into Europe; yet some show a differentiation from the phylogenetically closest non-Romani counterpart. The phylogeny of Romani mitogenomes shows clear signatures of low effective population sizes and founder effects. Overall, these results are in good agreement with historical documentation, suggesting that cultural identity and relative isolation have allowed the Romani to preserve a distinctive mtDNA heritage, with some features linking them unequivocally to their ancestral Indian homeland.
Collapse
|
28
|
Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA). Forensic Sci Int Genet 2013; 7:601-609. [PMID: 23948335 PMCID: PMC3819997 DOI: 10.1016/j.fsigen.2013.07.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/02/2022]
Abstract
The assignment of haplogroups to mitochondrial DNA haplotypes contributes substantial value for quality control, not only in forensic genetics but also in population and medical genetics. The availability of Phylotree, a widely accepted phylogenetic tree of human mitochondrial DNA lineages, led to the development of several (semi-)automated software solutions for haplogrouping. However, currently existing haplogrouping tools only make use of haplogroup-defining mutations, whereas private mutations (beyond the haplogroup level) can be additionally informative allowing for enhanced haplogroup assignment. This is especially relevant in the case of (partial) control region sequences, which are mainly used in forensics. The present study makes three major contributions toward a more reliable, semi-automated estimation of mitochondrial haplogroups. First, a quality-controlled database consisting of 14,990 full mtGenomes downloaded from GenBank was compiled. Together with Phylotree, these mtGenomes serve as a reference database for haplogroup estimates. Second, the concept of fluctuation rates, i.e. a maximum likelihood estimation of the stability of mutations based on 19,171 full control region haplotypes for which raw lane data is available, is presented. Finally, an algorithm for estimating the haplogroup of an mtDNA sequence based on the combined database of full mtGenomes and Phylotree, which also incorporates the empirically determined fluctuation rates, is brought forward. On the basis of examples from the literature and EMPOP, the algorithm is not only validated, but both the strength of this approach and its utility for quality control of mitochondrial haplotypes is also demonstrated.
Collapse
|
29
|
Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 2013; 7:543-9. [PMID: 23948325 PMCID: PMC3757157 DOI: 10.1016/j.fsigen.2013.06.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/07/2013] [Indexed: 12/15/2022]
Abstract
Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics.
Collapse
|
30
|
Vianello D, Sevini F, Castellani G, Lomartire L, Capri M, Franceschi C. HAPLOFIND: a new method for high-throughput mtDNA haplogroup assignment. Hum Mutat 2013; 34:1189-94. [PMID: 23696374 DOI: 10.1002/humu.22356] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/03/2013] [Indexed: 11/06/2022]
Abstract
Deep sequencing technologies are completely revolutionizing the approach to DNA analysis. Mitochondrial DNA (mtDNA) studies entered in the "postgenomic era": the burst in sequenced samples observed in nuclear genomics is expected also in mitochondria, a trend that can already be detected checking complete mtDNA sequences database submission rate. Tools for the analysis of these data are available, but they fail in throughput or in easiness of use. We present here a new pipeline based on previous algorithms, inherited from the "nuclear genomic toolbox," combined with a newly developed algorithm capable of efficiently and easily classify new mtDNA sequences according to PhyloTree nomenclature. Detected mutations are also annotated using data collected from publicly available databases. Thanks to the analysis of all freely available sequences with known haplogroup obtained from GenBank, we were able to produce a PhyloTree-based weighted tree, taking into account each haplogroup pattern conservation. The combination of a highly efficient aligner, coupled with our algorithm and massive usage of asynchronous parallel processing, allowed us to build a high-throughput pipeline for the analysis of mtDNA sequences that can be quickly updated to follow the ever-changing nomenclature. HaploFind is freely accessible at the following Web address: https://haplofind.unibo.it.
Collapse
Affiliation(s)
- Dario Vianello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Fan L, Yao YG. An update to MitoTool: using a new scoring system for faster mtDNA haplogroup determination. Mitochondrion 2013; 13:360-3. [PMID: 23632257 DOI: 10.1016/j.mito.2013.04.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/05/2013] [Accepted: 04/19/2013] [Indexed: 11/17/2022]
Abstract
The determination of human mitochondrial DNA (mtDNA) haplogroups is not only crucial in anthropological and forensic studies, but is also helpful in the medical field to prevent establishment of wrong disease associations. In recent years, high-throughput technologies and the huge amounts of data they create, as well as the regular updates to the mtDNA phylogenetic tree, mean that there is a need for an automated approach which can make a speedier determination of haplogroups than can be made by using the traditional manual method. Here, we update the MitoTool (www.mitotool.org) by incorporating a novel scoring system for the determination of mtDNA into haplogroups, which has advantages on speed, accuracy and ease of implementation. In order to make the access to MitoTool easier, we also provide a stand-alone version of the program that will run on a local computer and this version is freely available at the MitoTool website.
Collapse
Affiliation(s)
- Long Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | | |
Collapse
|
32
|
MitoLSDB: a comprehensive resource to study genotype to phenotype correlations in human mitochondrial DNA variations. PLoS One 2013; 8:e60066. [PMID: 23585830 PMCID: PMC3621970 DOI: 10.1371/journal.pone.0060066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/20/2013] [Indexed: 01/16/2023] Open
Abstract
Human mitochondrial DNA (mtDNA) encodes a set of 37 genes which are essential structural and functional components of the electron transport chain. Variations in these genes have been implicated in a broad spectrum of diseases and are extensively reported in literature and various databases. In this study, we describe MitoLSDB, an integrated platform to catalogue disease association studies on mtDNA (http://mitolsdb.igib.res.in). The main goal of MitoLSDB is to provide a central platform for direct submissions of novel variants that can be curated by the Mitochondrial Research Community. MitoLSDB provides access to standardized and annotated data from literature and databases encompassing information from 5231 individuals, 675 populations and 27 phenotypes. This platform is developed using the Leiden Open (source) Variation Database (LOVD) software. MitoLSDB houses information on all 37 genes in each population amounting to 132397 variants, 5147 unique variants. For each variant its genomic location as per the Revised Cambridge Reference Sequence, codon and amino acid change for variations in protein-coding regions, frequency, disease/phenotype, population, reference and remarks are also listed. MitoLSDB curators have also reported errors documented in literature which includes 94 phantom mutations, 10 NUMTs, six documentation errors and one artefactual recombination. MitoLSDB is the largest repository of mtDNA variants systematically standardized and presented using the LOVD platform. We believe that this is a good starting resource to curate mtDNA variants and will facilitate direct submissions enhancing data coverage, annotation in context of pathogenesis and quality control by ensuring non-redundancy in reporting novel disease associated variants.
Collapse
|
33
|
Kim HL, Schuster SC. Poor Man's 1000 Genome Project: Recent Human Population Expansion Confounds the Detection of Disease Alleles in 7,098 Complete Mitochondrial Genomes. Front Genet 2013; 4:13. [PMID: 23450075 PMCID: PMC3584485 DOI: 10.3389/fgene.2013.00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/28/2013] [Indexed: 01/29/2023] Open
Abstract
Rapid growth of the human population has caused the accumulation of rare genetic variants that may play a role in the origin of genetic diseases. However, it is challenging to identify those rare variants responsible for specific diseases without genetic data from an extraordinarily large population sample. Here we focused on the accumulated data from the human mitochondrial (mt) genome sequences because this data provided 7,098 whole genomes for analysis. In this dataset we identified 6,110 single nucleotide variants (SNVs) and their frequency and determined that the best-fit demographic model for the 7,098 genomes included severe population bottlenecks and exponential expansions of the non-African population. Using this model, we simulated the evolution of mt genomes in order to ascertain the behavior of deleterious mutations. We found that such deleterious mutations barely survived during population expansion. We derived the threshold frequency of a deleterious mutation in separate African, Asian, and European populations and used it to identify pathogenic mutations in our dataset. Although threshold frequency was very low, the proportion of variants showing a lower frequency than that threshold was 82, 83, and 91% of the total variants for the African, Asian, and European populations, respectively. Within these variants, only 18 known pathogenic mutations were detected in the 7,098 genomes. This result showed the difficulty of detecting a pathogenic mutation within an abundance of rare variants in the human population, even with a large number of genomes available for study.
Collapse
Affiliation(s)
- Hie Lim Kim
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University University Park, PA, USA
| | | |
Collapse
|
34
|
Schlebusch CM, Lombard M, Soodyall H. MtDNA control region variation affirms diversity and deep sub-structure in populations from southern Africa. BMC Evol Biol 2013; 13:56. [PMID: 23445172 PMCID: PMC3607893 DOI: 10.1186/1471-2148-13-56] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/20/2013] [Indexed: 12/11/2022] Open
Abstract
Background The current San and Khoe populations are remnant groups of a much larger and widely dispersed population of hunter-gatherers and pastoralists, who had exclusive occupation of southern Africa before the influx of Bantu-speakers from 2 ka (ka = kilo annum [thousand years] old/ago) and sea-borne immigrants within the last 350 years. Here we use mitochondrial DNA (mtDNA) to examine the population structure of various San and Khoe groups, including seven different Khoe-San groups (Ju/’hoansi, !Xun, /Gui+//Gana, Khwe, ≠Khomani, Nama and Karretjie People), three different Coloured groups and seven other comparative groups. MtDNA hyper variable segments I and II (HVS I and HVS II) together with selected mtDNA coding region SNPs were used to assign 538 individuals to 18 haplogroups encompassing 245 unique haplotypes. Data were further analyzed to assess haplogroup histories and the genetic affinities of the various San, Khoe and Coloured populations. Where possible, we tentatively contextualize the genetic trends through time against key trends known from the archaeological record. Results The most striking observation from this study was the high frequencies of the oldest mtDNA haplogroups (L0d and L0k) that can be traced back in time to ~100 ka, found at high frequencies in Khoe-San and sampled Coloured groups. Furthermore, the L0d/k sub-haplogroups were differentially distributed in the different Khoe-San and Coloured groups and had different signals of expansion, which suggested different associated demographic histories. When populations were compared to each other, San groups from the northern parts of southern Africa (Ju speaking: !Xun, Ju/’hoansi and Khoe-speaking: /Gui+//Gana) grouped together and southern groups (historically Tuu speaking: ≠Khomani and Karretjie People and some Coloured groups) grouped together. The Khoe group (Nama) clustered with the southern Khoe-San and Coloured groups. The Khwe mtDNA profile was very different from other Khoe-San groups with high proportions of Bantu-speaking admixture but also unique distributions of other mtDNA lineages. Conclusions On the whole, the research reported here presented new insights into the multifaceted demographic history that shaped the existing genetic landscape of the Khoe-San and Coloured populations of southern Africa.
Collapse
Affiliation(s)
- Carina M Schlebusch
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, 2000, South Africa.
| | | | | |
Collapse
|
35
|
Brisighelli F, Álvarez-Iglesias V, Fondevila M, Blanco-Verea A, Carracedo Á, Pascali VL, Capelli C, Salas A. Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage. PLoS One 2012; 7:e50794. [PMID: 23251386 PMCID: PMC3519480 DOI: 10.1371/journal.pone.0050794] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Background According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. Methods/Principal Findings A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities — and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy – probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. Conclusions/Significance Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times.
Collapse
Affiliation(s)
- Francesca Brisighelli
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Manuel Fondevila
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Alejandro Blanco-Verea
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ángel Carracedo
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Fundación Pública Galega de Medicina Xenómica (FPGMX-SERGAS), CIBER enfermedades raras, Santiago de Compostela, Galicia, Spain
| | - Vincenzo L. Pascali
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Antonio Salas
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- * E-mail:
| |
Collapse
|
36
|
Pennarun E, Kivisild T, Metspalu E, Metspalu M, Reisberg T, Moisan JP, Behar DM, Jones SC, Villems R. Divorcing the Late Upper Palaeolithic demographic histories of mtDNA haplogroups M1 and U6 in Africa. BMC Evol Biol 2012. [PMID: 23206491 PMCID: PMC3582464 DOI: 10.1186/1471-2148-12-234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background A Southwest Asian origin and dispersal to North Africa in the Early Upper Palaeolithic era has been inferred in previous studies for mtDNA haplogroups M1 and U6. Both haplogroups have been proposed to show similar geographic patterns and shared demographic histories. Results We report here 24 M1 and 33 U6 new complete mtDNA sequences that allow us to refine the existing phylogeny of these haplogroups. The resulting phylogenetic information was used to genotype a further 131 M1 and 91 U6 samples to determine the geographic spread of their sub-clades. No southwest Asian specific clades for M1 or U6 were discovered. U6 and M1 frequencies in North Africa, the Middle East and Europe do not follow similar patterns, and their sub-clade divisions do not appear to be compatible with their shared history reaching back to the Early Upper Palaeolithic. The Bayesian Skyline Plots testify to non-overlapping phases of expansion, and the haplogroups’ phylogenies suggest that there are U6 sub-clades that expanded earlier than those in M1. Some M1 and U6 sub-clades could be linked with certain events. For example, U6a1 and M1b, with their coalescent ages of ~20,000–22,000 years ago and earliest inferred expansion in northwest Africa, could coincide with the flourishing of the Iberomaurusian industry, whilst U6b and M1b1 appeared at the time of the Capsian culture. Conclusions Our high-resolution phylogenetic dissection of both haplogroups and coalescent time assessments suggest that the extant main branching pattern of both haplogroups arose and diversified in the mid-later Upper Palaeolithic, with some sub-clades concomitantly with the expansion of the Iberomaurusian industry. Carriers of these maternal lineages have been later absorbed into and diversified further during the spread of Afro-Asiatic languages in North and East Africa.
Collapse
Affiliation(s)
- Erwan Pennarun
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gonçalves da Silva A, Cunha ICL, Santos WS, Luz SLB, Ribolla PEM, Abad-Franch F. Gene flow networks among American Aedes aegypti populations. Evol Appl 2012; 5:664-76. [PMID: 23144654 PMCID: PMC3492893 DOI: 10.1111/j.1752-4571.2012.00244.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/09/2012] [Indexed: 12/01/2022] Open
Abstract
The mosquito Aedes aegypti, the dengue virus vector, has spread throughout the tropics in historical times. While this suggests man-mediated dispersal, estimating contemporary connectivity among populations has remained elusive. Here, we use a large mtDNA dataset and a Bayesian coalescent framework to test a set of hypotheses about gene flow among American Ae. aegypti populations. We assessed gene flow patterns at the continental and subregional (Amazon basin) scales. For the Americas, our data favor a stepping-stone model in which gene flow is higher among adjacent populations but in which, at the same time, North American and southeastern Brazilian populations are directly connected, likely via sea trade. Within Amazonia, the model with highest support suggests extensive gene flow among major cities; Manaus, located at the center of the subregional transport network, emerges as a potentially important connecting hub. Our results suggest substantial connectivity across Ae. aegypti populations in the Americas. As long-distance active dispersal has not been observed in this species, our data support man-mediated dispersal as a major determinant of the genetic structure of American Ae. aegypti populations. The inferred topology of interpopulation connectivity can inform network models of Ae. aegypti and dengue spread.
Collapse
Affiliation(s)
- Anders Gonçalves da Silva
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Division of Marine and Atmospheric Research Hobart, TAS, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Haplogrouping mitochondrial DNA sequences in Legal Medicine/Forensic Genetics. Int J Legal Med 2012; 126:901-16. [PMID: 22940763 DOI: 10.1007/s00414-012-0762-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 08/06/2012] [Indexed: 12/11/2022]
Abstract
Haplogrouping refers to the classification of (partial) mitochondrial DNA (mtDNA) sequences into haplogroups using the current knowledge of the worldwide mtDNA phylogeny. Haplogroup assignment of mtDNA control-region sequences assists in the focused comparison with closely related complete mtDNA sequences and thus serves two main goals in forensic genetics: first is the a posteriori quality analysis of sequencing results and second is the prediction of relevant coding-region sites for confirmation or further refinement of haplogroup status. The latter may be important in forensic casework where discrimination power needs to be as high as possible. However, most articles published in forensic genetics perform haplogrouping only in a rudimentary or incorrect way. The present study features PhyloTree as the key tool for assigning control-region sequences to haplogroups and elaborates on additional Web-based searches for finding near-matches with complete mtDNA genomes in the databases. In contrast, none of the automated haplogrouping tools available can yet compete with manual haplogrouping using PhyloTree plus additional Web-based searches, especially when confronted with artificial recombinants still present in forensic mtDNA datasets. We review and classify the various attempts at haplogrouping by using a multiplex approach or relying on automated haplogrouping. Furthermore, we re-examine a few articles in forensic journals providing mtDNA population data where appropriate haplogrouping following PhyloTree immediately highlights several kinds of sequence errors.
Collapse
|
39
|
A cautionary note on switching mitochondrial DNA reference sequences in forensic genetics. Forensic Sci Int Genet 2012; 6:e182-4. [PMID: 22840856 DOI: 10.1016/j.fsigen.2012.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/27/2012] [Accepted: 06/29/2012] [Indexed: 11/24/2022]
|
40
|
Petruzzella V, Carrozzo R, Calabrese C, Dell'Aglio R, Trentadue R, Piredda R, Artuso L, Rizza T, Bianchi M, Porcelli AM, Guerriero S, Gasparre G, Attimonelli M. Deep sequencing unearths nuclear mitochondrial sequences under Leber's hereditary optic neuropathy-associated false heteroplasmic mitochondrial DNA variants. Hum Mol Genet 2012; 21:3753-64. [PMID: 22589247 DOI: 10.1093/hmg/dds182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is associated with mitochondrial DNA (mtDNA) ND mutations that are mostly homoplasmic. However, these mutations are not sufficient to explain the peculiar features of penetrance and the tissue-specific expression of the disease and are believed to be causative in association with unknown environmental or other genetic factors. Discerning between clear-cut pathogenetic variants, such as those that appear to be heteroplasmic, and less penetrant variants, such as the homoplasmic, remains a challenging issue that we have addressed here using next-generation sequencing approach. We set up a protocol to quantify MTND5 heteroplasmy levels in a family in which the proband manifests a LHON phenotype. Furthermore, to study this mtDNA haplotype, we applied the cybridization protocol. The results demonstrate that the mutations are mostly homoplasmic, whereas the suspected heteroplasmic feature of the observed mutations is due to the co-amplification of Nuclear mitochondrial Sequences.
Collapse
|
41
|
Interdisciplinary approach to the demography of Jamaica. BMC Evol Biol 2012; 12:24. [PMID: 22360861 PMCID: PMC3299582 DOI: 10.1186/1471-2148-12-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/23/2012] [Indexed: 11/22/2022] Open
Abstract
Background The trans-Atlantic slave trade dramatically changed the demographic makeup of the New World, with varying regions of the African coast exploited differently over roughly a 400 year period. When compared to the discrete mitochondrial haplotype distribution of historically appropriate source populations, the unique distribution within a specific source population can prove insightful in estimating the contribution of each population. Here, we analyzed the first hypervariable region of mitochondrial DNA in a sample from the Caribbean island of Jamaica and compared it to aggregated populations in Africa divided according to historiographically defined segments of the continent's coastline. The results from these admixture procedures were then compared to the wealth of historic knowledge surrounding the disembarkation of Africans on the island. Results In line with previous findings, the matriline of Jamaica is almost entirely of West African descent. Results from the admixture analyses suggest modern Jamaicans share a closer affinity with groups from the Gold Coast and Bight of Benin despite high mortality, low fecundity, and waning regional importation. The slaves from the Bight of Biafra and West-central Africa were imported in great numbers; however, the results suggest a deficit in expected maternal contribution from those regions. Conclusions When considering the demographic pressures imposed by chattel slavery on Jamaica during the slave era, the results seem incongruous. Ethnolinguistic and ethnographic evidence, however, may explain the apparent non-random levels of genetic perseverance. The application of genetics may prove useful in answering difficult demographic questions left by historically voiceless groups.
Collapse
|
42
|
Rubino F, Piredda R, Calabrese FM, Simone D, Lang M, Calabrese C, Petruzzella V, Tommaseo-Ponzetta M, Gasparre G, Attimonelli M. HmtDB, a genomic resource for mitochondrion-based human variability studies. Nucleic Acids Res 2011; 40:D1150-9. [PMID: 22139932 PMCID: PMC3245114 DOI: 10.1093/nar/gkr1086] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
HmtDB (http://www.hmtdb.uniba.it:8080/hmdb) is a open resource created to support population genetics and mitochondrial disease studies. The database hosts human mitochondrial genome sequences annotated with population and variability data, the latter being estimated through the application of the SiteVar software based on site-specific nucleotide and amino acid variability calculations. The annotations are manually curated thus adding value to the quality of the information provided to the end-user. Classifier tools implemented in HmtDB allow the prediction of the haplogroup for any human mitochondrial genome currently stored in HmtDB or externally submitted de novo by an end-user. Haplogroup definition is based on the Phylotree system. End-users accessing HmtDB are hence allowed to (i) browse the database through the use of a multi-criterion ‘query’ system; (ii) analyze their own human mitochondrial sequences via the ‘classify’ tool (for complete genomes) or by downloading the ‘fragment-classifier’ tool (for partial sequences); (iii) download multi-alignments with reference genomes as well as variability data.
Collapse
Affiliation(s)
- Francesco Rubino
- Dipartimento di Biochimica e Biologia Molecolare E Quagliariello, Università degli studi di Bari, Bari 70126, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu J, Wang LD, Sun YB, Li EM, Xu LY, Zhang YP, Yao YG, Kong QP. Deciphering the Signature of Selective Constraints on Cancerous Mitochondrial Genome. Mol Biol Evol 2011; 29:1255-61. [DOI: 10.1093/molbev/msr290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
44
|
Abstract
A rare combination of mutations within mitochondrial DNA subhaplogroup T2e is identified as affiliated with Sephardic Jews, a group that has received relatively little attention. Four investigations were pursued: Search of the motif in 250 000 control region records across 8 databases, comparison of frequencies of T subhaplogroups (T1, T2b, T2c, T2e, T4, T(*)) across 11 diverse populations, creation of a phylogenic median-joining network from public T2e control region entries, and analysis of one Sephardic mitochondrial full genomic sequence with the motif. It was found that the rare motif belonged only to Sephardic descendents (Turkey, Bulgaria), to inhabitants of North American regions known for secret Spanish-Jewish colonization, or were consistent with Sephardic ancestry. The incidence of subhaplogroup T2e decreased from the Western Arabian Peninsula to Italy to Spain and into Western Europe. The ratio of sister subhaplogroups T2e to T2b was found to vary 40-fold across populations from a low in the British Isles to a high in Saudi Arabia with the ratio in Sephardim more similar to Saudi Arabia, Egypt, and Italy than to hosts Spain and Portugal. Coding region mutations of 2308G and 14499T may locate the Sephardic signature within T2e, but additional samples and reworking of current T2e phylogenetic branch structure is needed. The Sephardic Turkish community has a less pronounced founder effect than some Ashkenazi groups considered singly (eg, Polish), but other comparisons of interest await comparable averaging. Registries of signatures will benefit the study of populations with a large number of smaller-size founders.
Collapse
|
45
|
A statistical framework for the interpretation of mtDNA mixtures: forensic and medical applications. PLoS One 2011; 6:e26723. [PMID: 22053205 PMCID: PMC3203886 DOI: 10.1371/journal.pone.0026723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 10/02/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) variation is commonly analyzed in a wide range of different biomedical applications. Cases where more than one individual contribute to a stain genotyped from some biological material give rise to a mixture. Most forensic mixture cases are analyzed using autosomal markers. In rape cases, Y-chromosome markers typically add useful information. However, there are important cases where autosomal and Y-chromosome markers fail to provide useful profiles. In some instances, usually involving small amounts or degraded DNA, mtDNA may be the only useful genetic evidence available. Mitochondrial DNA mixtures also arise in studies dealing with the role of mtDNA variation in tumorigenesis. Such mixtures may be generated by the tumor, but they could also originate in vitro due to inadvertent contamination or a sample mix-up. Methods/Principal Findings We present the statistical methods needed for mixture interpretation and emphasize the modifications required for the more well-known methods based on conventional markers to generalize to mtDNA mixtures. Two scenarios are considered. Firstly, only categorical mtDNA data is assumed available, that is, the variants contributing to the mixture. Secondly, quantitative data (peak heights or areas) on the allelic variants are also accessible. In cases where quantitative information is available in addition to allele designation, it is possible to extract more precise information by using regression models. More precisely, using quantitative information may lead to a unique solution in cases where the qualitative approach points to several possibilities. Importantly, these methods also apply to clinical cases where contamination is a potential alternative explanation for the data. Conclusions/Significance We argue that clinical and forensic scientists should give greater consideration to mtDNA for mixture interpretation. The results and examples show that the analysis of mtDNA mixtures contributes substantially to forensic casework and may also clarify erroneous claims made in clinical genetics regarding tumorigenesis.
Collapse
|
46
|
Seoane M, Mosquera-Miguel A, Gonzalez T, Fraga M, Salas A, Costoya JA. The mitochondrial genome is a "genetic sanctuary" during the oncogenic process. PLoS One 2011; 6:e23327. [PMID: 21858071 PMCID: PMC3157371 DOI: 10.1371/journal.pone.0023327] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022] Open
Abstract
Since Otto Warburg linked mitochondrial physiology and oncogenesis in the 1930s, a number of studies have focused on the analysis of the genetic basis for the presence of aerobic glycolysis in cancer cells. However, little or no evidence exists today to indicate that mtDNA mutations are directly responsible for the initiation of tumor onset. Based on a model of gliomagenesis in the mouse, we aimed to explore whether or not mtDNA mutations are associated with the initiation of tumor formation, maintenance and aggressiveness. We reproduced the different molecular events that lead from tumor initiation to progression in the mouse glioma. In human gliomas, most of the genetic alterations that have been previously identified result in the aberrant activation of different signaling pathways and deregulation of the cell cycle. Our data indicates that mitochondrial dysfunction is associated with reactive oxygen species (ROS) generation, leading to increased nuclear DNA (nDNA) mutagenesis, but maintaining the integrity of the mitochondrial genome. In addition, mutational stability has been observed in entire mtDNA of human gliomas; this is in full agreement with the results obtained in the cancer mouse model. We use this model as a paradigm of oncogenic transformation due to the fact that mutations commonly found in gliomas appear to be the most common molecular alterations leading to tumor development in most types of human cancer. Our results indicate that the mtDNA genome is kept by the cell as a "genetic sanctuary" during tumor development in the mouse and humans. This is compatible with the hypothesis that the mtDNA molecule plays an essential role in the control of the cellular adaptive survival response to tumor-induced oxidative stress. The integrity of mtDNA seems to be a necessary element for responding to the increased ROS production associated with the oncogenic process.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Chromosomal Instability
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Genome, Mitochondrial/genetics
- Glioma/genetics
- Glioma/metabolism
- Glioma/pathology
- Humans
- Mice
- Mice, 129 Strain
- Mice, Inbred A
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred NOD
- Mice, Knockout
- Molecular Sequence Data
- Mutation
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Reactive Oxygen Species/metabolism
- Sequence Analysis, DNA
- Species Specificity
Collapse
Affiliation(s)
- Marcos Seoane
- Molecular Oncology Laboratory MOL, Facultade de Medicina, Departamento de Fisioloxia, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ana Mosquera-Miguel
- Unidade de Xenetica, Instituto de Medicina Legal, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Teresa Gonzalez
- Fundacion Galega de Medicina Xenomica, Servicio Galego de Saude, Santiago de Compostela, Galicia, Spain
| | - Maximo Fraga
- Departamento de Anatomia Patoloxica e Ciencias Forenses, Universidade de Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- Unidade de Xenetica, Instituto de Medicina Legal, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- Departamento de Anatomia Patoloxica e Ciencias Forenses, Universidade de Santiago de Compostela, Galicia, Spain
| | - Jose A. Costoya
- Molecular Oncology Laboratory MOL, Facultade de Medicina, Departamento de Fisioloxia, Universidade de Santiago de Compostela, Galicia, Spain
| |
Collapse
|
47
|
Amorim A. A comment on “The hare and the tortoise: One small step for four SNPs, one giant leap for SNP-kind”. Forensic Sci Int Genet 2011; 5:358-60; discussion 361-2. [DOI: 10.1016/j.fsigen.2010.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/02/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
48
|
Schlebusch CM, de Jongh M, Soodyall H. Different contributions of ancient mitochondrial and Y-chromosomal lineages in ‘Karretjie people’ of the Great Karoo in South Africa. J Hum Genet 2011; 56:623-30. [DOI: 10.1038/jhg.2011.71] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Peng MS, Zhang YP. Inferring the population expansions in peopling of Japan. PLoS One 2011; 6:e21509. [PMID: 21747908 PMCID: PMC3126835 DOI: 10.1371/journal.pone.0021509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 06/02/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Extensive studies in different fields have been performed to reconstruct the prehistory of populations in the Japanese archipelago. Estimates the ancestral population dynamics based on Japanese molecular sequences can extend our understanding about the colonization of Japan and the ethnogenesis of modern Japanese. METHODOLOGY/PRINCIPAL FINDINGS We applied Bayesian skyline plot (BSP) with a dataset based on 952 Japanese mitochondrial DNA (mtDNA) genomes to depict the female effective population size (N(ef)) through time for the total Japanese and each of the major mtDNA haplogroups in Japanese. Our results revealed a rapid N(ef) growth since ∼5 thousand years ago had left ∼72% Japanese mtDNA lineages with a salient signature. The BSP for the major mtDNA haplogroups indicated some different demographic history. CONCLUSIONS/SIGNIFICANCE The results suggested that the rapid population expansion acted as a major force in shaping current maternal pool of Japanese. It supported a model for population dynamics in Japan in which the prehistoric population growth initiated in the Middle Jomon Period experienced a smooth and swift transition from Jomon to Yayoi, and then continued through the Yayoi Period. The confounding demographic backgrounds of different mtDNA haplogroups could also have some implications for some related studies in future.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, People's Republic of China
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, Yunnan, People's Republic of China
- * E-mail:
| |
Collapse
|
50
|
Irwin JA, Parson W, Coble MD, Just RS. mtGenome reference population databases and the future of forensic mtDNA analysis. Forensic Sci Int Genet 2011; 5:222-5. [DOI: 10.1016/j.fsigen.2010.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/24/2010] [Indexed: 12/13/2022]
|