1
|
Di Giulio V, Canciello A, Carletti E, De Luca A, Giordano A, Morrione A, Berardinelli J, Russo V, Solari D, Cavallo LM, Barboni B. The dual nature of KLHL proteins: From cellular regulators to disease drivers. Eur J Cell Biol 2025; 104:151483. [PMID: 40101609 DOI: 10.1016/j.ejcb.2025.151483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
The Kelch-like (KLHL) protein family, characterized by its conserved BTB, BACK, and Kelch domains, serves as substrate adaptors for Cullin 3-RING ligases (CRL3), facilitating the ubiquitination and degradation of specific target proteins. Through this mechanism, KLHL proteins regulate numerous physiological processes, including cytoskeletal organization, oxidative stress response, and cell cycle progression. Dysregulation of KLHL proteins-via mutations or abnormal expression-has been implicated in various pathological conditions, including neurodegenerative disorders, cancer, cardiovascular diseases, and hereditary syndromes. This review provides a comprehensive overview of the physiological and pathological roles of KLHL proteins, emphasizing their specific substrates and mechanisms of action. By integrating structural and mechanistic insights with translational research, this review underscores the potential of KLHL proteins as promising therapeutic targets, offering new opportunities to combat a wide spectrum of complex diseases.
Collapse
Affiliation(s)
- Verdiana Di Giulio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| | - Angelo Canciello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy.
| | - Erminia Carletti
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), G. D'Annunzio University Chieti-Pescara, Chieti 66100, Italy
| | - Antonella De Luca
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), G. D'Annunzio University Chieti-Pescara, Chieti 66100, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States; Department of Biomedical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Jacopo Berardinelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| | - Domenico Solari
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Luigi Maria Cavallo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| |
Collapse
|
2
|
Johnson N, Qi B, Wen J, Du B, Banerjee S. KLHL24 associated cardiomyopathy: Gene function to clinical management. Gene 2025; 939:149185. [PMID: 39708934 DOI: 10.1016/j.gene.2024.149185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/26/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND KLHL24 (Kelch-like protein 24) is a significant component of the ubiquitin-proteasome system (UPS), involved in regulating protein turnover through targeted ubiquitination and degradation. Germline mutations in KLHL24 gene have been known to cause Epidermolysis Bullosa Simplex characterized by skin fragility but has recently been found to cause Cardiomyopathy. MAIN BODY Various cardiomyopathies, including hypertrophic cardiomyopathy and dilated cardiomyopathy, leading to abnormal protein degradation and affecting the stability and function of essential cardiac proteins which finally results into structural and functional abnormalities in cardiac muscle. In this review, in order to understand the disease association of germline mutations of KLHL24, we summarize all the studies performed with KLHL24 gene including studies from 2016 when KLHL24 was first identified to be associated with epidermolysis bullosa simplex till the recent studies in 2024 by using keywords such as KLHL24 gene, hypertrophic cardiomyopathy, dilated cardiomyopathy and epidermolysis bullosa simplex. Furthermore, we explored the proposed molecular mechanisms and pathophysiologies of KLHL24 associated diseases. Patients with KLHL24 mutations were usually presented with variable clinical symptoms. The main clinical presentations have been cutaneous lesions, cardiac symptoms associated with cardiomyopathies and there have been reports of skeletal muscle weakness and neurological symptoms as well. Current treatments focus on managing clinical symptoms and preventing complications through medications, lifestyle changes, and surgical interventions. In addition, researches have also been conducted cell culture based in vitro studies for reducing the clinical symptoms of KLHL24 associated diseases. However, currently there are no specific clinical trials going on regarding the therapeutic strategies among patients with KLHL24 mutations. Understanding the role of KLHL24 in cardiomyopathies is very important for developing targeted diagnostic approach with therapeutic strategies. CONCLUSION This review emphasizes the importance of KLHL24 mutations as a newly recognized cause of cardiomyopathy, paving the way for improved clinical diagnosis, targeted therapies, and ultimately, for better patient outcomes.
Collapse
Affiliation(s)
- Neil Johnson
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China; Department of Cardiology, China-Japan Union Hospital of Jilin University, Norman Bethune Health Science Center, Changchun, China
| | - Baiyu Qi
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Beibei Du
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Norman Bethune Health Science Center, Changchun, China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
3
|
He Y, Has C. Isolation and Culture of Epidermolysis Bullosa Cells and Organotypic Skin Models. Methods Mol Biol 2025; 2922:143-152. [PMID: 40208533 DOI: 10.1007/978-1-0716-4510-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Isolation and culture of keratinocytes from patients with different types of epidermolysis bullosa are sometimes challenging, because of the inherent adhesion defects of these cells. We routinely employ a well-established protocol for in vitro culture of these cells from small skin samples remaining left after diagnostic procedures are performed. Keratinocytes and fibroblast can be used for downstream expression and functional studies or for construction of in vitro organotypic cocultures. These cells maintain main common characteristics of spreading, adhesion, migration, and survival, which depend on the underlying molecular defect.
Collapse
Affiliation(s)
- Yinghong He
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Berglund A, Johannsen EB, Skakkebæk A, Chang S, Rohayem J, Laurentino S, Hørlyck A, Drue SO, Bak EN, Fedder J, Tüttelmann F, Gromoll J, Just J, Gravholt CH. Integration of long-read sequencing, DNA methylation and gene expression reveals heterogeneity in Y chromosome segment lengths in phenotypic males with 46,XX testicular disorder/difference of sex development. Biol Sex Differ 2024; 15:77. [PMID: 39380113 PMCID: PMC11463111 DOI: 10.1186/s13293-024-00654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND 46,XX testicular disorder/difference of sex development (46,XX DSD) is a rare congenital condition, characterized by a combination of the typical female sex chromosome constitution, 46,XX, and a variable male phenotype. In the majority of individuals with 46,XX DSD, a Y chromosome segment containing the sex-determining region gene (SRY) has been translocated to the paternal X chromosome. However, the precise genomic content of the translocated segment and the genome-wide effects remain elusive. METHODS We performed long-read DNA sequencing, RNA sequencing and DNA methylation analyses on blood samples from 46,XX DSD (n = 11), male controls (46,XY; variable cohort sizes) and female controls (46,XX; variable cohort sizes), in addition to RNA sequencing and DNA methylation analysis on blood samples from males with Klinefelter syndrome (47,XXY, n = 22). We also performed clinical measurements on all 46,XX DSD and a subset of 46,XY (n = 10). RESULTS We identified variation in the translocated Y chromosome segments, enabling subcategorization into 46,XX DSD (1) lacking Y chromosome material (n = 1), (2) with short Yp arms (breakpoint at 2.7-2.8 Mb, n = 2), (3) with medium Yp arms (breakpoint at 7.3 Mb, n = 1), and (4) with long Yp arms (n = 7), including deletions of AMELY, TBLY1 and in some cases PRKY. We also identified variable expression of the X-Y homologues PRKY and PRKX. The Y-chromosomal transcriptome and methylome reflected the Y chromosome segment lengths, while changes to autosomal and X-chromosomal regions indicated global effects. Furthermore, transcriptional changes tentatively correlated with phenotypic traits of 46,XX DSD, including reduced height, lean mass and testicular size. CONCLUSION This study refines our understanding of the genetic composition in 46,XX DSD, describing the translocated Y chromosome segment in more detail than previously and linking variability herein to genome-wide changes in the transcriptome and methylome.
Collapse
Affiliation(s)
- Agnethe Berglund
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Anne Skakkebæk
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon Chang
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Julia Rohayem
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Arne Hørlyck
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon O Drue
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ebbe Norskov Bak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Odense University Hospital, Odense, Denmark
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Kotalevskaya YY, Stepanov VA. Syndromic epidermolysis bullosa simplex subtype due to mutations in the KLHL24 gene: series of case reports in Russian families. Front Med (Lausanne) 2024; 11:1418239. [PMID: 39135715 PMCID: PMC11318278 DOI: 10.3389/fmed.2024.1418239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Objective Epidermolysis bullosa simplex (EBS) is a common, well-characterized type of epidermolysis bullosa. However, some rare syndromic EBS phenotypes are not well described. The accumulation of clinical descriptions of patients with syndromic subtypes of EBS is important for understanding the natural history of the disease and assessing genotype-phenotype correlations. Case summary We present a series of case reports of the syndromic subtype of EBS associated with mutations in the KLHL24 gene in seven patients from four unrelated families. The clinical features of this rare phenotype in children and adult patients are described in detail. In two families, we revealed pathogenic variant c.1A > G (p.Met1?) in the KLHL24 gene. The third family had c.3G > A (p.Met1?) mutation, and the fourth family had a novel de novo variant c.23del (p.Arg8AsnfsTer2). Conclusion The description of the clinical manifestations of the disease in two generations of EBS families with different genetic variants allows the assessment and prediction of the natural course and severity of the disease in these families, the risk of complications, and the planning of the amount of medical care necessary.
Collapse
Affiliation(s)
- Yulia Y. Kotalevskaya
- Medical Genetics Center, Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, Russia
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Vadim A. Stepanov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
6
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Kosykh AV, Ryumina II, Botkina AS, Evtushenko NA, Zhigmitova EB, Martynova AA, Gurskaya NG, Rebrikov DV. EBS in Children with De Novo Pathogenic Variants Disturbing Krt14. Int J Mol Sci 2024; 25:2989. [PMID: 38474236 DOI: 10.3390/ijms25052989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a dermatological condition marked by skin fragility and blister formation resulting from separation within the basal layer of the epidermis, which can be attributed to various genetic etiologies. This study presents three pathogenic de novo variants in young children, with clinical manifestations appearing as early as the neonatal period. The variants contribute to the EBS phenotype through two distinct mechanisms: direct keratin abnormalities due to pathogenic variants in the Krt14 gene, and indirect effects via pathogenic mutation in the KLHL24 gene, which interfere with the natural proteasome-mediated degradation pathway of KRT14. We report one severe case of EBS with mottled pigmentation arising from the Met119Thr pathogenic variant in KRT14, another case involving a pathogenic KLHL24 Met1Val variant, and a third case featuring the hot spot mutation Arg125His in KRT14, all manifesting within the first few weeks of life. This research underscores the complexity of genetic influences in EBS and highlights the importance of early genetic screening for accurate diagnosis and management.
Collapse
Affiliation(s)
- Anastasiya V Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia
| | - Irina I Ryumina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, ul Akademika Oparina, 4, Moscow 117997, Russia
| | - Alexandra S Botkina
- Department of Dermatovenereology, Russian Children's Clinical Hospital, Pirogov Russian National Research Medical University, Leninsky Prospekt, 117, k3, Moscow 119571, Russia
| | - Nadezhda A Evtushenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia
| | - Elena B Zhigmitova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia
| | - Aleksandra A Martynova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia
| | - Nadya G Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia
| | - Denis V Rebrikov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, ul Akademika Oparina, 4, Moscow 117997, Russia
| |
Collapse
|
8
|
Gaspar D, Ginja C, Carolino N, Leão C, Monteiro H, Tábuas L, Branco S, Padre L, Caetano P, Romão R, Matos C, Ramos AM, Bettencourt E, Usié A. Genome-wide association study identifies genetic variants underlying footrot in Portuguese Merino sheep. BMC Genomics 2024; 25:100. [PMID: 38262937 PMCID: PMC10804546 DOI: 10.1186/s12864-023-09844-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Ovine footrot caused by Dichelobacter nodosus (D. nodosus) is a contagious disease with serious economic and welfare impacts in sheep production systems worldwide. A better understanding of the host genetic architecture regarding footrot resistance/susceptibility is crucial to develop disease control strategies that efficiently reduce infection and its severity. A genome-wide association study was performed using a customized SNP array (47,779 SNPs in total) to identify genetic variants associated to footrot resistance/susceptibility in two Portuguese native breeds, i.e. Merino Branco and Merino Preto, and a population of crossbred animals. A cohort of 1375 sheep sampled across 17 flocks, located in the Alentejo region (southern Portugal), was included in the analyses. RESULTS Phenotypes were scored from 0 (healthy) to 5 (severe footrot) based on visual inspection of feet lesions, following the Modified Egerton System. Using a linear mixed model approach, three SNPs located on chromosome 24 reached genome-wide significance after a Bonferroni correction (p < 0.05). Additionally, six genome-wide suggestive SNPs were identified each on chromosomes 2, 4, 7, 8, 9 and 15. The annotation and KEGG pathway analyses showed that these SNPs are located within regions of candidate genes such as the nonsense mediated mRNA decay associated PI3K related kinase (SMG1) (chromosome 24) and the RALY RNA binding protein like (RALYL) (chromosome 9), both involved in immunity, and the heparan sulfate proteoglycan 2 (HSPG2) (chromosome 2) and the Thrombospodin 1 (THBS1) (chromosome 7) implicated in tissue repair and wound healing processes. CONCLUSION This is the first attempt to identify molecular markers associated with footrot in Portuguese Merino sheep. These findings provide relevant information on a likely genetic association underlying footrot resistance/susceptibility and the potential candidate genes affecting this trait. Genetic selection strategies assisted on the information obtained from this study could enhance Merino sheep-breeding programs, in combination with farm management strategies, for a more effective and sustainable long-term solution for footrot control.
Collapse
Affiliation(s)
- Daniel Gaspar
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus do Varão, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
| | - Catarina Ginja
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus do Varão, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
- CIISA, Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Nuno Carolino
- CIISA, Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisboa, Portugal
- Instituto Nacional de Investigação Agrária E Veterinária, I.P. (INIAV, I.P.), Avenida da República, Quinta Do Marquês, 2780-157, Oeiras, Portugal
- Escola Universitária Vasco da Gama, Av. José R. Sousa Fernandes 197, 3020-210, Lordemão, Coimbra, Portugal
| | - Célia Leão
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
- Instituto Nacional de Investigação Agrária E Veterinária, I.P. (INIAV, I.P.), Avenida da República, Quinta Do Marquês, 2780-157, Oeiras, Portugal
- MED - Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal
| | | | | | - Sandra Branco
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
- Departamento de Medicina Veterinária, Escola de Ciências E Tecnologia, Évora University, Pólo da Mitra Ap. 94, 7002-554, Évora, Portugal
| | - Ludovina Padre
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Pedro Caetano
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Ricardo Romão
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | | | - António Marcos Ramos
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
- MED - Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal
| | - Elisa Bettencourt
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.
- MED - Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.
| |
Collapse
|
9
|
Liu Y, Cui J, Zhang J, Chen Z, Song Z, Bao D, Xiang R, Li D, Yang Y. Excess KLHL24 Impairs Skin Wound Healing through the Degradation of Vimentin. J Invest Dermatol 2023; 143:1289-1298.e15. [PMID: 36716923 DOI: 10.1016/j.jid.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/14/2022] [Accepted: 01/07/2023] [Indexed: 01/30/2023]
Abstract
Start codon variants in ubiquitin ligase KLHL24 lead to a gain-of-function mutant KLHL24-ΔN28, which mediates the excessive degradation of keratin 15, desmin, and keratin 14, resulting in alopecia, cardiopathy, and epidermolysis bullosa syndrome. Patients with alopecia, cardiopathy, and epidermolysis bullosa syndrome normally present atrophic scars after wounds heal, which is rare in KRT14-related epidermolysis bullosa. The mechanisms underlying the formation of atrophic scars in epidermolysis bullosa of patients with alopecia, cardiopathy, and epidermolysis bullosa syndrome remain unclear. This study showed that KLHL24-ΔN28 impaired skin wound healing by excessively degrading vimentin. Heterozygous Klhl24c.3G>T knock-in mice displayed delayed wound healing and decreased wound collagen deposition. We identified vimentin as an unreported substrate of KLHL24. KLHL24-ΔN28 mediated the excessive degradation of vimentin, which failed to maintain efficient fibroblast proliferation and activation during wound healing. Furthermore, by mediating vimentin degradation, KLHL24 can hinder myofibroblast activation, which attenuated bleomycin-induced skin fibrosis. These findings showed the function of KLHL24 in regulating tissue remodeling, atrophic scarring, and fibrosis.
Collapse
Affiliation(s)
- Yihe Liu
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jun Cui
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jing Zhang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhiming Chen
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhongya Song
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dan Bao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ruiyu Xiang
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dongqing Li
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yong Yang
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
10
|
Dybus A, Kulig H, Grzesiak W, Domke J, Yu YH, Cheng YH. Calcium/Calmodulin-Dependent Serine Protein Kinase ( CASK) Gene Polymorphisms in Pigeons. Animals (Basel) 2023; 13:2070. [PMID: 37443867 DOI: 10.3390/ani13132070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) is an multidomain protein involved in tissue development and cell signalling. In skeletal muscle, it is involved in the development of neuromuscular junctions. The participation of a pigeon in racing is a great physical effort that causes many changes in the skeletal muscles. Thus, the purpose of the study was to detect the nucleotide sequence variability in the calcium/calmodulin-dependent serine kinase (CASK) gene in domestic pigeons (Columba livia domestica) and assess the potential impact of DNA polymorphisms on the flight performance of pigeons. The research included a total of 517 individuals. DNA was extracted from the blood. A DNA fragment from nucleotides 8689 to 9049 of the CASK (NW_004973256.1 sequence) of six unrelated pigeons were sequenced. One of the detected polymorphic sites (g.8893G > A), located a very close to the start codon, was selected for genotyping in all individuals. The association studies included a total of 311 young homing pigeons that participated in racing competitions. The homing pigeons showed higher frequencies of the AA genotype than non-homing ones (p < 0.05). In rock pigeons only the GG genotype was found. Further research could confirm the functionality of the CASK g.8893G > A SNP in shaping the racing phenotype of pigeons, and the AA genotype could be useful as a selection criterion in pigeon breeding.
Collapse
Affiliation(s)
- Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Wilhelm Grzesiak
- Laboratory of Biostatistics, Department of Ruminant Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Justyna Domke
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, No.1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, No.1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| |
Collapse
|
11
|
Maurer C, Boleti O, Najarzadeh Torbati P, Norouzi F, Fowler ANR, Minaee S, Salih KH, Taherpour M, Birjandi H, Alizadeh B, Salih AF, Bijari M, Houlden H, Pittman AM, Maroofian R, Almashham YH, Karimiani EG, Kaski JP, Faqeih EA, Vakilian F, Jamshidi Y. Genetic Insights from Consanguineous Cardiomyopathy Families. Genes (Basel) 2023; 14:182. [PMID: 36672924 PMCID: PMC9858866 DOI: 10.3390/genes14010182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Inherited cardiomyopathies are a prevalent cause of heart failure and sudden cardiac death. Both hypertrophic (HCM) and dilated cardiomyopathy (DCM) are genetically heterogeneous and typically present with an autosomal dominant mode of transmission. Whole exome sequencing and autozygosity mapping was carried out in eight un-related probands from consanguineous Middle Eastern families presenting with HCM/DCM followed by bioinformatic and co-segregation analysis to predict the potential pathogenicity of candidate variants. We identified homozygous missense variants in TNNI3K, DSP, and RBCK1 linked with a dilated phenotype, in NRAP linked with a mixed phenotype of dilated/hypertrophic, and in KLHL24 linked with a mixed phenotype of dilated/hypertrophic and non-compaction features. Co-segregation analysis in family members confirmed autosomal recessive inheritance presenting in early childhood/early adulthood. Our findings add to the mutational spectrum of recessive cardiomyopathies, supporting inclusion of KLHL24, NRAP and RBCK1 as disease-causing genes. We also provide evidence for novel (recessive) modes of inheritance of a well-established gene TNNI3K and expand our knowledge of the clinical heterogeneity of cardiomyopathies. A greater understanding of the genetic causes of recessive cardiomyopathies has major implications for diagnosis and screening, particularly in underrepresented populations, such as those of the Middle East.
Collapse
Affiliation(s)
- Constance Maurer
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Olga Boleti
- Centre for Paediatric Inherited and Rare Cardiovascular Disease, University College London and Great Ormond Street Hospital, London WC1N 1DZ, UK
| | | | - Farzaneh Norouzi
- Department of Cardiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Anna Nicole Rebekah Fowler
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Shima Minaee
- Department of Cardiovascular Diseases, Razavi Hospital, Mashhad 9177948954, Iran
| | - Khalid Hama Salih
- Department of Pediatrics, College of Medicine, Sulaimani University, Sulaymaniyah 46001, Iraq
| | - Mehdi Taherpour
- Department of Cardiovascular Diseases, Razavi Hospital, Mashhad 9177948954, Iran
| | - Hassan Birjandi
- Division of Congenital and Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Behzad Alizadeh
- Division of Congenital and Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Aso Faeq Salih
- Department of Pediatrics, College of Medicine, Sulaimani University, Sulaymaniyah 46001, Iraq
| | - Moniba Bijari
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Alan Michael Pittman
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Yahya H. Almashham
- Pediatric Cardiology, King Salman Heart Center, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad 009851, Iran
| | - Juan Pablo Kaski
- Centre for Paediatric Inherited and Rare Cardiovascular Disease, University College London and Great Ormond Street Hospital, London WC1N 1DZ, UK
| | - Eissa Ali Faqeih
- Section of Medical Genetics, Children’s Specialist Hospital, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Farveh Vakilian
- Department of Cardiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
12
|
Vermeer MCSC, Al-Shinnag M, Silljé HHW, Gaytan AE, Murrell DF, McGaughran J, Melbourne W, Cowan T, van den Akker PC, van Spaendonck-Zwarts KY, van der Meer P, Bolling MC. A translation re-initiation variant in KLHL24 also causes epidermolysis bullosa simplex and dilated cardiomyopathy via intermediate filament degradation. Br J Dermatol 2022; 187:1045-1048. [PMID: 35975634 PMCID: PMC10087812 DOI: 10.1111/bjd.21832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 12/24/2022]
Abstract
This study shows that gain-of-function variants in KLHL24 causing EBS and DCM, do not only originate in the start-codon and suggest that any nonsense-inducing variant affecting nucleotides c.4_84 will likely cause the same effect on protein level and a similar potential lethal phenotype.
Collapse
Affiliation(s)
- Mathilde C S C Vermeer
- Departments of Cardiology, (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mohammad Al-Shinnag
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Herman H W Silljé
- Departments of Cardiology, (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Antonio Esquivel Gaytan
- Departments of Cardiology, (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dedee F Murrell
- Department of Dermatology, St George Hospital, Kogarah, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Wei Melbourne
- Department of Dermatology, St George Hospital, Kogarah, NSW, Australia
| | - Timothy Cowan
- Department of Dermatology, St George Hospital, Kogarah, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Peter C van den Akker
- Department of Genetics (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Karin Y van Spaendonck-Zwarts
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Peter van der Meer
- Departments of Cardiology, (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria C Bolling
- Department of Dermatology (Center for Blistering Diseases), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Rietscher K, Jahnke HG, Rübsam M, Lin EW, Has C, Omary MB, Niessen CM, Magin TM. Kinase Inhibition by PKC412 Prevents Epithelial Sheet Damage in Autosomal Dominant Epidermolysis Bullosa Simplex through Keratin and Cell Contact Stabilization. J Invest Dermatol 2022; 142:3282-3293. [PMID: 35691363 DOI: 10.1016/j.jid.2022.05.1088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 01/05/2023]
Abstract
Epidermolysis bullosa simplex (EBS) is a severe and potentially life-threatening disorder for which no adequate therapy exists. Most cases are caused by dominant sequence variations in keratin genes K5 or K14, leading to the formation of cytoplasmic keratin aggregates, profound keratinocyte fragility, and cytolysis. We hypothesized that pharmacological reduction of keratin aggregates, which compromise keratinocyte integrity, represents a viable strategy for the treatment of EBS. In this study, we show that the multikinase inhibitor PKC412, which is currently in clinical use for acute myeloid leukemia and advanced systemic mastocytosis, reduced keratin aggregation by 40% in patient-derived K14.R125C EBS-associated keratinocytes. Using a combination of epithelial shear stress assay and real-time impedance spectroscopy, we show that PKC412 restored intercellular adhesion. Molecularly, global phosphoproteomic analysis together with immunoblots using phosphoepitope-specific antibodies revealed that PKC412 treatment altered phosphorylated sites on keratins and desmoplakin. Thus, our data provide a proof of concept to repurpose existing drugs for the targeted treatment of EBS and showcase how one broad-range kinase inhibitor reduced keratin filament aggregation in patient-derived EBS keratinocytes and the fragility of EBS cell monolayers. Our study paves the way for a clinical trial using PKC412 for systemic or local application in patients with EBS.
Collapse
Affiliation(s)
- Katrin Rietscher
- Institute of Biology, Division of Cell and Developmental Biology, Leipzig University, Leipzig, Germany.
| | - Heinz-Georg Jahnke
- Division of Molecular Biological-Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Matthias Rübsam
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department Cell Biology of the Skin, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Eric W Lin
- Division of Gastroenterology and Hepatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Cristina Has
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA; Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Carien M Niessen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department Cell Biology of the Skin, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
14
|
Towards a Better Understanding of Genotype-Phenotype Correlations and Therapeutic Targets for Cardiocutaneous Genes: The Importance of Functional Studies above Prediction. Int J Mol Sci 2022; 23:ijms231810765. [PMID: 36142674 PMCID: PMC9503274 DOI: 10.3390/ijms231810765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic variants in gene-encoding proteins involved in cell−cell connecting structures, such as desmosomes and gap junctions, may cause a skin and/or cardiac phenotype, of which the combination is called cardiocutaneous syndrome. The cardiac phenotype is characterized by cardiomyopathy and/or arrhythmias, while the skin particularly displays phenotypes such as keratoderma, hair abnormalities and skin fragility. The reported variants associated with cardiocutaneous syndrome, in genes DSP, JUP, DSC2, KLHL24, GJA1, are classified by interpretation guidelines from the American College of Medical Genetics and Genomics. The genotype−phenotype correlation, however, remains poorly understood. By providing an overview of variants that are assessed for a functional protein pathology, we show that this number (n = 115) is low compared to the number of variants that are assessed by in silico algorithms (>5000). As expected, there is a mismatch between the prediction of variant pathogenicity and the prediction of the functional effect compared to the real functional evidence. Aiding to improve genotype−phenotype correlations, we separate variants into ‘protein reducing’ or ‘altered protein’ variants and provide general conclusions about the skin and heart phenotype involved. We conclude by stipulating that adequate prognoses can only be given, and targeted therapies can only be designed, upon full knowledge of the protein pathology through functional investigation.
Collapse
|
15
|
Cui J, Zhao Q, Song Z, Chen Z, Zeng X, Wang C, Lin Z, Wang F, Yang Y. KLHL24-Mediated Hair Follicle Stem Cells Structural Disruption Causes Alopecia. J Invest Dermatol 2022; 142:2079-2087.e8. [PMID: 35066002 DOI: 10.1016/j.jid.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
KLHL24 is an E3 ubiquitin ligase. Variants in the start codon of KLHL24 result in truncated KLHL24 protein lacking the initial 28 amino acids (KLHL24-ΔN28). KLHL24-ΔN28 is more stable than wild-type KLHL24 and causes excessive degradation of keratin 14, leading to epidermolysis bullosa. Patients with KLHL24-related epidermolysis bullosa usually develop alopecia, which is uncommon in patients with epidermolysis bullosa. The mechanisms by which KLHL24 variants cause alopecia is currently unclear. In this study, we show that KLHL24 regulates hair maintenance by mediating the stability of keratin 15. Using a Klhl24c.3G>T knock-in mouse model, we identify that KLHL24-ΔN28 disrupts the structure of hair follicle stem cells (HFSCs). Destructed HFSCs cannot anchor hairs and cause premature hair loss. Long-term destruction of HFSCs causes their exhaustion and hair follicle degeneration. Mechanically, KLHL24 mediates the ubiquitination and proteasomal degradation of keratin 15, an intermediate filament composing the HFSC cytoskeleton network. Keratin 15 is dramatically decreased in the skin of Klhl24c.3G>T mice and in patients with KLHL24-related epidermolysis bullosa. These findings show that KLHL24 plays a role in hair maintenance by regulating the cytoskeleton structure of HFSCs and highlight the importance of the ubiquitin‒proteasome system in the stability of HFSCs.
Collapse
Affiliation(s)
- Jun Cui
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Qian Zhao
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhongya Song
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhiming Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xin Zeng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing, China
| | - Yong Yang
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
16
|
Epidermolysis Bullosa—A Different Genetic Approach in Correlation with Genetic Heterogeneity. Diagnostics (Basel) 2022; 12:diagnostics12061325. [PMID: 35741135 PMCID: PMC9222206 DOI: 10.3390/diagnostics12061325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Epidermolysis bullosa is a heterogeneous group of rare genetic disorders characterized by mucocutaneous fragility and blister formation after minor friction or trauma. There are four major epidermolysis bullosa types based on the ultrastructural level of tissue cleavage: simplex, junctional, dystrophic, and Kindler epidermolysis bullosa. They are caused by mutations in genes that encode the proteins that are part of the hemidesmosomes and focal adhesion complex. Some of these disorders can be associated with extracutaneous manifestations, which are sometimes fatal. They are inherited in an autosomal recessive or autosomal dominant manner. This review is focused on the phenomena of heterogeneity (locus, allelic, mutational, and clinical) in epidermolysis bullosa, and on the correlation genotype–phenotype.
Collapse
|
17
|
Castel P. Defective protein degradation in genetic disorders. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166366. [PMID: 35158019 PMCID: PMC8977116 DOI: 10.1016/j.bbadis.2022.166366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
Understanding the molecular mechanisms that underlie different human pathologies is necessary to develop novel therapeutic strategies. An emerging mechanism of pathogenesis in many genetic disorders is the dysregulation of protein degradation, which leads to the accumulation of proteins that are responsible for the disease phenotype. Among the different cellular pathways that regulate active proteolysis, the Cullin RING E3 ligases represent an important group of sophisticated enzymatic complexes that mediate substrate ubiquitination through the interaction with specific adaptors. However, pathogenic variants in these adaptors affect the physiological ubiquitination of their substrates. This review discusses our current understanding of this emerging field.
Collapse
Affiliation(s)
- Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, 10016, United States of America.
| |
Collapse
|
18
|
Harvey N, Youssefian L, Saeidian AH, Vahidnezhad H, Uitto J. Pathomechanisms of epidermolysis bullosa: Beyond structural proteins. Matrix Biol 2022; 110:91-105. [DOI: 10.1016/j.matbio.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
19
|
Vermeer MCSC, Andrei D, Kramer D, Nijenhuis AM, Hoedemaekers YM, Westers H, Jongbloed JDH, Pas HH, van den Berg MP, Silljé HHW, van der Meer P, Bolling MC. Functional investigation of two simultaneous or separately segregating DSP variants within a single family support the theory of a dose-dependent disease severity. Exp Dermatol 2022; 31:970-979. [PMID: 35325485 PMCID: PMC9322008 DOI: 10.1111/exd.14571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Desmoplakin (DP) is an important component of desmosomes, essential in cell–cell connecting structures in stress‐bearing tissues. Over the years, many hundreds of pathogenic variants in DSP have been associated with different cutaneous and cardiac phenotypes or a combination, known as a cardiocutaneous syndrome. Of less than 5% of the reported DSP variants, the effect on the protein has been investigated. Here, we describe and have performed RNA, protein and tissue analysis in a large family where DSPc.273+5G>A/c.6687delA segregated with palmoplantar keratoderma (PPK), woolly hair and lethal cardiomyopathy, while DSPWT/c.6687delA segregated with PPK and milder cardiomyopathy. hiPSC‐derived cardiomyocytes and primary keratinocytes from carriers were obtained for analysis. Unlike the previously reported nonsense variants in the last exon of DSP that bypassed the nonsense‐mediated mRNA surveillance system leading to protein truncation, variant c.6687delA was shown to cause the loss of protein expression. Patients carrying both variants and having a considerably more severe phenotype were shown to have 70% DP protein reduction, while patients carrying only c.6687delA had 50% protein reduction and a milder phenotype. The analysis of RNA from patient cells did not show any splicing effect of the c.273+5G>A variant. However, a minigene splicing assay clearly showed alternative spliced transcripts originating from this variant. This study shows the importance of RNA and protein analyses to pinpoint the exact effect of DSP variants instead of solely relying on predictions. In addition, the particular pattern of inheritance, with simultaneous or separately segregating DSP variants within the same family, strongly supports the theory of a dose‐dependent disease severity.
Collapse
Affiliation(s)
- Mathilde C S C Vermeer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniela Andrei
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Duco Kramer
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albertine M Nijenhuis
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yvonne M Hoedemaekers
- Department of Genetics, Radboud University Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helga Westers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan D H Jongbloed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hendri H Pas
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria C Bolling
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Lodato V, Parlapiano G, Calì F, Silvetti MS, Adorisio R, Armando M, El Hachem M, Romanzo A, Dionisi-Vici C, Digilio MC, Novelli A, Drago F, Raponi M, Baban A. Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart? J Cardiovasc Dev Dis 2022; 9:47. [PMID: 35200700 PMCID: PMC8877723 DOI: 10.3390/jcdd9020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiomyopathy (CMP) is a rare disease in the pediatric population, with a high risk of morbidity and mortality. The genetic etiology of CMPs in children is extremely heterogenous. These two factors play a major role in the difficulties of establishing standard diagnostic and therapeutic protocols. Isolated CMP in children is a frequent finding, mainly caused by sarcomeric gene variants with a detection rate that can reach up to 50% of analyzed cohorts. Complex multisystemic forms of pediatric CMP are even more heterogenous. Few studies in literature take into consideration this topic as the main core since it represents a rarity (systemic CMP) within a rarity (pediatric population CMP). Identifying etiology in this cohort is essential for understanding prognosis, risk stratification, eligibility to heart transplantation and/or mechanical-assisted procedures, preventing multiorgan complications, and relatives' recurrence risk calculation. The previous points represent a cornerstone in patients' empowerment and personalized medical care approach. The aim of this work is to propose a new approach for an algorithm in the setting of the diagnostic framework of systemic pediatric CMP. On the other hand, during the literature review, we noticed a relatively common etiologic pattern in some forms of complex/multisystem CMP. In other words, certain syndromes such as Danon, Vici, Alström, Barth, and Myhre syndrome share a common pathway of directly or indirectly defective "autophagy" process, which appears to be a possible initiating/triggering factor for CMPs. This conjoint aspect could be important for possible prognostic/therapeutic implications in this category of patients. However, multicentric studies detailed functional and experimental models are needed prior to deriving conclusions.
Collapse
Affiliation(s)
- Valentina Lodato
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Giovanni Parlapiano
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Federica Calì
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Massimo Stefano Silvetti
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Rachele Adorisio
- Heart Failure Clinic-Heart Failure, Heart Transplant, Mechanical Circulatory Support Unit, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplant, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Michela Armando
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - May El Hachem
- Dermatology and Genodermatosis Units, Genetics and Rare Disease Research Division, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Antonino Romanzo
- Ophtalmology Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Fabrizio Drago
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Massimiliano Raponi
- Medical Direction, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy;
| | - Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| |
Collapse
|
21
|
Vermeer MCSC, Sillje HHW, Pas HH, Andrei D, van der Meer P, Bolling MC. K14 degradation and ageing in epidermolysis bullosa simplex due to KLHL24 gain-of-function mutations. J Invest Dermatol 2022; 142:2271-2274.e6. [PMID: 35031308 DOI: 10.1016/j.jid.2021.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Mathilde C S C Vermeer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Herman H W Sillje
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Hendri H Pas
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Center for Blistering Diseases, Hanzeplein 1, 9713HE Groningen, The Netherlands
| | - Daniela Andrei
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Center for Blistering Diseases, Hanzeplein 1, 9713HE Groningen, The Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Maria C Bolling
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Center for Blistering Diseases, Hanzeplein 1, 9713HE Groningen, The Netherlands.
| |
Collapse
|
22
|
Kubanov AA, Chikin VV, Karamova AE, Monchakovskaya ES. Topical treatment of inherited epidermolysis bullosa. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Inherited epidermolysis bullosa is a group of genetic skin disorders characterized by skin erosions, ulceration, skin and mucosal blistering requiring topical treatment. This review demonstrates major clinical manifestations of epidermolysis bullosa and its mechanisms of development. According to these features the main principles of topical treatment and drug therapy were developed, including physical protection from trauma, moisturizing, improvement of wound healing, prevention and management of infection, itch and pain management. Drug therapy is outlined with dosage forms, drug routes of administration, age restrictions indicated in the instruction for medical use for the medications that could be used in epidermolysis bullosa patients. The authors provide indications for clinical use of antiseptics, disinfectants, antibiotics, antimicrobial agents, emollient cream and drugs reducing itch and pain.
Collapse
|
23
|
Evtushenko NA, Beilin AK, Kosykh AV, Vorotelyak EA, Gurskaya NG. Keratins as an Inflammation Trigger Point in Epidermolysis Bullosa Simplex. Int J Mol Sci 2021; 22:ijms222212446. [PMID: 34830328 PMCID: PMC8624175 DOI: 10.3390/ijms222212446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.
Collapse
Affiliation(s)
- Nadezhda A. Evtushenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Arkadii K. Beilin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Nadya G. Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
24
|
Logli E, Marzuolo E, D'Agostino M, Conti LA, Lena AM, Diociaiuti A, Dellambra E, Has C, Cianfanelli V, Zambruno G, El Hachem M, Magenta A, Candi E, Condorelli AG. Proteasome-mediated degradation of keratins 7, 8, 17 and 18 by mutant KLHL24 in a foetal keratinocyte model: Novel insight in congenital skin defects and fragility of epidermolysis bullosa simplex with cardiomyopathy. Hum Mol Genet 2021; 31:1308-1324. [PMID: 34740256 PMCID: PMC9029237 DOI: 10.1093/hmg/ddab318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Epidermolysis bullosa simplex (EBS) with cardiomyopathy (EBS-KLHL24) is an EBS subtype caused by dominantly inherited, gain-of-function mutations in the gene encoding for the ubiquitin-ligase KLHL24, which addresses specific proteins to proteasomal degradation. EBS-KLHL24 patients are born with extensive denuded skin areas and skin fragility. Whilst skin fragility rapidly ameliorates, atrophy and scarring develop over time, accompanied by life-threatening cardiomyopathy. To date, pathogenetic mechanisms underlying such a unique disease phenotype are not fully characterized. The basal keratin 14 (K14) has been indicated as a KLHL24 substrate in keratinocytes. However, EBS-KLHL24 pathobiology cannot be determined by the mutation-enhanced disruption of K14 alone, as K14 is similarly expressed in foetal and postnatal epidermis and its protein levels are preserved both in vivo and in vitro disease models. In this study, we focused on foetal keratins as additional KLHL24 substrates. We showed that K7, K8, K17 and K18 protein levels are markedly reduced via proteasome degradation in normal foetal keratinocytes transduced with the mutant KLHL24 protein (ΔN28-KLHL24) as compared to control cells expressing the wild-type form. In addition, heat stress led to keratin network defects and decreased resilience in ΔN28-KLHL24 cells. The KLHL24-mediated degradation of foetal keratins could contribute to congenital skin defects in EBS-KLHL24. Furthermore, we observed that primary keratinocytes from EBS-KLHL24 patients undergo accelerated clonal conversion with reduced colony forming efficiency (CFE) and early replicative senescence. Finally, our findings pointed out a reduced CFE in ΔN28-KLHL24-transduced foetal keratinocytes as compared to controls, suggesting that mutant KLHL24 contributes to patients’ keratinocyte clonogenicity impairment.
Collapse
Affiliation(s)
- Elena Logli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Elisa Marzuolo
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Marco D'Agostino
- Laboratory of Experimental Immunology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | | | - Cristina Has
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Valentina Cianfanelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Alessandra Magenta
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
25
|
Xu X, Zhao J, Wang C, Qu X, Ran M, Ye F, Shen M, Wang K, Zhang Q. Case Report: De novo KLHL24 Gene Pathogenic Variants in Chinese Twin Boys With Epidermolysis Bullosa Simplex. Front Genet 2021; 12:729628. [PMID: 34804116 PMCID: PMC8602111 DOI: 10.3389/fgene.2021.729628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: The aim of this study was to determine the molecular etiology and clinical manifestations of a pair of Chinese twins affected with epidermolysis bullosa simplex. Pediatricians should pay attention to the early genetic diagnosis of this disease. Methods: Histopathological examination of HE-stained skin, electron microscopy of biopsied normal skin, and whole-exome sequencing was performed to assess pathogenicity and conservation of detected mutations. Two years later, the cutaneous and extracutaneous manifestations of the twins were comprehensively evaluated. Results: A de novo pathogenic variant c.2T>C (p.M1T) in KLHL24 (NM_017,644) was identified in both twins. The characteristics of extensive skin defects on the extremities at birth and the tendency to lesson with increasing age were confirmed. No positive sensitive markers, such as B-type natriuretic peptide, cardiac troponin I, for cardiac dysfunction were detected. Conclusions: The de novo pathogenic variants c.2T>C (p.M1T) in KLHL24 (NM_017,644) contributes to the development of epidermolysis bullosa. Genetic diagnosis at birth or early infancy can better predict the disease prognosis and guide the treatment.
Collapse
Affiliation(s)
- Xiaojing Xu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Juan Zhao
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Chao Wang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxuan Qu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Menglong Ran
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Ming Shen
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Kundi Wang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
26
|
Miyake T, Natsuga K, Umayahara T, Naito S, Yoshimoto J, Senoo A, Wang HT, Hsu CK, Yamasaki O, Morizane S. Case of inherited epidermolysis bullosa simplex with KLHL24 gene mutation in Japan. J Dermatol 2021; 49:e24-e25. [PMID: 34658058 DOI: 10.1111/1346-8138.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoko Miyake
- Department of Dermatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University, Sapporo, Japan
| | | | - Seiko Naito
- Division of Dermatology, Okayama Red Cross Hospital, Okayama, Japan
| | - Junko Yoshimoto
- Department of Pediatrics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Akemi Senoo
- Division of Dermatology, Okayama Red Cross Hospital, Okayama, Japan
| | - Han-Tang Wang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Osamu Yamasaki
- Department of Dermatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
27
|
Vermeer MC, Bolling MC, Bliley JM, Gomez KFA, Pavez-Giani MG, Kramer D, Romero-Herrera PH, Westenbrink BD, Diercks GF, van den Berg MP, Feinberg AW, Silljé HH, van der Meer P. Gain-of-function mutation in ubiquitin-ligase KLHL24 causes desmin degradation and dilatation in hiPSC-derived engineered heart tissues. J Clin Invest 2021; 131:140615. [PMID: 34292882 PMCID: PMC8409593 DOI: 10.1172/jci140615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
The start codon c.1A>G mutation in KLHL24, encoding ubiquitin-ligase KLHL24, results in the loss of 28 N-terminal amino acids (KLHL24-ΔN28) by skipping the initial start codon. In skin, KLHL24-ΔN28 leads to gain of function, excessively targeting intermediate filament keratin-14 for proteasomal degradation, ultimately causing epidermolysis bullosa simplex (EBS). The majority of these EBS-patients are also diagnosed with dilated cardiomyopathy (DCM), but the pathological mechanism in the heart is unknown. As desmin is the cardiac homologue of keratin-14, we hypothesized that KLHL24-ΔN28 leads to excessive degradation of desmin, resulting in DCM. Dynamically loaded engineered heart tissues (dyn-EHTs) were generated from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes from two patients and three (non)familial controls. Ten-fold lower desmin protein levels were observed in patient-derived dyn-EHTs, in line with diminished desmin levels detected in patients' explanted heart. This was accompanied by tissue dilatation, impaired mitochondrial function, decreased force values and increased cardiomyocyte stress. HEK293 transfection studies confirmed KLHL24-mediated desmin degradation. KLHL24 RNA interference or direct desmin overexpression recovered desmin protein levels, restoring morphology and function in patient-derived dyn-EHTs. To conclude, presence of KLHL24-ΔN28 in cardiomyocytes leads to excessive degradation of desmin, affecting tissue morphology and function, that can be prevented by restoring desmin protein levels.
Collapse
Affiliation(s)
| | - Maria C. Bolling
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacqueline M. Bliley
- Department of Biomedical Engineering, Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | | | | - Duco Kramer
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Gilles F.H. Diercks
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Adam W. Feinberg
- Department of Biomedical Engineering, Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
28
|
Kocher T, Koller U. Advances in gene editing strategies for epidermolysis bullosa. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:81-109. [PMID: 34175052 DOI: 10.1016/bs.pmbts.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epidermolysis bullosa represents a monogenetic disease comprising a variety of heterogeneous mutations in at least 16 genes encoding structural proteins crucial for skin integrity. Due to well-defined mutations but still lacking causal treatment options for the disease, epidermolysis bullosa represents an ideal candidate for gene therapeutic interventions. Recent developments and improvements in the genome editing field have paved the way for the translation of various gene repair strategies into the clinic. With the ability to accurately predict and monitor targeting events within the human genome, the translation might soon be possible. Here, we describe current advancements in the genome editing field for epidermolysis bullosa, along with a discussion of aspects and strategies for precise and personalized gene editing-based medicine, in order to develop efficient and safe ex vivo as well as in vivo genome editing therapies for epidermolysis bullosa patients in the future.
Collapse
Affiliation(s)
- Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria.
| |
Collapse
|
29
|
Abstract
Epidermolysis bullosa (EB) is an inherited, heterogeneous group of rare genetic dermatoses characterized by mucocutaneous fragility and blister formation, inducible by often minimal trauma. A broad phenotypic spectrum has been described, with potentially severe extracutaneous manifestations, morbidity and mortality. Over 30 subtypes are recognized, grouped into four major categories, based predominantly on the plane of cleavage within the skin and reflecting the underlying molecular abnormality: EB simplex, junctional EB, dystrophic EB and Kindler EB. The study of EB has led to seminal advances in our understanding of cutaneous biology. To date, pathogenetic mutations in 16 distinct genes have been implicated in EB, encoding proteins influencing cellular integrity and adhesion. Precise diagnosis is reliant on correlating clinical, electron microscopic and immunohistological features with mutational analyses. In the absence of curative treatment, multidisciplinary care is targeted towards minimizing the risk of blister formation, wound care, symptom relief and specific complications, the most feared of which - and also the leading cause of mortality - is squamous cell carcinoma. Preclinical advances in cell-based, protein replacement and gene therapies are paving the way for clinical successes with gene correction, raising hopes amongst patients and clinicians worldwide.
Collapse
|
30
|
Mariath LM, Santin JT, Schuler-Faccini L, Kiszewski AE. Inherited epidermolysis bullosa: update on the clinical and genetic aspects. An Bras Dermatol 2020; 95:551-569. [PMID: 32732072 PMCID: PMC7563003 DOI: 10.1016/j.abd.2020.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/17/2020] [Indexed: 12/14/2022] Open
Abstract
Inherited epidermolysis bullosa is a group of genetic diseases characterized by skin fragility and blistering on the skin and mucous membranes in response to minimal trauma. Epidermolysis bullosa is clinically and genetically very heterogeneous, being classified into four main types according to the layer of skin in which blistering occurs: epidermolysis bullosa simplex (intraepidermal), junctional epidermolysis bullosa (within the lamina lucida of the basement membrane), dystrophic epidermolysis bullosa (below the basement membrane), and Kindler epidermolysis bullosa (mixed skin cleavage pattern). Furthermore, epidermolysis bullosa is stratified into several subtypes, which consider the clinical characteristics, the distribution of the blisters, and the severity of cutaneous and extracutaneous signs. Pathogenic variants in at least 16 genes that encode proteins essential for the integrity and adhesion of skin layers have already been associated with different subtypes of epidermolysis bullosa. The marked heterogeneity of the disease, which includes phenotypes with a broad spectrum of severity and many causal genes, hinders its classification and diagnosis. For this reason, dermatologists and geneticists regularly review and update the classification criteria. This review aimed to update the state of the art on inherited epidermolysis bullosa, with a special focus on the associated clinical and genetic aspects, presenting data from the most recent reclassification consensus, published in 2020.
Collapse
Affiliation(s)
- Luiza Monteavaro Mariath
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Tosetto Santin
- Postgraduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Dermatology Service, Santa Casa de Misericórdia de Porto Alegre/Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Ana Elisa Kiszewski
- Dermatology Service, Santa Casa de Misericórdia de Porto Alegre/Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil; Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil; Pediatric Dermatology Unit, Santa Casa de Misericórdia de Porto Alegre/Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Mariath LM, Santin JT, Frantz JA, Doriqui MJR, Schuler-Faccini L, Kiszewski AE. Genotype-phenotype correlations on epidermolysis bullosa with congenital absence of skin: A comprehensive review. Clin Genet 2020; 99:29-41. [PMID: 32506467 DOI: 10.1111/cge.13792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
Congenital absence of skin (CAS) is a clinical sign associated with the main types of epidermolysis bullosa (EB). Very few studies have investigated the genetic background that may influence the occurrence of this condition. Our objective was to investigate genotype-phenotype correlations on EB with CAS through a literature revision on the pathogenic variants previously reported. A total of 171 cases (49 EB simplex, EBS; 23 junctional EB, JEB; and 99 dystrophic EB, DEB), associated with 132 pathogenic variants in eight genes, were included in the genotype-phenotype analysis. In EBS, CAS showed to be a recurrent clinical sign in EBS with pyloric atresia (PA) and EBS associated with kelch-like protein 24; CAS was also described in patients with keratins 5/14 alterations, particularly involving severe phenotypes. In JEB, this is a common clinical sign in JEB with PA associated with premature termination codon variants and/or amino acid substitutions located in the extracellular domain of integrin α6β4 genes. In DEB with CAS, missense variants occurring close to non-collagenous interruptions of the triple-helix domain of collagen VII appear to influence this condition. This study is the largest review of patients with EB and CAS and expands the spectrum of known variants on this phenomenon.
Collapse
Affiliation(s)
- Luiza Monteavaro Mariath
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliana Tosetto Santin
- Postgraduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jeanine Aparecida Frantz
- Faculty of Medicine, Universidade Regional de Blumenau, Blumenau, Brazil.,Board of Directors, Debra-Brasil, Blumenau, Brazil
| | | | - Lavínia Schuler-Faccini
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul and Instituto Nacional de Ciência e Tecnologia de Genética Médica Populacional (INaGeMP), Porto Alegre, Brazil
| | - Ana Elisa Kiszewski
- Section of Dermatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Section of Pediatric Dermatology, Hospital da Criança Santo Antônio, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
32
|
Kuang Y, Wang Y, Zhai W, Wang X, Zhang B, Xu M, Guo S, Ke M, Jia B, Liu H. Genome-Wide Analysis of Methylation-Driven Genes and Identification of an Eight-Gene Panel for Prognosis Prediction in Breast Cancer. Front Genet 2020; 11:301. [PMID: 32373154 PMCID: PMC7186397 DOI: 10.3389/fgene.2020.00301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Aberrant DNA methylation is a crucial epigenetic regulator that is closely related to the occurrence and development of various cancers, including breast cancer (BC). The present study aimed to identify a novel methylation-based prognosis biomarker panel by integrally analyzing gene expression and methylation patterns in BC patients. METHODS DNA methylation and gene expression data of breast cancer (BRCA) were downloaded from The Cancer Genome Atlas (TCGA). R packages, including ChAMP, SVA, and MethylMix, were applied to identify the unique methylation-driven genes. Subsequently, these genes were subjected to Metascape for GO analysis. Univariant Cox regression was used to identify survival-related genes among the methylation-driven genes. Robust likelihood-based survival modeling was applied to define the prognosis markers. An independent data set (GSE72308) was used for further validation of our risk score system. RESULTS A total of 879 DNA methylation-driven genes were identified from 765 BC patients. In the discovery cohort, we identified 50 survival-related methylation-driven genes. Finally, we built an eight-methylation-driven gene panel that serves as prognostic predictors. CONCLUSIONS Our analysis of transcriptome and methylome variations associated with the survival status of BC patients provides a further understanding of basic biological processes and a basis for the genetic etiology in BC.
Collapse
Affiliation(s)
- Yanshen Kuang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Wanli Zhai
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Xuning Wang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bingdong Zhang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Maolin Xu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shaohua Guo
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mu Ke
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Baoqing Jia
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongyi Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Has C, Bauer JW, Bodemer C, Bolling MC, Bruckner-Tuderman L, Diem A, Fine JD, Heagerty A, Hovnanian A, Marinkovich MP, Martinez AE, McGrath JA, Moss C, Murrell DF, Palisson F, Schwieger-Briel A, Sprecher E, Tamai K, Uitto J, Woodley DT, Zambruno G, Mellerio JE. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol 2020; 183:614-627. [PMID: 32017015 DOI: 10.1111/bjd.18921] [Citation(s) in RCA: 446] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several new genes and clinical subtypes have been identified since the publication in 2014 of the report of the last International Consensus Meeting on Epidermolysis Bullosa (EB). OBJECTIVES We sought to reclassify disorders with skin fragility, with a focus on EB, based on new clinical and molecular data. METHODS This was a consensus expert review. RESULTS In this latest consensus report, we introduce the concept of genetic disorders with skin fragility, of which classical EB represents the prototype. Other disorders with skin fragility, where blisters are a minor part of the clinical picture or are not seen because skin cleavage is very superficial, are classified as separate categories. These include peeling skin disorders, erosive disorders, hyperkeratotic disorders, and connective tissue disorders with skin fragility. Because of the common manifestation of skin fragility, these 'EB-related' disorders should be considered under the EB umbrella in terms of medical and socioeconomic provision of care. CONCLUSIONS The proposed classification scheme should be of value both to clinicians and researchers, emphasizing both clinical and genetic features of EB. What is already known about this topic? Epidermolysis bullosa (EB) is a group of genetic disorders with skin blistering. The last updated recommendations on diagnosis and classification were published in 2014. What does this study add? We introduce the concept of genetic disorders with skin fragility, of which classical EB represents the prototype. Clinical and genetic aspects, genotype-phenotype correlations, disease-modifying factors and natural history of EB are reviewed. Other disorders with skin fragility, e.g. peeling skin disorders, erosive disorders, hyperkeratotic disorders, and connective tissue disorders with skin fragility are classified as separate categories; these 'EB-related' disorders should be considered under the EB umbrella in terms of medical and socioeconomic provision of care. Linked Comment: Pope. Br J Dermatol 2020; 183:603.
Collapse
Affiliation(s)
- C Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - J W Bauer
- Department of Dermatology and Allergology and EB Haus Austria University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - C Bodemer
- Department of Dermatology, Necker Hospital des Enfants Malades, University Paris-Centre APHP 5, Paris, France
| | - M C Bolling
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - L Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - A Diem
- Department of Dermatology and Allergology and EB Haus Austria University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - J-D Fine
- Vanderbilt University School of Medicine, Nashville, TN, USA; National Epidermolysis Bullosa Registry, Nashville, TN, USA
| | - A Heagerty
- Heart of England Foundation Trust, Birmingham, UK
| | - A Hovnanian
- INSERM UMR1163, Imagine Institute, Department of Genetics, Necker hospital for sick children, Paris University, Paris, France
| | - M P Marinkovich
- Stanford University School of Medicine, Stanford, Palo Alto Veterans Affairs Medical Center CA, USA
| | - A E Martinez
- Dermatology Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - J A McGrath
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - C Moss
- Birmingham Children's Hospital and University of Birmingham, UK
| | - D F Murrell
- St George Hospital and University of New South Wales, Sydney, Australia
| | - F Palisson
- DEBRA Chile, Facultad de Medicina Clinica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - A Schwieger-Briel
- Department of Pediatric Dermatology, University Children's Hospital Zürich, Zürich, Switzerland
| | - E Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - K Tamai
- Dermatology Department, University of Osaka, Osaka, Japan
| | - J Uitto
- Thomas Jefferson University, Philadelphia, PA, USA
| | - D T Woodley
- University of Southern California, Los Angeles, CA, USA
| | - G Zambruno
- Dermatology Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - J E Mellerio
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
34
|
Hedberg-Oldfors C, Abramsson A, Osborn DPS, Danielsson O, Fazlinezhad A, Nilipour Y, Hübbert L, Nennesmo I, Visuttijai K, Bharj J, Petropoulou E, Shoreim A, Vona B, Ahangari N, López MD, Doosti M, Banote RK, Maroofian R, Edling M, Taherpour M, Zetterberg H, Karimiani EG, Oldfors A, Jamshidi Y. Cardiomyopathy with lethal arrhythmias associated with inactivation of KLHL24. Hum Mol Genet 2020; 28:1919-1929. [PMID: 30715372 PMCID: PMC6812045 DOI: 10.1093/hmg/ddz032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, yet the genetic cause of up to 50% of cases remains unknown. Here, we show that mutations in KLHL24 cause HCM in humans. Using genome-wide linkage analysis and exome sequencing, we identified homozygous mutations in KLHL24 in two consanguineous families with HCM. Of the 11 young affected adults identified, 3 died suddenly and 1 had a cardiac transplant due to heart failure. KLHL24 is a member of the Kelch-like protein family, which acts as substrate-specific adaptors to Cullin E3 ubiquitin ligases. Endomyocardial and skeletal muscle biopsies from affected individuals of both families demonstrated characteristic alterations, including accumulation of desmin intermediate filaments. Knock-down of the zebrafish homologue klhl24a results in heart defects similar to that described for other HCM-linked genes providing additional support for KLHL24 as a HCM-associated gene. Our findings reveal a crucial role for KLHL24 in cardiac development and function.
Collapse
Affiliation(s)
- Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel P S Osborn
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Olof Danielsson
- Department of Neurology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Afsoon Fazlinezhad
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laila Hübbert
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Kittichate Visuttijai
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jaipreet Bharj
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Evmorfia Petropoulou
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Azza Shoreim
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Najmeh Ahangari
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marcela Dávila López
- Bioinformatics Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Malin Edling
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mehdi Taherpour
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 1PJ, UK
| | - Ehsan Ghayoor Karimiani
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran.,Innovative Medical Research Center, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Anders Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| |
Collapse
|
35
|
Bolling MC, Jonkman MF. KLHL24: Beyond Skin Fragility. J Invest Dermatol 2019; 139:22-24. [PMID: 30579426 DOI: 10.1016/j.jid.2018.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 02/05/2023]
Abstract
KLHL24 mutations have recently been associated with epidermolysis bullosa simplex. Initial studies focused on skin fragility. However, the picture of KLHL24 mutations causing extracutaneous human disease is emerging, with dilated cardiomyopathy as a strong association. In addition, neurological disease is suspected as well. Careful clinical follow-up and functional studies of (mutated) KLHL24 in these tissues are needed.
Collapse
Affiliation(s)
- Maria C Bolling
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands
| | - Marcel F Jonkman
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands.
| |
Collapse
|
36
|
Prodinger C, Reichelt J, Bauer JW, Laimer M. Epidermolysis bullosa: Advances in research and treatment. Exp Dermatol 2019; 28:1176-1189. [PMID: 31140655 PMCID: PMC6900197 DOI: 10.1111/exd.13979] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
Epidermolysis bullosa (EB) is the umbrella term for a group of rare inherited skin fragility disorders caused by mutations in at least 20 different genes. There is no cure for any of the subtypes of EB resulting from different mutations, and current therapy only focuses on the management of wounds and pain. Novel effective therapeutic approaches are therefore urgently required. Strategies include gene-, protein- and cell-based therapies. This review discusses molecular procedures currently under investigation at the EB House Austria, a designated Centre of Expertise implemented in the European Reference Network for Rare and Undiagnosed Skin Diseases. Current clinical research activities at the EB House Austria include newly developed candidate substances that have emerged out of our translational research initiatives as well as already commercially available medications that are applied in off-licensed indications. Squamous cell carcinoma is the major cause of death in severe forms of EB. We are evaluating immunotherapy using an anti-PD1 monoclonal antibody as a palliative treatment option for locally advanced or metastatic squamous cell carcinoma of the skin unresponsive to previous systemic therapy. In addition, we are evaluating topical calcipotriol and topical diacerein as potential agents to improve the healing of skin wounds in EBS patients. Finally, the review will highlight the recent advancements of gene therapy development for EB.
Collapse
Affiliation(s)
- Christine Prodinger
- EB House AustriaResearch Program for Molecular Therapy of GenodermatosesDepartment of DermatologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
- Department of DermatologyUniversity Hospital of the Paracelsus Medical UniversitySalzburgAustria
| | - Julia Reichelt
- Department of DermatologyVenereology and Allergology, Medical University of InnsbruckInnsbruckAustria
| | - Johann W. Bauer
- EB House AustriaResearch Program for Molecular Therapy of GenodermatosesDepartment of DermatologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
- Department of DermatologyUniversity Hospital of the Paracelsus Medical UniversitySalzburgAustria
| | - Martin Laimer
- EB House AustriaResearch Program for Molecular Therapy of GenodermatosesDepartment of DermatologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
- Department of DermatologyUniversity Hospital of the Paracelsus Medical UniversitySalzburgAustria
| |
Collapse
|
37
|
Kelch-like proteins: Physiological functions and relationships with diseases. Pharmacol Res 2019; 148:104404. [DOI: 10.1016/j.phrs.2019.104404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
|
38
|
Tissue-Specific Gene Expression during Productive Human Papillomavirus 16 Infection of Cervical, Foreskin, and Tonsil Epithelium. J Virol 2019; 93:JVI.00915-19. [PMID: 31189705 DOI: 10.1128/jvi.00915-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Epidemiological data confirm a much higher incidence of high-risk human papillomavirus 16 (HPV16)-mediated carcinogenesis of the cervical epithelium than for other target sites. In order to elucidate tissue-specific responses to virus infection, we compared gene expression changes induced by productive HPV16 infection of cervical, foreskin, and tonsil organotypic rafts. These rafts closely mimic persistent HPV16 infection, long before carcinogenesis sets in. The total number of gene expression changes varied considerably across the tissue types, with only 32 genes being regulated in common. Among them, we confirmed the Kelch-like family protein KLHL35 and the laminin-5 complex to be upregulated and downregulated, respectively, in all the three tissues. HPV16 infection induces upregulation of genes involved in cell cycle control, cell division, mitosis, DNA replication, and DNA damage repair in all the three tissues, indicative of a hyperproliferative environment. In the cervical and tonsil epithelium, we observe significant downregulation of genes involved in epidermis development, keratinocyte differentiation, and extracellular matrix organization. On the other hand, in HPV16-positive foreskin (HPV16 foreskin) tissue, several genes involved in interferon-mediated innate immunity, cytokine signaling, and cellular defenses were downregulated. Furthermore, pathway analysis and experimental validations identified important cellular pathways like STAT1 and transforming growth factor β (TGF-β) to be differentially regulated among the three tissue types. The differential modulation of important cellular pathways like TGF-β1 and STAT1 can explain the sensitivity of tissues to HPV cancer progression.IMPORTANCE Although the high-risk human papillomavirus 16 infects anogenital and oropharyngeal sites, the cervical epithelium has a unique vulnerability to progression of cancer. Host responses during persistent infection and preneoplastic stages can shape the outcome of cancer progression in a tissue-dependent manner. Our study for the first time reports differential regulation of critical cellular functions and signaling pathways during productive HPV16 infection of cervical, foreskin, and tonsil tissues. While the virus induces hyperproliferation in infected cells, it downregulates epithelial differentiation, epidermal development, and innate immune responses, according to the tissue type. Modulation of these biological functions can determine virus fitness and pathogenesis and illuminate key cellular mechanisms that the virus employs to establish persistence and finally initiate disease progression.
Collapse
|
39
|
Has C, Liu L, Bolling MC, Charlesworth AV, El Hachem M, Escámez MJ, Fuentes I, Büchel S, Hiremagalore R, Pohla-Gubo G, van den Akker PC, Wertheim-Tysarowska K, Zambruno G. Clinical practice guidelines for laboratory diagnosis of epidermolysis bullosa. Br J Dermatol 2019; 182:574-592. [PMID: 31090061 PMCID: PMC7064925 DOI: 10.1111/bjd.18128] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
Linked Comment: https://doi.org/10.1111/bjd.18377. https://doi.org/10.1111/bjd.18829 available online
Collapse
Affiliation(s)
- C Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - L Liu
- Viapath, St Thomas' Hospital, London, U.K
| | - M C Bolling
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - A V Charlesworth
- Centre de Reference des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique, L'Archet Hôpital, Nice, France
| | - M El Hachem
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M J Escámez
- Bioengineering Department at Universidad Carlos III de Madrid (UC3M), Regenerative Medicine Unit at CIEMAT - U714 CIBER on Rare Diseases (ISCIII), Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IISFJD), Madrid, Spain
| | - I Fuentes
- Fundación DEBRA Chile, Santiago, Chile.,Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - S Büchel
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - R Hiremagalore
- Adjunct Faculty, Centre for Human Genetics and Department of Dermatology and Pediatrics, Manipal Hospital, Bengaluru, India
| | - G Pohla-Gubo
- EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - P C van den Akker
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - G Zambruno
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
40
|
Vahidnezhad H, Youssefian L, Daneshpazhooh M, Mahmoudi H, Kariminejad A, Fischer J, Christiansen J, Schneider H, Guy A, Liu L, McGrath JA, Has C, Uitto J. Biallelic KRT5 mutations in autosomal recessive epidermolysis bullosa simplex, including a complete human keratin 5 "knock-out". Matrix Biol 2019; 83:48-59. [PMID: 31302245 DOI: 10.1016/j.matbio.2019.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023]
Abstract
Epidermolysis bullosa simplex (EBS) is usually inherited as an autosomal dominant disease due to monoallelic gain-of-function mutations in KRT5 or KRT14. Although autosomal recessive forms of EBS have been associated with mutations in at least 10 genes, recessive EBS due to homozygous biallelic KRT5 mutations has not been reported previously; it has been hypothesized that it would result in prenatal lethality. We sought the genetic causes of EB in a cohort of 512 distinct EB families by performing whole exome sequencing (WES) and using an EB-targeting next-generation sequencing (NGS) panel of 21 genes. The pathogenicity and consequences of the mutations were determined by expression profiling and at tissue and ultrastructural levels. Two pathogenic, homozygous missense variants of KRT5 in two patients with generalized EBS and a homozygous null mutation in a patient who died as a neonate from complications of EB were found. The two missense mutations disrupted keratin 5 expression on immunofluorescence microscopy, and the human "knock-out" of KRT5 showed no RNA and protein expression. Collectively, these findings identify biallelic KRT5 mutations with a phenotypic spectrum varying from mild, localized and generalized to perinatal lethal, expanding the genotypic profile of autosomal recessive EBS.
Collapse
Affiliation(s)
- Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maryam Daneshpazhooh
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mahmoudi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Judith Fischer
- Institute of Human Genetics, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Julie Christiansen
- Department of Dermatology and Venereology, Skanes University Hospital, Sweden
| | - Holm Schneider
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Alyson Guy
- Viapath, St Thomas' Hospital, London, UK
| | - Lu Liu
- Viapath, St Thomas' Hospital, London, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, Guy's Campus, London, UK
| | - Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Xie D, Bilgic-Temel A, Abu Alrub N, Murrell DF. Pathogenesis and clinical features of alopecia in epidermolysis bullosa: A systematic review. Pediatr Dermatol 2019; 36:430-436. [PMID: 31177584 DOI: 10.1111/pde.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epidermolysis bullosa (EB) is a group of rare genetic skin diseases characterized by the gene mutations encoding adhesion proteins within the skin. These adhesion proteins are also present in normal hair follicles. Anecdotally, there have been reports of scalp alopecia as a complication of EB and there are scattered cases in the literature, but alopecia has generally been overlooked in severe blistering diseases because it is regarded as a cosmetic issue. Therefore, there is no consensus about the natural history and clinical manifestations of alopecia in EB to allow potential intervention. OBJECTIVES To review the current literature detailing the pathogenesis and clinical presentations of alopecia in EB patients. METHODS Relevant human studies were searched in Medline, PubMed, and EMBASE electronic databases up to October 2018. RESULTS Only 15 reports detailed 29 EB patients with demographic and clinical manifestations of alopecia. Vertical biopsy sections were the most common method of alopecia diagnosis, and the most common pattern was patchy scalp alopecia (45%) followed by diffuse alopecia (41%). The most robust finding was nonspecific scarring alopecia in all dystrophic EB (DEB) patients and nonspecific nonscarring alopecia in most patients with EB simplex (EBS). CONCLUSIONS Hair abnormalities observed in EB are of variable severity despite there being no universal validated alopecia scoring system, with alopecia occurring secondary to blistering, or in areas prone to trauma.
Collapse
Affiliation(s)
- Danica Xie
- Department of Dermatology, St George Hospital, Kogarah, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Asli Bilgic-Temel
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Nada Abu Alrub
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Dedee F Murrell
- Department of Dermatology, St George Hospital, Kogarah, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
|
43
|
Neininger K, Marschall T, Helms V. SNP and indel frequencies at transcription start sites and at canonical and alternative translation initiation sites in the human genome. PLoS One 2019; 14:e0214816. [PMID: 30978217 PMCID: PMC6461226 DOI: 10.1371/journal.pone.0214816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/20/2019] [Indexed: 11/30/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are the most common form of genetic variation in humans and drive phenotypic variation. Due to evolutionary conservation, SNPs and indels (insertion and deletions) are depleted in functionally important sequence elements. Recently, population-scale sequencing efforts such as the 1000 Genomes Project and the Genome of the Netherlands Project have catalogued large numbers of sequence variants. Here, we present a systematic analysis of the polymorphisms reported by these two projects in different coding and non-coding genomic elements of the human genome (intergenic regions, CpG islands, promoters, 5’ UTRs, coding exons, 3’ UTRs, introns, and intragenic regions). Furthermore, we were especially interested in the distribution of SNPs and indels in direct vicinity to the transcription start site (TSS) and translation start site (CSS). Thereby, we discovered an enrichment of dinucleotides CpG and CpA and an accumulation of SNPs at base position −1 relative to the TSS that involved primarily CpG and CpA dinucleotides. Genes having a CpG dinucleotide at TSS position -1 were enriched in the functional GO terms “Phosphoprotein”, “Alternative splicing”, and “Protein binding”. Focusing on the CSS, we compared SNP patterns in the flanking regions of canonical and alternative AUG and near-cognate start sites where we considered alternative starts previously identified by experimental ribosome profiling. We observed similar conservation patterns of canonical and alternative translation start sites, which underlines the importance of alternative translation mechanisms for cellular function.
Collapse
Affiliation(s)
- Kerstin Neininger
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
- Graduate School of Computer Science, Saarland University, 66123 Saarbrücken, Germany
| | - Tobias Marschall
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
- Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
44
|
He Y, Has C. Isolation and Culture of Epidermolysis Bullosa Cells and Organotypic Skin Models. Methods Mol Biol 2019; 1993:181-190. [PMID: 31148087 DOI: 10.1007/978-1-4939-9473-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Isolation and culture of keratinocytes from patients with different types of epidermolysis bullosa are sometimes challenging, because of the inherent adhesion defects of these cells. We routinely employ a well-established protocol for in vitro culture of these cells from small skin samples remaining after diagnostic procedures are performed. Keratinocytes and fibroblast can be used for downstream expression and functional studies or for construction of in vitro organotypic cocultures. These cells maintain main common characteristics of spreading, adhesion, migration, and survival, which depend on the underlying molecular defect.
Collapse
Affiliation(s)
- Yinghong He
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
45
|
Vahidnezhad H, Youssefian L, Saeidian AH, Uitto J. Phenotypic Spectrum of Epidermolysis Bullosa: The Paradigm of Syndromic versus Non-Syndromic Skin Fragility Disorders. J Invest Dermatol 2018; 139:522-527. [PMID: 30393082 DOI: 10.1016/j.jid.2018.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 11/28/2022]
Abstract
The heritable forms of epidermolysis bullosa (EB), a phenotypically heterogeneous group of skin fragility disorders, is currently associated with mutations in as many as 21 distinct genes. EB is primarily a disorder affecting the epithelial layers of skin and mucous membranes, without extracutaneous manifestations, and thus is nonsyndromic. However, recent demonstrations of skin blistering in multisystem disorders with single gene defects highlight the concept of syndromic EB. Here, we review the phenotypic and genotypic features of syndromic forms of EB to delineate the concept of syndromic versus nonsyndromic skin fragility disorders.
Collapse
Affiliation(s)
- Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Pennsylvania, USA
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Pennsylvania, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
46
|
Has C, Nyström A, Saeidian AH, Bruckner-Tuderman L, Uitto J. Epidermolysis bullosa: Molecular pathology of connective tissue components in the cutaneous basement membrane zone. Matrix Biol 2018; 71-72:313-329. [PMID: 29627521 DOI: 10.1016/j.matbio.2018.04.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/13/2023]
Abstract
Epidermolysis bullosa (EB), a group of heritable skin fragility disorders, is characterized by blistering, erosions and chronic ulcers in the skin and mucous membranes. In some forms, the blistering phenotype is associated with extensive mutilating scarring and development of aggressive squamous cell carcinomas. The skin findings can be associated with extracutaneous manifestations in the ocular as well as gastrointestinal and vesico-urinary tracts. The phenotypic heterogeneity reflects the presence of mutations in as many as 20 different genes expressed in the cutaneous basement membrane zone, and the types and combinations of the mutations and their consequences at the mRNA and protein levels contribute to the spectrum of severity encountered in different subtypes of EB. This overview highlights the molecular genetics of EB based on mutations in the genes encoding type VII and XVII collagens as well as laminin-332. The mutations identified in these protein components of the extracellular matrix attest to their critical importance in providing stability to the cutaneous basement membrane zone, with implications for heritable and acquired diseases.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Nanda A, Liu L, Al-Ajmi H, Al-Saleh QA, Al-Fadhli S, Anim JT, Ozoemena L, Mellerio JE, McGrath JA. Clinical subtypes and molecular basis of epidermolysis bullosa in Kuwait. Int J Dermatol 2018; 57:1058-1067. [PMID: 30011071 DOI: 10.1111/ijd.14099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/15/2018] [Accepted: 06/04/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous blistering skin disease, but in countries such as Kuwait, there are very limited data on the clinical and molecular pathology of EB. To improve understanding of EB in Kuwait, we report the experience of a local tertiary referral center over a 17.5 year period (January 2000-June 2017) in establishing clinical and molecular diagnoses. METHODS Review of hospital records and diagnostic reports. Individual cases were diagnosed by combinations of clinical assessment, skin biopsy (immunohistochemistry and transmission electron microscopy), Sanger sequencing of EB genes, and whole exome sequencing. RESULTS Fifty-four families with EB were registered with the clinic over this period, 41 of whom (84 patients) participated in diagnostic studies. Thirty-seven of these 41 families had consanguineous marriages; 34 had recessive forms of EB, while only seven had dominant subtypes. Recurrent mutations were observed in epidermal dystonin, transglutaminase 5, and type VII collagen. CONCLUSIONS The prevalence of EB in Kuwait is approximately three times that of internationally cited rates with an over-representation of autosomal recessive variants. Establishing the molecular basis of EB in Kuwait with accurate diagnostic subtyping provides a basis for determining healthcare requirements and improving patient management of EB.
Collapse
Affiliation(s)
- Arti Nanda
- As'ad Al-Hamad Dermatology Center, Salmiya, Kuwait
| | - Lu Liu
- National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St. Thomas' Hospital, London, UK
| | | | | | - Suad Al-Fadhli
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Safat, Kuwait
| | - John T Anim
- Department of Pathology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Ghana College of Physicians and Surgeons, Accra, Ghana
| | - Linda Ozoemena
- National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St. Thomas' Hospital, London, UK
| | - Jemima E Mellerio
- St. John's Institute of Dermatology, King's College London, Guy's Campus, London, UK
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London, Guy's Campus, London, UK
| |
Collapse
|
48
|
Schwieger-Briel A, Fuentes I, Castiglia D, Barbato A, Greutmann M, Leppert J, Duchatelet S, Hovnanian A, Burattini S, Yubero MJ, Ibañez-Arenas R, Rebolledo-Jaramillo B, Gräni C, Ott H, Theiler M, Weibel L, Paller AS, Zambruno G, Fischer J, Palisson F, Has C. Epidermolysis Bullosa Simplex with KLHL24 Mutations Is Associated with Dilated Cardiomyopathy. J Invest Dermatol 2018; 139:244-249. [PMID: 30120936 DOI: 10.1016/j.jid.2018.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Agnes Schwieger-Briel
- Department of Pediatric Dermatology, University Children's Hospital Zurich, Zurich, Switzerland; Epidermolysis bullosa Centre, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Ignacia Fuentes
- Fundación DEBRA Chile, Santiago, Chile; Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | - Antonio Barbato
- Emergency Medicine and Hypertension Unit, Department of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Matthias Greutmann
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Juna Leppert
- Epidermolysis bullosa Centre, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sabine Duchatelet
- INSERM, Laboratory of Genetic Skin Diseases, Imagine Institute and Paris Descartes University, Paris, France
| | - Alain Hovnanian
- INSERM, Laboratory of Genetic Skin Diseases, Imagine Institute and Paris Descartes University, Paris, France
| | | | - M Joao Yubero
- Fundación DEBRA Chile, Santiago, Chile; Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Ibañez-Arenas
- Fundación DEBRA Chile, Santiago, Chile; Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Department of Cardiology, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Boris Rebolledo-Jaramillo
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Christoph Gräni
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland
| | - Hagen Ott
- Division of Pediatric Dermatology and Allergology, Children's Hospital Auf der Bult, Hanover, Germany
| | - Martin Theiler
- Department of Pediatric Dermatology, University Children's Hospital Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Lisa Weibel
- Department of Pediatric Dermatology, University Children's Hospital Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Judith Fischer
- Department of Human Genetics, Medical Center-University of Freiburg, Germany
| | - Francis Palisson
- Fundación DEBRA Chile, Santiago, Chile; Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Dermatology Department, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Cristina Has
- Epidermolysis bullosa Centre, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
49
|
Yenamandra VK, van den Akker PC, Lemmink HH, Jan SZ, Diercks GFH, Vermeer M, van den Berg MP, van der Meer P, Pasmooij AMG, Sinke RJ, Jonkman MF, Bolling MC. Cardiomyopathy in patients with epidermolysis bullosa simplex with mutations in KLHL24. Br J Dermatol 2018; 179:1181-1183. [PMID: 29779254 DOI: 10.1111/bjd.16797] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- V K Yenamandra
- Department of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands
| | | | - H H Lemmink
- Department of Genetics, Groningen, The Netherlands
| | - S Z Jan
- Department of Genetics, Groningen, The Netherlands
| | | | - M Vermeer
- Department of Cardiology, Groningen, The Netherlands
| | | | | | - A M G Pasmooij
- Department of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands
| | - R J Sinke
- Department of Genetics, Groningen, The Netherlands
| | - M F Jonkman
- Department of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands
| | - M C Bolling
- Department of Dermatology, Center for Blistering Diseases, Groningen, The Netherlands
| |
Collapse
|
50
|
Khani P, Ghazi F, Zekri A, Nasri F, Behrangi E, Aghdam AM, Mirzaei H. Keratins and epidermolysis bullosa simplex. J Cell Physiol 2018; 234:289-297. [PMID: 30078200 DOI: 10.1002/jcp.26898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Abstract
Keratin intermediate filaments play an important role in maintaining the integrity of the skin structure. Understanding the importance of this subject is possible with the investigation of keratin defects in epidermolysis bullosa simplex (EBS). Nowadays, in addition to clinical criteria, new molecular diagnostic methods, such as next generation sequencing, can help to distinguish the subgroups of EBS more precisely. Because the most important and most commonly occurring molecular defects in these patients are the defects of keratins 5 and14 (KRT5 and KRT14), comprehending the nature structure of these proteins and their involved processes can be very effective in understanding the pathophysiology of this disease and providing new and effective therapeutic platforms to treat it. Here, we summarized the various aspects of the presence of KRT5 and KRT14 in the epidermis, their relation to the incidence and severity of EBS phenotypes, and the processes with which these proteins can affect them.
Collapse
Affiliation(s)
- Pouria Khani
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farideh Ghazi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Zekri
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Medical Immunology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elham Behrangi
- Department of Dermatology and Laser Surgery, Clinical Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arad Mobasher Aghdam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|