1
|
Yuan B, Schulze KV, Assia Batzir N, Sinson J, Dai H, Zhu W, Bocanegra F, Fong CT, Holder J, Nguyen J, Schaaf CP, Yang Y, Bi W, Eng C, Shaw C, Lupski JR, Liu P. Sequencing individual genomes with recurrent genomic disorder deletions: an approach to characterize genes for autosomal recessive rare disease traits. Genome Med 2022; 14:113. [PMID: 36180924 PMCID: PMC9526336 DOI: 10.1186/s13073-022-01113-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In medical genetics, discovery and characterization of disease trait contributory genes and alleles depends on genetic reasoning, study design, and patient ascertainment; we suggest a segmental haploid genetics approach to enhance gene discovery and molecular diagnostics. METHODS We constructed a genome-wide map for nonallelic homologous recombination (NAHR)-mediated recurrent genomic deletions and used this map to estimate population frequencies of NAHR deletions based on large-scale population cohorts and region-specific studies. We calculated recessive disease carrier burden using high-quality pathogenic or likely pathogenic variants from ClinVar and gnomAD. We developed a NIRD (NAHR deletion Impact to Recessive Disease) score for recessive disorders by quantifying the contribution of NAHR deletion to the overall allele load that enumerated all pairwise combinations of disease-causing alleles; we used a Punnett square approach based on an assumption of random mating. Literature mining was conducted to identify all reported patients with defects in a gene with a high NIRD score; meta-analysis was performed on these patients to estimate the representation of NAHR deletions in recessive traits from contemporary human genomics studies. Retrospective analyses of extant clinical exome sequencing (cES) were performed for novel rare recessive disease trait gene and allele discovery from individuals with NAHR deletions. RESULTS We present novel genomic insights regarding the genome-wide impact of NAHR recurrent segmental variants on recessive disease burden; we demonstrate the utility of NAHR recurrent deletions to enhance discovery in the challenging context of autosomal recessive (AR) traits and biallelic variation. Computational results demonstrate new mutations mediated by NAHR, involving recurrent deletions at 30 genomic regions, likely drive recessive disease burden for over 74% of loci within these segmental deletions or at least 2% of loci genome-wide. Meta-analyses on 170 literature-reported patients implicate that NAHR deletions are depleted from the ascertained pool of AR trait alleles. Exome reanalysis of personal genomes from subjects harboring recurrent deletions uncovered new disease-contributing variants in genes including COX10, ERCC6, PRRT2, and OTUD7A. CONCLUSIONS Our results demonstrate that genomic sequencing of personal genomes with NAHR deletions could dramatically improve allele and gene discovery and enhance clinical molecular diagnosis. Moreover, results suggest NAHR events could potentially enable human haploid genetic screens as an approach to experimental inquiry into disease biology.
Collapse
Affiliation(s)
- Bo Yuan
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
| | - Katharina V. Schulze
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Nurit Assia Batzir
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Jefferson Sinson
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Hongzheng Dai
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Wenmiao Zhu
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | | | - Chin-To Fong
- grid.412750.50000 0004 1936 9166Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Jimmy Holder
- grid.39382.330000 0001 2160 926XDepartment of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Joanne Nguyen
- grid.267308.80000 0000 9206 2401Department of Pediatrics, University of Texas Health Science Center, Houston, TX USA
| | - Christian P. Schaaf
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.7700.00000 0001 2190 4373Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Yaping Yang
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Weimin Bi
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Christine Eng
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Chad Shaw
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.21940.3e0000 0004 1936 8278Department of Statistics, Rice University, Houston, TX USA
| | - James R. Lupski
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Pediatrics, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Texas Children’s Hospital, Houston, TX USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Baylor Genetics, Houston, TX, USA.
| |
Collapse
|
2
|
La Cognata V, Cavallaro S. Detection of Structural Variants by NGS: Revealing Missing Alleles in Lysosomal Storage Diseases. Biomedicines 2022; 10:biomedicines10081836. [PMID: 36009380 PMCID: PMC9405548 DOI: 10.3390/biomedicines10081836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare multisystem metabolic disorders occurring mostly in infancy and childhood, characterized by a gradual accumulation of non-degraded substrates inside the cells. Although biochemical enzymatic assays are considered the gold standard for diagnosis of symptomatic patients, genotyping is a requirement for inclusion in enzyme replacement programs and is a prerequisite for carrier tests in relatives and DNA-based prenatal diagnosis. The emerging next-generation sequencing (NGS) technologies are now offering a powerful diagnostic tool for genotyping LSDs patients by providing faster, cheaper, and higher-resolution testing options, and are allowing to unravel, in a single integrated workflow SNVs, small insertions and deletions (indels), as well as major structural variations (SVs) responsible for the pathology. Here, we summarize the current knowledge about the most recurrent and private SVs involving LSDs-related genes, review advantages and drawbacks related to the use of the NGS in the SVs detection, and discuss the challenges to bring this type of analysis in clinical diagnostics.
Collapse
|
3
|
Lupski JR. Biology in balance: human diploid genome integrity, gene dosage, and genomic medicine. Trends Genet 2022; 38:554-571. [PMID: 35450748 PMCID: PMC9222541 DOI: 10.1016/j.tig.2022.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/01/2023]
Abstract
The path to completion of the functional annotation of the haploid human genome reference build, exploration of the clan genomics hypothesis, understanding human gene and genome functional biology, and gene genome and organismal evolution, is in reach.
Collapse
Affiliation(s)
- James R Lupski
- Genetics & Genomics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Lupski JR. Clan genomics: From OMIM phenotypic traits to genes and biology. Am J Med Genet A 2021; 185:3294-3313. [PMID: 34405553 PMCID: PMC8530976 DOI: 10.1002/ajmg.a.62434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Clinical characterization of a patient phenotype has been the quintessential approach for elucidating a differential diagnosis and a hypothesis to explore a potential clinical diagnosis. This has resulted in a language of medicine and a semantic ontology, with both specialty- and subspecialty-specific lexicons, that can be challenging to translate and interpret. There is no 'Rosetta Stone' of clinical medicine such as the genetic code that can assist translation and interpretation of the language of genetics. Nevertheless, the information content embodied within a clinical diagnosis can guide management, therapeutic intervention, and potentially prognostic outlook of disease enabling anticipatory guidance for patients and families. Clinical genomics is now established firmly in medical practice. The granularity and informative content of a personal genome is immense. Yet, we are limited in our utility of much of that personal genome information by the lack of functional characterization of the overwhelming majority of computationally annotated genes in the haploid human reference genome sequence. Whereas DNA and the genetic code have provided a 'Rosetta Stone' to translate genetic variant information, clinical medicine, and clinical genomics provide the context to understand human biology and disease. A path forward will integrate deep phenotyping, such as available in a clinical synopsis in the Online Mendelian Inheritance in Man (OMIM) entries, with personal genome analyses.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
5
|
Lupski JR, Liu P, Stankiewicz P, Carvalho CMB, Posey JE. Clinical genomics and contextualizing genome variation in the diagnostic laboratory. Expert Rev Mol Diagn 2020; 20:995-1002. [PMID: 32954863 DOI: 10.1080/14737159.2020.1826312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The human genome contains the instructions for the development and biological homeostasis of the human organism and the genetic transmission of traits. Genome variation in human populations is the basis of evolution; individual or personal genomes vary tremendously, making each of us truly unique. AREAS COVERED Assaying this individual variation using genomic technologies has many applications in clinical medicine, from elucidating the biology of disease to designing strategies to ameliorate perturbations from homeostasis. Detecting pathogenic rare variation in a genome may provide a molecular diagnosis that can be informative for patient management and family healthcare. EXPERT OPINION Despite the increasing clinical use of unbiased genomic testing, including chromosome microarray analysis (CMA) with array comparative genomic hybridization (aCGH) or SNP arrays, clinical exome sequencing (cES), and whole-genome sequencing (WGS), to survey genome-wide for molecular aberrations, clinical acumen paired with an understanding of the limitations of each testing type will be needed to achieve molecular diagnoses. Potential opportunities for improving case solved rates, functionally annotating the majority of genes in the human genome, and further understanding genetic contributions to disease will empower clinical genomics and the precision medicine initiative.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine , Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine , Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX, USA.,Baylor Genetics, Baylor College of Medicine , Houston, TX, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|
6
|
Franciskovich R, Soler-Alfonso C, Neira-Fresneda J, Lupski JR, McCann-Crosby B, Potocki L. Short stature and growth hormone deficiency in a subset of patients with Potocki-Lupski syndrome: Expanding the phenotype of PTLS. Am J Med Genet A 2020; 182:2077-2084. [PMID: 32656927 PMCID: PMC8445515 DOI: 10.1002/ajmg.a.61741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 11/07/2022]
Abstract
Potocki-Lupski Syndrome (PTLS, MIM 610883), or duplication of chromosome 17p11.2, is a clinically recognizable condition characterized by infantile hypotonia, failure to thrive, developmental delay, intellectual disability, and congenital anomalies. Short stature, classified as greater than two standard deviations below the mean, has not previously been considered a major feature of PTLS. Retrospective chart review on a cohort of 37 individuals with PTLS was performed to investigate the etiology of short stature. Relevant data included anthropometric measurements, insulin growth factor-1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), growth hormone (GH) stimulation testing, blood glucose levels, brain MRI, and bone age. Approximately 25% (9/37) of individuals with PTLS had short stature. Growth hormone deficiency (GHD) was definitively identified in two individuals. These two PTLS patients with growth hormone deficiency, as well as three others with short stature and no documented GHD, received growth hormone and obtained improvement in linear growth. One individual was identified to have pituitary abnormalities on MRI and had complications of hypoglycemia due to unrecognized GHD. Individuals with PTLS can benefit from undergoing evaluation for GHD should they present with short stature or hypoglycemia. Early identification of GHD could facilitate potential therapeutic benefit for individuals with PTLS, including linear growth, musculoskeletal, and in cases of hypoglycemia, potentially cognitive development as well.
Collapse
Affiliation(s)
- Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, USA
| | | | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Bonnie McCann-Crosby
- Texas Children’s Hospital, Houston, USA
- Division of Pediatric Endocrinology, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, USA
| |
Collapse
|
7
|
Ren X, Yang N, Wu N, Xu X, Chen W, Zhang L, Li Y, Du RQ, Dong S, Zhao S, Chen S, Jiang LP, Wang L, Zhang J, Wu Z, Jin L, Qiu G, Lupski JR, Shi J, Zhang F, Liu P. Increased TBX6 gene dosages induce congenital cervical vertebral malformations in humans and mice. J Med Genet 2020; 57:371-379. [PMID: 31888956 PMCID: PMC9179029 DOI: 10.1136/jmedgenet-2019-106333] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Congenital vertebral malformations (CVMs) manifest with abnormal vertebral morphology. Genetic factors have been implicated in CVM pathogenesis, but the underlying pathogenic mechanisms remain unclear in most subjects. We previously reported that the human 16p11.2 BP4-BP5 deletion and its associated TBX6 dosage reduction caused CVMs. We aim to investigate the reciprocal 16p11.2 BP4-BP5 duplication and its potential genetic contributions to CVMs. METHODS AND RESULTS Patients who were found to carry the 16p11.2 BP4-BP5 duplication by chromosomal microarray analysis were retrospectively analysed for their vertebral phenotypes. The spinal assessments in seven duplication carriers showed that four (57%) presented characteristics of CVMs, supporting the contention that increased TBX6 dosage could induce CVMs. For further in vivo functional investigation in a model organism, we conducted genome editing of the upstream regulatory region of mouse Tbx6 using CRISPR-Cas9 and obtained three mouse mutant alleles (Tbx6up1 to Tbx6up3 ) with elevated expression levels of Tbx6. Luciferase reporter assays showed that the Tbx6up3 allele presented with the 160% expression level of that observed in the reference (+) allele. Therefore, the homozygous Tbx6up3/up3 mice could functionally mimic the TBX6 dosage of heterozygous carriers of 16p11.2 BP4-BP5 duplication (approximately 150%, ie, 3/2 gene dosage of the normal level). Remarkably, 60% of the Tbx6up3/up3 mice manifested with CVMs. Consistent with our observations in humans, the CVMs induced by increased Tbx6 dosage in mice mainly affected the cervical vertebrae. CONCLUSION Our findings in humans and mice consistently support that an increased TBX6 dosage contributes to the risk of developing cervical CVMs.
Collapse
Affiliation(s)
- Xiaojun Ren
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Nan Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ximing Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingping Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Ren-Qian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shuangshuang Dong
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuxia Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Li-Ping Jiang
- State key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Jiangang Shi
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| |
Collapse
|
8
|
Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants. Genome Med 2019; 11:80. [PMID: 31818324 PMCID: PMC6902434 DOI: 10.1186/s13073-019-0676-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We investigated the features of the genomic rearrangements in a cohort of 50 male individuals with proteolipid protein 1 (PLP1) copy number gain events who were ascertained with Pelizaeus-Merzbacher disease (PMD; MIM: 312080). We then compared our new data to previous structural variant mutagenesis studies involving the Xq22 region of the human genome. The aggregate data from 159 sequenced join-points (discontinuous sequences in the reference genome that are joined during the rearrangement process) were studied. Analysis of these data from 150 individuals enabled the spectrum and relative distribution of the underlying genomic mutational signatures to be delineated. METHODS Genomic rearrangements in PMD individuals with PLP1 copy number gain events were investigated by high-density customized array or clinical chromosomal microarray analysis and breakpoint junction sequence analysis. RESULTS High-density customized array showed that the majority of cases (33/50; ~ 66%) present with single duplications, although complex genomic rearrangements (CGRs) are also frequent (17/50; ~ 34%). Breakpoint mapping to nucleotide resolution revealed further previously unknown structural and sequence complexities, even in single duplications. Meta-analysis of all studied rearrangements that occur at the PLP1 locus showed that single duplications were found in ~ 54% of individuals and that, among all CGR cases, triplication flanked by duplications is the most frequent CGR array CGH pattern observed. Importantly, in ~ 32% of join-points, there is evidence for a mutational signature of microhomeology (highly similar yet imperfect sequence matches). CONCLUSIONS These data reveal a high frequency of CGRs at the PLP1 locus and support the assertion that replication-based mechanisms are prominent contributors to the formation of CGRs at Xq22. We propose that microhomeology can facilitate template switching, by stabilizing strand annealing of the primer using W-C base complementarity, and is a mutational signature for replicative repair.
Collapse
|