1
|
Kwon R, Cheng HH, Pritchard CC. Tumor Mutational Burden Testing in Solid Tumors. JAMA Oncol 2023; 9:1725-1726. [PMID: 37883072 DOI: 10.1001/jamaoncol.2023.4293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A 58-year-old man with diabetes, chronic kidney disease, and JAK2-positive myeloproliferative neoplasm is referred for newly diagnosed oligometastatic prostate cancer with substantial urinary symptoms. What would you do next?
Collapse
Affiliation(s)
- Regina Kwon
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle
| | - Heather H Cheng
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Colin C Pritchard
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle
- VA Puget Sound Health Care System, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| |
Collapse
|
2
|
Oill AMT, Handley C, Howell EK, Stone AC, Mathew S, Wilson MA. Genomic analysis reveals geography rather than culture as the predominant factor shaping genetic variation in northern Kenyan human populations. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178:488-503. [PMID: 36790743 PMCID: PMC9949739 DOI: 10.1002/ajpa.24521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVES The aim of this study was to characterize the genetic relationships within and among four neighboring ethnolinguistic groups in northern Kenya in light of cultural relationships to understand the extent to which geography and culture shape patterns of genetic variation. MATERIALS AND METHODS We collected DNA and demographic information pertaining to aspects of social identity and heritage from 572 individuals across the Turkana, Samburu, Waso Borana, and Rendille of northern Kenya. We sampled individuals across a total of nine clans from these four groups and, additionally, three territorial sections within the Turkana and successfully genotyped 376 individuals. RESULTS Here we report that geography predominately shapes genetic variation within and among human groups in northern Kenya. We observed a clinal pattern of genetic variation that mirrors the overall geographic distribution of the individuals we sampled. We also found relatively higher rates of intermarriage between the Rendille and Samburu and evidence of gene flow between them that reflect these higher rates of intermarriage. Among the Turkana, we observed strong recent genetic substructuring based on territorial section affiliation. Within ethnolinguistic groups, we found that Y chromosome haplotypes do not consistently cluster by natal clan affiliation. Finally, we found that sampled populations that are geographically closer have lower genetic differentiation, and that cultural similarity does not predict genetic similarity as a whole across these northern Kenyan populations. DISCUSSION Overall, the results from this study highlight the importance of geography, even on a local geographic scale, in shaping observed patterns of genetic variation in human populations.
Collapse
Affiliation(s)
- Angela M. Taravella Oill
- School of Life Sciences, Arizona State University, Tempe, AZ 85287 USA,Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287 USA
| | - Carla Handley
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287 USA
| | - Emma K. Howell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287 USA,Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287 USA
| | - Anne C. Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287 USA,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287 USA,Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA
| | - Sarah Mathew
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287 USA,Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA,Co-corresponding authors
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287 USA,Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287 USA,Co-corresponding authors
| |
Collapse
|
3
|
Circum-Saharan Prehistory through the Lens of mtDNA Diversity. Genes (Basel) 2022; 13:genes13030533. [PMID: 35328086 PMCID: PMC8951852 DOI: 10.3390/genes13030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
African history has been significantly influenced by the Sahara, which has represented a barrier for migrations of all living beings, including humans. Major exceptions were the gene flow events that took place between North African and sub-Saharan populations during the so-called African Humid Periods, especially in the Early Holocene (11.5 to 5.5 thousand years ago), and more recently in connection with trans-Saharan commercial routes. In this study, we describe mitochondrial DNA (mtDNA) diversity of human populations from both sides of the Sahara Desert, i.e., both from North Africa and the Sahel/Savannah belt. The final dataset of 7213 mtDNA sequences from 134 African populations encompasses 470 newly collected and 6743 previously published samples, which were analyzed using descriptive methods and Bayesian statistics. We completely sequenced 26 mtDNAs from sub-Saharan samples belonging to the Eurasian haplogroup N1. Analyses of these N1 mitogenomes revealed their possible routes to the Sahel, mostly via Bab el-Mandab. Our results indicate that maternal gene flow must have been important in this circum-Saharan space, not only within North Africa and the Sahel/Savannah belt but also between these two regions.
Collapse
|
4
|
Mwesigwa S, Williams L, Retshabile G, Katagirya E, Mboowa G, Mlotshwa B, Kyobe S, Kateete DP, Wampande EM, Wayengera M, Mpoloka SW, Mirembe AN, Kasvosve I, Morapedi K, Kisitu GP, Kekitiinwa AR, Anabwani G, Joloba ML, Matovu E, Mulindwa J, Noyes H, Botha G, Brown CW, Mardon G, Matshaba M, Hanchard NA. Unmapped exome reads implicate a role for Anelloviridae in childhood HIV-1 long-term non-progression. NPJ Genom Med 2021; 6:24. [PMID: 33741997 PMCID: PMC7979878 DOI: 10.1038/s41525-021-00185-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection remains a significant public health burden globally. The role of viral co-infection in the rate of progression of HIV infection has been suggested but not empirically tested, particularly among children. We extracted and classified 42 viral species from whole-exome sequencing (WES) data of 813 HIV-infected children in Botswana and Uganda categorised as either long-term non-progressors (LTNPs) or rapid progressors (RPs). The Ugandan participants had a higher viral community diversity index compared to Batswana (p = 4.6 × 10-13), and viral sequences were more frequently detected among LTNPs than RPs (24% vs 16%; p = 0.008; OR, 1.9; 95% CI, 1.6-2.3), with Anelloviridae showing strong association with LTNP status (p = 3 × 10-4; q = 0.004, OR, 3.99; 95% CI, 1.74-10.25). This trend was still evident when stratified by country, sex, and sequencing platform, and after a logistic regression analysis adjusting for age, sex, country, and the sequencing platform (p = 0.02; q = 0.03; OR, 7.3; 95% CI, 1.6-40.5). Torque teno virus (TTV), which made up 95% of the Anelloviridae reads, has been associated with reduced immune activation. We identify an association between viral co-infection and prolonged AIDs-free survival status that may have utility as a biomarker of LTNP and could provide mechanistic insights to HIV progression in children, demonstrating the added value of interrogating off-target WES reads in cohort studies.
Collapse
Affiliation(s)
| | | | | | - Eric Katagirya
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gerald Mboowa
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Samuel Kyobe
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - David P Kateete
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Misaki Wayengera
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Angella N Mirembe
- Baylor College of Medicine Children's Foundation Uganda (Baylor Uganda), Kampala, Uganda
| | | | | | - Grace P Kisitu
- Baylor College of Medicine Children's Foundation Uganda (Baylor Uganda), Kampala, Uganda
| | - Adeodata R Kekitiinwa
- Baylor College of Medicine Children's Foundation Uganda (Baylor Uganda), Kampala, Uganda
| | - Gabriel Anabwani
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
| | - Moses L Joloba
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Julius Mulindwa
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Harry Noyes
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Gerrit Botha
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Chester W Brown
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mogomotsi Matshaba
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Amatya B, Lee H, Asico LD, Konkalmatt P, Armando I, Felder RA, Jose PA. SNX-PXA-RGS-PXC Subfamily of SNXs in the Regulation of Receptor-Mediated Signaling and Membrane Trafficking. Int J Mol Sci 2021; 22:ijms22052319. [PMID: 33652569 PMCID: PMC7956473 DOI: 10.3390/ijms22052319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
The SNX-PXA-RGS-PXC subfamily of sorting nexins (SNXs) belongs to the superfamily of SNX proteins. SNXs are characterized by the presence of a common phox-homology (PX) domain, along with other functional domains that play versatile roles in cellular signaling and membrane trafficking. In addition to the PX domain, the SNX-PXA-RGS-PXC subfamily, except for SNX19, contains a unique RGS (regulators of G protein signaling) domain that serves as GTPase activating proteins (GAPs), which accelerates GTP hydrolysis on the G protein α subunit, resulting in termination of G protein-coupled receptor (GPCR) signaling. Moreover, the PX domain selectively interacts with phosphatidylinositol-3-phosphate and other phosphoinositides found in endosomal membranes, while also associating with various intracellular proteins. Although SNX19 lacks an RGS domain, all members of the SNX-PXA-RGS-PXC subfamily serve as dual regulators of receptor cargo signaling and endosomal trafficking. This review discusses the known and proposed functions of the SNX-PXA-RGS-PXC subfamily and how it participates in receptor signaling (both GPCR and non-GPCR) and endosomal-based membrane trafficking. Furthermore, we discuss the difference of this subfamily of SNXs from other subfamilies, such as SNX-BAR nexins (Bin-Amphiphysin-Rvs) that are associated with retromer or other retrieval complexes for the regulation of receptor signaling and membrane trafficking. Emerging evidence has shown that the dysregulation and malfunction of this subfamily of sorting nexins lead to various pathophysiological processes and disorders, including hypertension.
Collapse
Affiliation(s)
- Bibhas Amatya
- The George Washington University, Washington, DC 20052, USA;
| | - Hewang Lee
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Laureano D. Asico
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Prasad Konkalmatt
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Ines Armando
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA;
| | - Pedro A. Jose
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA;
- Department of Pharmacology/Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
- Correspondence:
| |
Collapse
|
6
|
Wonkam A. Investigating the missing heritability of fetal haemoglobin level in Africa. Br J Haematol 2020; 191:668-670. [PMID: 33094841 DOI: 10.1111/bjh.17101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ambroise Wonkam
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Choudhury A, Aron S, Botigué LR, Sengupta D, Botha G, Bensellak T, Wells G, Kumuthini J, Shriner D, Fakim YJ, Ghoorah AW, Dareng E, Odia T, Falola O, Adebiyi E, Hazelhurst S, Mazandu G, Nyangiri OA, Mbiyavanga M, Benkahla A, Kassim SK, Mulder N, Adebamowo SN, Chimusa ER, Muzny D, Metcalf G, Gibbs RA, Rotimi C, Ramsay M, Adeyemo AA, Lombard Z, Hanchard NA. High-depth African genomes inform human migration and health. Nature 2020; 586:741-748. [PMID: 33116287 PMCID: PMC7759466 DOI: 10.1038/s41586-020-2859-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2020] [Indexed: 01/05/2023]
Abstract
The African continent is regarded as the cradle of modern humans and African genomes contain more genetic variation than those from any other continent, yet only a fraction of the genetic diversity among African individuals has been surveyed1. Here we performed whole-genome sequencing analyses of 426 individuals-comprising 50 ethnolinguistic groups, including previously unsampled populations-to explore the breadth of genomic diversity across Africa. We uncovered more than 3 million previously undescribed variants, most of which were found among individuals from newly sampled ethnolinguistic groups, as well as 62 previously unreported loci that are under strong selection, which were predominantly found in genes that are involved in viral immunity, DNA repair and metabolism. We observed complex patterns of ancestral admixture and putative-damaging and novel variation, both within and between populations, alongside evidence that Zambia was a likely intermediate site along the routes of expansion of Bantu-speaking populations. Pathogenic variants in genes that are currently characterized as medically relevant were uncommon-but in other genes, variants denoted as 'likely pathogenic' in the ClinVar database were commonly observed. Collectively, these findings refine our current understanding of continental migration, identify gene flow and the response to human disease as strong drivers of genome-level population variation, and underscore the scientific imperative for a broader characterization of the genomic diversity of African individuals to understand human ancestry and improve health.
Collapse
Affiliation(s)
- Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shaun Aron
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Laura R Botigué
- Center for Research in Agricultural Genomics (CRAG), Plant and Animal Genomics Program, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gerrit Botha
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Taoufik Bensellak
- System and Data Engineering Team, Abdelmalek Essaadi University, ENSA, Tangier, Morocco
| | - Gordon Wells
- Centre for Proteomic and Genomic Research (CPGR), Cape Town, South Africa.,South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa.,Africa Health Research Institute, Durban, South Africa
| | - Judit Kumuthini
- Centre for Proteomic and Genomic Research (CPGR), Cape Town, South Africa.,South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yasmina J Fakim
- Department of Agriculture and Food Science, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius.,Department of Digital Technologies,Faculty of Information, Communication & Digital Technologies, University of Mauritius, Reduit, Mauritius
| | - Anisah W Ghoorah
- Department of Digital Technologies,Faculty of Information, Communication & Digital Technologies, University of Mauritius, Reduit, Mauritius
| | - Eileen Dareng
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Trust Odia
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
| | - Oluwadamilare Falola
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria.,Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaston Mazandu
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Oscar A Nyangiri
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Mamana Mbiyavanga
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institute Pasteur of Tunis, Tunis, Tunisia
| | - Samar K Kassim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbaseya, Cairo, Egypt
| | - Nicola Mulder
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Sally N Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA.,University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious, Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ginger Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
8
|
Černý V, Fortes-Lima C, Tříska P. Demographic history and admixture dynamics in African Sahelian populations. Hum Mol Genet 2020; 30:R29-R36. [PMID: 33105478 DOI: 10.1093/hmg/ddaa239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
The Sahel/Savannah belt of Africa is a contact zone between two subsistence systems (nomadic pastoralism and sedentary farming) and of two groups of populations, namely Eurasians penetrating from northern Africa southwards and sub-Saharan Africans migrating northwards. Because pastoralism is characterized by a high degree of mobility, it leaves few significant archaeological traces. Demographic history seen through the lens of population genetic studies complements our historical and archaeological knowledge in this African region. In this review, we highlight recent advances in our understanding of demographic history in the Sahel/Savannah belt as revealed by genetic studies. We show the impact of food-producing subsistence strategies on population structure and the somewhat different migration patterns in the western and eastern part of the region. Genomic studies show that the gene pool of various groups of Sahelians consists in a complex mosaic of several ancestries. We also touch upon various signals of genetic adaptations such as lactase persistence, taste sensitivity and malaria resistance, all of which have different distribution patterns among Sahelian populations. Overall, genetic studies contribute to gain a deeper understanding about the demographic and adaptive history of human populations in this specific African region and beyond.
Collapse
Affiliation(s)
- Viktor Černý
- Department of Anthropology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Cesar Fortes-Lima
- Subdepartment of Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Petr Tříska
- Archaeogenetics Laboratory, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|