1
|
Timberlake AT, Hemal K, Gustafson JA, Hao LT, Valenzuela I, Slavotinek A, Cunningham ML, Kahle KT, Lifton RP, Persing JA. AXIN1 mutations in nonsyndromic craniosynostosis. J Neurosurg Pediatr 2024; 34:246-251. [PMID: 38905707 PMCID: PMC11200303 DOI: 10.3171/2024.5.peds24115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE Occurring once in every 2000 live births, craniosynostosis (CS) is the most frequent cranial birth defect. Although the genetic etiologies of syndromic CS cases are well defined, the genetic cause of most nonsyndromic cases remains unknown. METHODS The authors analyzed exome or RNA sequencing data from 876 children with nonsyndromic CS, including 291 case-parent trios and 585 additional probands. The authors also utilized the GeneMatcher platform and the Gabriella Miller Kids First genome sequencing project to identify additional CS patients with AXIN1 mutations. RESULTS The authors describe 11 patients with nonsyndromic CS harboring rare, damaging mutations in AXIN1, an inhibitor of Wnt signaling. AXIN1 regulates signaling upstream of key mediators of osteoblast differentiation. Three of the 6 mutations identified in trios occurred de novo in the proband, while 3 were transmitted from unaffected parents. Patients with nonsyndromic CS were highly enriched for mutations in AXIN1 compared to both expectation (p = 0.0008) and exome sequencing data from > 76,000 healthy controls (p = 2.3 × 10-6), surpassing the thresholds for genome-wide significance. CONCLUSIONS These findings describe the first phenotype associated with mutations in AXIN1, with mutations identified in approximately 1% of nonsyndromic CS cases. The results strengthen the existing link between Wnt signaling and maintenance of cranial suture patency and have implications for genetic testing in families with CS.
Collapse
Affiliation(s)
- Andrew T. Timberlake
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, New York, New York
| | - Kshipra Hemal
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, New York, New York
| | - Jonas A. Gustafson
- Department of Pediatrics, Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, University of Washington, Seattle, Washington
| | - Le Thi Hao
- Department of Neurosurgery, Harvard Medical School, and Massachusetts General Hospital, Boston, Massachusetts
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Rare Disease Unit, Medical Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Anne Slavotinek
- Department of Pediatrics, Division of Medical Genetics, University of California, San Francisco, California
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Michael L. Cunningham
- Department of Pediatrics, Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, University of Washington, Seattle, Washington
| | - Kristopher T. Kahle
- Department of Neurosurgery, Harvard Medical School, and Massachusetts General Hospital, Boston, Massachusetts
| | | | - John A. Persing
- Department of Surgery, Division of Plastic Surgery, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2024:168770. [PMID: 39214283 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
3
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
4
|
Kiziltug E, Duy PQ, Allington G, Timberlake AT, Kawaguchi R, Long AS, Almeida MN, DiLuna ML, Alper SL, Alperovich M, Geschwind DH, Kahle KT. Concurrent impact of de novo mutations on cranial and cortical development in nonsyndromic craniosynostosis. J Neurosurg Pediatr 2024; 33:59-72. [PMID: 37890181 PMCID: PMC10783441 DOI: 10.3171/2023.8.peds23155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/17/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE Nonsyndromic craniosynostosis (nsCS), characterized by premature cranial suture fusion, is considered a primary skull disorder in which impact on neurodevelopment, if present, results from the mechanical hindrance of brain growth. Despite surgical repair of the cranial defect, neurocognitive deficits persist in nearly half of affected children. Therefore, the authors performed a functional genomics analysis of nsCS to determine when, where, and in what cell types nsCS-associated genes converge during development. METHODS The authors integrated whole-exome sequencing data from 291 nsCS proband-parent trios with 29,803 single-cell transcriptomes of the prenatal and postnatal neurocranial complex to inform when, where, and in what cell types nsCS-mutated genes might exert their pathophysiological effects. RESULTS The authors found that nsCS-mutated genes converged in cranial osteoprogenitors and pial fibroblasts and their transcriptional networks that regulate both skull ossification and cerebral neurogenesis. Nonsyndromic CS-mutated genes also converged in inhibitory neurons and gene coexpression modules that overlapped with autism and other developmental disorders. Ligand-receptor cell-cell communication analysis uncovered crosstalk between suture osteoblasts and neurons via the nsCS-associated BMP, FGF, and noncanonical WNT signaling pathways. CONCLUSIONS These data implicate a concurrent impact of nsCS-associated de novo mutations on cranial morphogenesis and cortical development via cell- and non-cell-autonomous mechanisms in a developmental nexus of fetal osteoblasts, pial fibroblasts, and neurons. These results suggest that neurodevelopmental outcomes in nsCS patients may be driven more by mutational status than surgical technique.
Collapse
Affiliation(s)
- Emre Kiziltug
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Phan Q. Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Garrett Allington
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Andrew T. Timberlake
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, New York
| | - Riki Kawaguchi
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Aaron S. Long
- Department of Surgery, Division of Plastic Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Mariana N. Almeida
- Department of Surgery, Division of Plastic Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Michael L. DiLuna
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Seth L. Alper
- Department of Medicine, Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Michael Alperovich
- Department of Surgery, Division of Plastic Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel H. Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Kristopher T. Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; and
- Harvard Center for Developmental Brain Disorders, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Ganaiem M, Gildor ND, Shazman S, Karmon G, Ivashko-Pachima Y, Gozes I. NAP (Davunetide): The Neuroprotective ADNP Drug Candidate Penetrates Cell Nuclei Explaining Pleiotropic Mechanisms. Cells 2023; 12:2251. [PMID: 37759476 PMCID: PMC10527813 DOI: 10.3390/cells12182251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Recently, we showed aberrant nuclear/cytoplasmic boundaries/activity-dependent neuroprotective protein (ADNP) distribution in ADNP-mutated cells. This malformation was corrected upon neuronal differentiation by the ADNP-derived fragment drug candidate NAP (davunetide). Here, we investigated the mechanism of NAP nuclear protection. (2) Methods: CRISPR/Cas9 DNA-editing established N1E-115 neuroblastoma cell lines that express two different green fluorescent proteins (GFPs)-labeled mutated ADNP variants (p.Tyr718* and p.Ser403*). Cells were exposed to NAP conjugated to Cy5, followed by live imaging. Cells were further characterized using quantitative morphology/immunocytochemistry/RNA and protein quantifications. (3) Results: NAP rapidly distributed in the cytoplasm and was also seen in the nucleus. Furthermore, reduced microtubule content was observed in the ADNP-mutated cell lines. In parallel, disrupting microtubules by zinc or nocodazole intoxication mimicked ADNP mutation phenotypes and resulted in aberrant nuclear-cytoplasmic boundaries, which were rapidly corrected by NAP treatment. No NAP effects were noted on ADNP levels. Ketamine, used as a control, was ineffective, but both NAP and ketamine exhibited direct interactions with ADNP, as observed via in silico docking. (4) Conclusions: Through a microtubule-linked mechanism, NAP rapidly localized to the cytoplasmic and nuclear compartments, ameliorating mutated ADNP-related deficiencies. These novel findings explain previously published gene expression results and broaden NAP (davunetide) utilization in research and clinical development.
Collapse
Affiliation(s)
- Maram Ganaiem
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Nina D. Gildor
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Raanana 4353107, Israel;
- Department of Information Systems, The Max Stern Yezreel Valley College, Yezreel Valley, Afula 1930600, Israel
| | - Gidon Karmon
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Yanina Ivashko-Pachima
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| |
Collapse
|