1
|
Godijk NG, Bootsma MCJ, Bonten MJM. Transmission routes of antibiotic resistant bacteria: a systematic review. BMC Infect Dis 2022; 22:482. [PMID: 35596134 PMCID: PMC9123679 DOI: 10.1186/s12879-022-07360-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Quantification of acquisition routes of antibiotic resistant bacteria (ARB) is pivotal for understanding transmission dynamics and designing cost-effective interventions. Different methods have been used to quantify the importance of transmission routes, such as relative risks, odds ratios (OR), genomic comparisons and basic reproduction numbers. We systematically reviewed reported estimates on acquisition routes’ contributions of ARB in humans, animals, water and the environment and assessed the methods used to quantify the importance of transmission routes. Methods PubMed and EMBASE were searched, resulting in 6054 articles published up until January 1st, 2019. Full text screening was performed on 525 articles and 277 are included. Results We extracted 718 estimates with S. aureus (n = 273), E. coli (n = 157) and Enterobacteriaceae (n = 99) being studied most frequently. Most estimates were derived from statistical methods (n = 560), mainly expressed as risks (n = 246) and ORs (n = 239), followed by genetic comparisons (n = 85), modelling (n = 62) and dosage of ARB ingested (n = 17). Transmission routes analysed most frequently were occupational exposure (n = 157), travelling (n = 110) and contacts with carriers (n = 83). Studies were mostly performed in the United States (n = 142), the Netherlands (n = 87) and Germany (n = 60). Comparison of methods was not possible as studies using different methods to estimate the same route were lacking. Due to study heterogeneity not all estimates by the same method could be pooled. Conclusion Despite an abundance of published data the relative importance of transmission routes of ARB has not been accurately quantified. Links between exposure and acquisition are often present, but the frequency of exposure is missing, which disables estimation of transmission routes’ importance. To create effective policies reducing ARB, estimates of transmission should be weighed by the frequency of exposure occurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07360-z.
Collapse
Affiliation(s)
- Noortje G Godijk
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Martin C J Bootsma
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Mathematics, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Isolation and Identification of Biofilm-Producing, Drug-Resistant Coagulase Negative Staphylococci from a Hospital Environment in Northern Philippines. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Healthcare-associated infections (HCAIs) are considered adverse outcomes of confinement in a healthcare facility. Biofilm-producing, drug-resistant bacteria have further aggravated the problem with HCAIs. This study determined the prevalence, antibiotic susceptibility, and biofilm phenotype of coagulase-negative staphylococci (CoNS) isolated from a hospital environment in Northern Philippines. The identification of CoNS species and the determination of antibiotic susceptibility were done using an automated assay. Biofilm production was detected using tissue culture plate (TCP) and Congo red agar (CRA) methods. Out of 220 surfaces and 26 air samples collected, 103 (41.9%) CoNS strains were isolated, predominated by S. epidermidis with 30.1% prevalence. The medical ward was found to have the highest prevalence of CoNS at 64%. The CoNS isolates exhibited a variable resistance profile; the highest was found against penicillin (97.1%) and oxacillin (54.3%). Isolates manifesting resistance to linezolid and vancomycin were also detected. From the 103 CoNS isolates, 52 (50.5%) biofilm producers were detected using the TCP method, and 39 (37.9%) were detected by the CRA method. Statistically significant difference was found between the biofilm biomass and the slime-producing pattern. This study revealed the prevalence of biofilm-producing, drug-resistant strains of CoNS in a Level 3 hospital in Northern Philippines. This warrants further enhancement of infection prevention and control programs to avert the emergence of more biofilm-producing, drug-resistant bacterial strains that could pose formidable threats to public health.
Collapse
|
3
|
Gwenzi W, Shamsizadeh Z, Gholipour S, Nikaeen M. The air-borne antibiotic resistome: Occurrence, health risks, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150154. [PMID: 34798728 DOI: 10.1016/j.scitotenv.2021.150154] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance comprising of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is an emerging problem causing global human health risks. Several reviews exist on antibiotic resistance in various environmental compartments excluding the air-borne resistome. An increasing body of recent evidence exists on the air-borne resistome comprising of antibiotic resistance in air-borne bioaerosols from various environmental compartments. However, a comprehensive review on the sources, dissemination, behavior, fate, and human exposure and health risks of the air-borne resistome is still lacking. Therefore, the current review uses the source-pathway-receptor-impact-mitigation framework to investigate the air-borne resistome. The nature and sources of antibiotic resistance in the air-borne resistome are discussed. The dissemination pathways, and environmental and anthropogenic drivers accounting for the transfer of antibiotic resistance from sources to the receptors are highlighted. The human exposure and health risks posed by air-borne resistome are presented. A health risk assessment and mitigation strategy is discussed. Finally, future research directions including key knowledge gaps are summarized.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| | - Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Environmental Health Engineering, Environmental Science and Technology Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Bayle S, Drapeau A, Rocher J, Laurent F, Métayer V, Haenni M, Madec JY, Valat C. Characterization of cultivable airborne bacteria and their antimicrobial resistance pattern in French milking parlour. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11689-11696. [PMID: 33411281 DOI: 10.1007/s11356-020-11974-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The main goal of this preliminary study was to quantify airborne particles and characterize the dominant cultivable bacterial species as well as some Gram-positive species, and their antibiotic resistance pattern, from environmental samples taken inside and outside of a dairy milking parlour. Sampling was performed over 2 days, in different seasons. The small viable particulate matter < 10 μm (bioaerosols) and cultivable bacteria reached their highest concentrations in the milking parlour. The majority of airborne bacteria in the milking parlour belonged to the genera Staphylococcus (41.9%) and Bacillus (20.9%). A total of 32 different bacterial species of Staphylococcus, Aerococcus, Bacillus, Pseudomonas, Serratia and Acinetobacter were identified. Many of these bacteria may be opportunistic pathogens, causing disease in humans or animals. We found low levels of acquired resistance to the antibiotics commonly used in human or animal infections caused by these opportunistic bacteria. More specifically, resistance to tetracyclines (13.4%), penicillin G (13.4%) and macrolides (7.5%) was identified in Staphylococcus sp. as was a methicillin-resistant S. hominis and resistance to spiramycin (n = 1), lincomycin (n = 1) and streptomycin (n = 2) in Aerococcus sp. An assessment of the occupational risk run by dairy farmers for contracting infections after long- or short-term exposure to micro-organisms requires further studies on the concentration of opportunistic pathogenic bacteria in dairy farm environments.
Collapse
Affiliation(s)
- Sandrine Bayle
- Laboratoire Génie de l'Environnement Industriel, IMT- Mines d'Alès, Université de Montpellier, 30100, Alès, France
| | - Antoine Drapeau
- Anses, Unité Antibiorésistance et Virulence Bactériennes, Lyon cedex 07, 69364, France
| | | | - Frédéric Laurent
- Institut des agents Infectieux, CIRI, International Center for Infectiology Research, Lyon cedex 07, 69364, France
- Ecole Normale Supérieure de Lyon, Lyon, 69342, France
- Université Claude Bernard Lyon 1, Villeurbanne, 69100, France
| | - Véronique Métayer
- Anses, Unité Antibiorésistance et Virulence Bactériennes, Lyon cedex 07, 69364, France
| | - Marisa Haenni
- Anses, Unité Antibiorésistance et Virulence Bactériennes, Lyon cedex 07, 69364, France
| | - Jean-Yves Madec
- Anses, Unité Antibiorésistance et Virulence Bactériennes, Lyon cedex 07, 69364, France
| | - Charlotte Valat
- Anses, Unité Antibiorésistance et Virulence Bactériennes, Lyon cedex 07, 69364, France.
- Université Claude Bernard Lyon 1, Villeurbanne, 69100, France.
| |
Collapse
|
5
|
Kraemer SA, Ramachandran A, Perron GG. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019; 7:E180. [PMID: 31234491 PMCID: PMC6616856 DOI: 10.3390/microorganisms7060180] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/06/2023] Open
Abstract
The ability to fight bacterial infections with antibiotics has been a longstanding cornerstone of modern medicine. However, wide-spread overuse and misuse of antibiotics has led to unintended consequences, which in turn require large-scale changes of policy for mitigation. In this review, we address two broad classes of corollaries of antibiotics overuse and misuse. Firstly, we discuss the spread of antibiotic resistance from hotspots of resistance evolution to the environment, with special concerns given to potential vectors of resistance transmission. Secondly, we outline the effects of antibiotic pollution independent of resistance evolution on natural microbial populations, as well as invertebrates and vertebrates. We close with an overview of current regional policies tasked with curbing the effects of antibiotics pollution and outline areas in which such policies are still under development.
Collapse
Affiliation(s)
- Susanne A Kraemer
- Department of Biology, Concordia University, 7141 Sherbrooke Street W, Montreal, QC H4B1R6, Canada.
| | - Arthi Ramachandran
- Department of Biology, Concordia University, 7141 Sherbrooke Street W, Montreal, QC H4B1R6, Canada.
| | - Gabriel G Perron
- Department of Biology, Reem-Kayden Center for Sciences and Computation, Bard College, 31 Campus Road, Annandale-On-Hudson, NY 12504, USA.
- Center for the Study of Land, Water, and Air, Bard College, Annandale-On-Hudson, NY 12504, USA.
| |
Collapse
|
6
|
Li J, Cao J, Zhu YG, Chen QL, Shen F, Wu Y, Xu S, Fan H, Da G, Huang RJ, Wang J, de Jesus AL, Morawska L, Chan CK, Peccia J, Yao M. Global Survey of Antibiotic Resistance Genes in Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10975-10984. [PMID: 30043612 DOI: 10.1021/acs.est.8b02204] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Despite its emerging significant public health concern, the presence of antibiotic resistance genes (ARGs) in urban air has not received significant attention. Here, we profiled relative abundances (as a fraction, normalized by 16S rRNA gene) of 30 ARG subtypes resistant to seven common classes of antibiotics, which are quinolones, β-lactams, macrolides, tetracyclines, sulfonamides, aminoglycosides, and vancomycins, in ambient total particulate matter (PM) using a novel protocol across 19 world cities. In addition, their longitudinal changes in PM2.5 samples in Xi'an, China as an example were also studied. Geographically, the ARGs were detected to vary by nearly 100-fold in their abundances, for example, from 0.07 (Bandung, Indonesia) to 5.6 (San Francisco, USA). The β-lactam resistance gene blaTEM was found to be most abundant, seconded by quinolone resistance gene qepA; and their corresponding relative abundances have increased by 178% and 26%, respectively, from 2004 to 2014 in Xi'an. Independent of cities, gene network analysis indicates that airborne ARGs were differentially contributed by bacterial taxa. Results here reveal that urban air is being polluted by ARGs, and different cities are challenged with varying health risks associated with airborne ARG exposure. This work highlights the threat of urban airborne transmission of ARGs and the need of redefining our current air quality standards in terms with public health.
Collapse
Affiliation(s)
- Jing Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment , Chinese Academy of Sciences , Xi'an 710049 , China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| | - Fangxia Shen
- School of Space and Environment , Beihang University , Beijing 100191 , China
| | - Yan Wu
- School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Siyu Xu
- Department of Environmental Health Sciences, Graduate School of Public Health , Seoul National University , Seoul 08826 , South Korea
| | - Hanqing Fan
- Department of Earth and Environmental Engineering , Columbia University , New York , New York 10027 , United States
| | - Guillaume Da
- CERTES, Université Paris-Est Créteil , Centre d'études et de Recherche en Thermique, Environnement et Systèmes (CERTES) , Créteil 94000 , France
| | - Ru-Jin Huang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment , Chinese Academy of Sciences , Xi'an 710049 , China
| | - Jing Wang
- Institute of Environmental Engineering , ETH Zurich , Zurich 8093 , Switzerland
- Advanced Analytical Technologies , Empa , Dübendorf 8600 , Switzerland
| | - Alma Lorelei de Jesus
- International Laboratory for Air Quality and Health , Queensland University of Technology , GPO Box 2434, Brisbane , Queensland 4001 , Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health , Queensland University of Technology , GPO Box 2434, Brisbane , Queensland 4001 , Australia
| | - Chak K Chan
- School of Energy and Environment , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong China
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
7
|
Zelasko S, Gorski A, Dabrowska K. Delivering phage therapy per os: benefits and barriers. Expert Rev Anti Infect Ther 2016; 15:167-179. [DOI: 10.1080/14787210.2017.1265447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Susan Zelasko
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andrzej Gorski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Krystyna Dabrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
8
|
Dziri R, Klibi N, Lozano C, Ben Said L, Bellaaj R, Tenorio C, Boudabous A, Ben Slama K, Torres C. High prevalence of Staphylococcus haemolyticus and Staphylococcus saprophyticus in environmental samples of a Tunisian hospital. Diagn Microbiol Infect Dis 2016; 85:136-40. [DOI: 10.1016/j.diagmicrobio.2016.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 11/29/2022]
|
9
|
Cowperthwaite L, Holm RL. Guideline Implementation: Surgical Attire. AORN J 2015; 101:188-94; quiz 195-7. [DOI: 10.1016/j.aorn.2014.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 12/01/2022]
|
10
|
Costa DDM, Kipnis A, Leão-Vasconcelos LSNDO, Rocha-Vilefort LO, Telles SA, André MCDPB, Tipple AFV, Lima ABM, Ribeiro NFG, Pereira MR, Prado-Palos MA. Methicillin-resistant Staphylococcus sp. colonizing health care workers of a cancer hospital. Braz J Microbiol 2014; 45:799-805. [PMID: 25477910 PMCID: PMC4204961 DOI: 10.1590/s1517-83822014000300006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 12/13/2013] [Indexed: 11/22/2022] Open
Abstract
The aim of the study was to analyze epidemiological and microbiological aspects of oral colonization by methicillin-resistant Staphylococcus of health care workers in a cancer hospital. Interview and saliva sampling were performed with 149 health care workers. Antimicrobial resistance was determined by disk diffusion and minimum inhibitory concentration. Polymerase Chain Reaction, Internal Transcribed Spacer-Polymerase Chain Reaction and Pulsed Field Gel Electrophoresis were performed for genotypic characterization of methicillin-resistant Staphylococcus. Risk factors were determined by logistic regression. Methicillin-resistant Staphylococcus colonization prevalence was 19.5%, denture wearing (p = 0.03), habit of nail biting (p = 0.04) and preparation and administration of antimicrobial (p = 0.04) were risk factors identified. All methicillin-resistant Staphylococcus were S. epidermidis, 94.4% of them had mecA gene. Closely related and indistinguishable methicillin-resistant S. epidermidis were detected. These results highlight that HCWs which have contact with patient at high risk for developing infections were identified as colonized by MRSE in the oral cavity, reinforcing this cavity as a reservoir of these bacteria and the risk to themselves and patients safety, because these microorganisms may be spread by coughing and talking.
Collapse
Affiliation(s)
- Dayane de Melo Costa
- Núcleo de Estudos e Pesquisa de Enfermagem em Prevenção e Controle de Infecções Relacionadas à Assistência à Saúde Faculdade de Enfermagem Universidade Federal de Goiás GoiâniaGO Brazil Núcleo de Estudos e Pesquisa de Enfermagem em Prevenção e Controle de Infecções Relacionadas à Assistência à Saúde, Faculdade de Enfermagem, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública Universidade Federal de Goiás GoiâniaGO Brazil Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Lara Stefânia Netto de Oliveira Leão-Vasconcelos
- Instituto de Patologia Tropical e Saúde Pública Universidade Federal de Goiás GoiâniaGO Brazil Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Sheila Araújo Telles
- Faculdade de Enfermagem Universidade Federal de Goiás GoiâniaGO Brazil Faculdade de Enfermagem, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Maria Cláudia Dantas Porfírio Borges André
- Instituto de Patologia Tropical e Saúde Pública Universidade Federal de Goiás GoiâniaGO Brazil Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Anaclara Ferreira Veiga Tipple
- Faculdade de Enfermagem Universidade Federal de Goiás GoiâniaGO Brazil Faculdade de Enfermagem, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Ana Beatriz Mori Lima
- Secretaria Municipal de Saúde de Goiânia GoiâniaGO Brazil Secretaria Municipal de Saúde de Goiânia, Goiânia, GO, Brazil
| | | | - Mayara Regina Pereira
- Núcleo de Estudos e Pesquisa de Enfermagem em Prevenção e Controle de Infecções Relacionadas à Assistência à Saúde Faculdade de Enfermagem Universidade Federal de Goiás GoiâniaGO Brazil Núcleo de Estudos e Pesquisa de Enfermagem em Prevenção e Controle de Infecções Relacionadas à Assistência à Saúde, Faculdade de Enfermagem, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marinésia Aparecida Prado-Palos
- Faculdade de Enfermagem Universidade Federal de Goiás GoiâniaGO Brazil Faculdade de Enfermagem, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
11
|
Cherifi S, Byl B, Deplano A, Nagant C, Nonhoff C, Denis O, Hallin M. Genetic characteristics and antimicrobial resistance of Staphylococcus epidermidis isolates from patients with catheter-related bloodstream infections and from colonized healthcare workers in a Belgian hospital. Ann Clin Microbiol Antimicrob 2014; 13:20. [PMID: 24899534 PMCID: PMC4066695 DOI: 10.1186/1476-0711-13-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/30/2014] [Indexed: 02/02/2023] Open
Abstract
Background Staphylococcus epidermidis is a pathogen that is frequently encountered in the hospital environment. Healthcare workers (HCWs) can serve as a reservoir for the transmission of S. epidermidis to patients. Methods The aim of this study was to compare and identify differences between S. epidermidis isolated from 20 patients with catheter-related bloodstream infections (CRBSIs) and from the hands of 42 HCWs in the same hospital in terms of antimicrobial resistance, biofilm production, presence of the intercellular adhesion (ica) operon and genetic diversity (pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and staphylococcal cassette chromosome (SCC) mec typing). Results S. epidermidis isolates that caused CRBSI were resistant to significantly more non-betalactam drugs than were isolates collected from HCWs. Among the 43 mecA positive isolates (26 from HCWs), the most frequent SCCmec type was type IV (44%). The ica operon was significantly more prevalent in CRBSI isolates than in HCWs (P < 0.05). Weak in vitro biofilm production seemed to correlate with the absence of the ica operon regardless of the commensal or pathogenic origin of the isolate. The 62 isolates showed high diversity in their PFGE patterns divided into 37 different types: 19 harbored only by the CRBSI isolates and 6 shared by the clinical and HCW isolates. MLST revealed a total of ten different sequence types (ST). ST2 was limited to CRBSI-specific PFGE types while the “mixed” PFGE types were ST5, ST16, ST88 and ST153. Conclusion One third of CRBSI episodes were due to isolates belonging to PFGE types that were also found on the hands of HCWs, suggesting that HCW serve as a reservoir for oxacillin resistance and transmission to patients. However, S. epidermidis ST2, mecA-positive and icaA-positive isolates, which caused the majority of clinically severe CRBSI, were not recovered from the HCW’s hands.
Collapse
Affiliation(s)
- Soraya Cherifi
- Infection Control Unit, Brugmann University Hospital, 4 Place Van Gehuchten, 1020 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
12
|
Wojtyczka RD, Orlewska K, Kępa M, Idzik D, Dziedzic A, Mularz T, Krawczyk M, Miklasińska M, Wąsik TJ. Biofilm formation and antimicrobial susceptibility of Staphylococcus epidermidis strains from a hospital environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:4619-33. [PMID: 24776724 PMCID: PMC4053877 DOI: 10.3390/ijerph110504619] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 11/16/2022]
Abstract
The hospital environment microflora comprise a wide variety of microorganisms which are more or less pathogenic and where staphylococci are one of the most common types. The aim of the presented study was to evaluate the prevalence of the biofilm forming coagulase-negative staphylococci (CoNS) in a hospital environment as a risk factor for nosocomial infections. Among 122 isolated and tested strains of CoNS the most frequent were: S. epidermidis-32 strains, S. haemolyticus-31 strains, S. capitis subsp. capitis- 21 strains, S. hominis-11 strains, S. cohnii subsp. cohnii-nine strains. In case of CoNS, the main molecule responsible for intercellular adhesion is a polysaccharide intercellular adhesin (PIA), encoded on the ica gene operon. The analysis revealed the presence of the icaADBC operon genes in 46.88% of S. epidermidis isolates. IcaA and icaD were present in 34.38% and 28.13% of strains respectively while IcaC gene was present in 37.50% of strains. IcaB gene was found in 21.88% of S. epidermidis strains. In 15 (63%) strains all icaADBC operon genes were observed. The assessment of antibacterial drugs susceptibility demonstrated that analyzed CoNS strains were highly resistant to macrolides and lincosamides and more sensitive to rifampicin and linezolid. Our data indicates that the hospital environment can be colonized by biofilm forming coagulase-negative staphylococci and transmission of these strains can cause an increased risk of serious nosocomial infections.
Collapse
Affiliation(s)
- Robert D Wojtyczka
- Department and Institute of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Kamila Orlewska
- Department and Institute of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Małgorzata Kępa
- Department and Institute of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Danuta Idzik
- Department and Institute of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, School of Medicine with the Division of Dentistry, Medical University of Silesia, Pl. Akademicki 17, 41-902 Bytom, Poland.
| | - Tomasz Mularz
- Department and Institute of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Michał Krawczyk
- Department and Institute of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Maria Miklasińska
- Department and Institute of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Tomasz J Wąsik
- Department and Institute of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
13
|
Lis DO, Górny RL. Haemophilus influenzae as an airborne contamination in child day care centers. Am J Infect Control 2013; 41:438-42. [PMID: 22980511 DOI: 10.1016/j.ajic.2012.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND The aim of this study was to assess the exposure of children to airborne Haemophilus influenzae in day care centers. METHODS Air samples were taken using an Andersen impactor in 32 rooms designed for children stay. The concentrations of airborne bacteria were calculated as colony forming units (CFU) (growing on trypticase soy agar) per cubic meter of air (CFU/m(3)). The compositions of bioaerosol were determined on blood trypticase soy agar and Haemophilus selective agar. Isolated strains were identified using API NH strips and apiweb software. The antibiotic resistance of H influenzae strains was determined by the disk diffusion method. RESULTS Compared with the proposed criteria for microbiologic quality of indoor air, the rooms were characterized by the very high bacterial contamination of the air. The prevailing component of bacterial aerosol was gram-positive cocci. Airborne H influenzae strains were found in 25% of the investigated rooms and were mostly classified as biotype II (33%). CONCLUSION It may be accepted that the exposure to airborne H influenzae is typical of child day care centers in contrast to indoor environments with older population. Child day care center contribute to the expansion of H influenzae in human population via air. Generally, airborne H influenzae isolates from the investigated child day care centers were susceptible to older antibiotics such as ampicillin and amoxicillin-clavulanic acid.
Collapse
Affiliation(s)
- Danuta O Lis
- Department of Biohazards and Immunoallergology, Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland.
| | | |
Collapse
|
14
|
Davis MF, Iverson SA, Baron P, Vasse A, Silbergeld EK, Lautenbach E, Morris DO. Household transmission of meticillin-resistant Staphylococcus aureus and other staphylococci. THE LANCET. INFECTIOUS DISEASES 2012; 12:703-16. [PMID: 22917102 DOI: 10.1016/s1473-3099(12)70156-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the role of pets in household transmission of meticillin-resistant Staphylococcus aureus (MRSA) has been examined previously, only minor attention has been given to the role of the abiotic household environment independent of, or in combination with, colonisation of pets and human beings to maintain transmission cycles of MRSA within the household. This report reviews published work about household transmission of S aureus and other staphylococci and describes contamination of household environmental surfaces and colonisation of pets and people. Household microbial communities might have a role in transfer of antimicrobial resistance genes and could be reservoirs for recolonisation of people, although additional research is needed regarding strategies for decontamination of household environments. Household-based interventions should be developed to control recurrent S aureus infections in the community, and coordination between medical and veterinary providers could be beneficial.
Collapse
Affiliation(s)
- Meghan F Davis
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Kooken JM, Fox KF, Fox A. Characterization of Micrococcus strains isolated from indoor air. Mol Cell Probes 2011; 26:1-5. [PMID: 21963944 DOI: 10.1016/j.mcp.2011.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
Abstract
The characterization of microbes, such as opportunists and pathogens (e.g., methicillin resistant Staphylococcus aureus [MRSA]), in indoor air is important for understanding disease transmission from person-to-person. Common genera found in the human skin microbiome include Micrococcus and Staphylococcus, but there only a limited number of tests to differentiate these genera and/or species. Both genera are believed to be released into indoor air from the shedding of human skin and are morphologically difficult to distinguish. In the current work, after the extraction of proteins from micrococci and the separation of these proteins on one dimensional electrophoretic gels, tryptic peptides were analyzed by MALDI TOF MS and the mass profiles compared with those of a reference strain (ATCC 4698). The results confirmed that all strains were consistent in identity with Micrococcus luteus.
Collapse
Affiliation(s)
- Jennifer M Kooken
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
16
|
Identification and characterization of a Streptomyces sp. isolate exhibiting activity against multidrug-resistant coagulase-negative Staphylococci. Vet Res Commun 2011; 35:477-86. [DOI: 10.1007/s11259-011-9491-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2011] [Indexed: 11/25/2022]
|
17
|
Fox K, Fox A, Rose J, Walla M. Speciation of coagulase negative staphylococci, isolated from indoor air, using SDS page gel bands of expressed proteins followed by MALDI TOF MS and MALDI TOF-TOF MS-MS analysis of tryptic peptides. J Microbiol Methods 2011; 84:243-50. [DOI: 10.1016/j.mimet.2010.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/18/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
|
18
|
Perez HR, Johnson R, Gurian PL, Gibbs SG, Taylor J, Burstyn I. Isolation of airborne oxacillin-resistant Staphylococcus aureus from culturable air samples of urban residences. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2011; 8:80-85. [PMID: 21253980 DOI: 10.1080/15459624.2010.515552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Culturable single-stage impactor samples were collected onto nutrient agar in kitchen and bedroom areas of eight urban and four suburban residences in Philadelphia, Pennsylvania. Staphylococcus aureus colonies were identified by replica plating of the original impactor samples onto Chapman Stone medium followed by isolation of up to eight colonies for coagulase testing. Kirby-Bauer disk diffusion method was utilized to evaluate S. aureus resistance to both oxacillin and cefaclor. The median concentrations of total culturable bacteria observed in bedrooms and trash areas were 300 CFU/m(3) and 253 CFU/m(3), respectively. Median culturable Staphylococcus spp. concentrations in bedrooms and trash areas were 142 CFU/m(3) and 204 CFU/m(3), respectively. A total of 148 individual S. aureus colonies were isolated and tested for antibiotic resistance. Cefaclor resistance was encountered among only 6 of the 148 (4%) colonies. Nearly one-quarter of all S. aureus isolates tested displayed resistance (n = 30) or intermediate resistance (n = 5) to oxacillin. Twenty-six percent (n = 20) of trash area isolates and 21% (n = 15) of bedroom isolates displayed resistance or intermediate resistance to oxacillin. The median difference in percent resistance between trash and bedroom areas was 10% (p = 0.1). Results suggest that there may be a systematic difference in bacterial populations between downtown and suburban residences. Storage of household waste and handling of food may contribute to presence of the organism in the air of residences.
Collapse
Affiliation(s)
- Hernando R Perez
- School of Public Health, Department of Environmental and Occupational Health, Drexel University, Philadelphia, Pennsylvania 19102-1192, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Fox K, Fox A, Elßner T, Feigley C, Salzberg D. MALDI-TOF mass spectrometry speciation of staphylococci and their discrimination from micrococci isolated from indoor air of schoolrooms. ACTA ACUST UNITED AC 2010; 12:917-23. [DOI: 10.1039/b925250a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|