1
|
Verbeek JH, Rajamaki B, Ijaz S, Sauni R, Toomey E, Blackwood B, Tikka C, Ruotsalainen JH, Kilinc Balci FS. Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst Rev 2020; 5:CD011621. [PMID: 32412096 PMCID: PMC8785899 DOI: 10.1002/14651858.cd011621.pub5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In epidemics of highly infectious diseases, such as Ebola, severe acute respiratory syndrome (SARS), or coronavirus (COVID-19), healthcare workers (HCW) are at much greater risk of infection than the general population, due to their contact with patients' contaminated body fluids. Personal protective equipment (PPE) can reduce the risk by covering exposed body parts. It is unclear which type of PPE protects best, what is the best way to put PPE on (i.e. donning) or to remove PPE (i.e. doffing), and how to train HCWs to use PPE as instructed. OBJECTIVES To evaluate which type of full-body PPE and which method of donning or doffing PPE have the least risk of contamination or infection for HCW, and which training methods increase compliance with PPE protocols. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and CINAHL to 20 March 2020. SELECTION CRITERIA We included all controlled studies that evaluated the effect of full-body PPE used by HCW exposed to highly infectious diseases, on the risk of infection, contamination, or noncompliance with protocols. We also included studies that compared the effect of various ways of donning or doffing PPE, and the effects of training on the same outcomes. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies, extracted data and assessed the risk of bias in included trials. We conducted random-effects meta-analyses were appropriate. MAIN RESULTS Earlier versions of this review were published in 2016 and 2019. In this update, we included 24 studies with 2278 participants, of which 14 were randomised controlled trials (RCT), one was a quasi-RCT and nine had a non-randomised design. Eight studies compared types of PPE. Six studies evaluated adapted PPE. Eight studies compared donning and doffing processes and three studies evaluated types of training. Eighteen studies used simulated exposure with fluorescent markers or harmless microbes. In simulation studies, median contamination rates were 25% for the intervention and 67% for the control groups. Evidence for all outcomes is of very low certainty unless otherwise stated because it is based on one or two studies, the indirectness of the evidence in simulation studies and because of risk of bias. Types of PPE The use of a powered, air-purifying respirator with coverall may protect against the risk of contamination better than a N95 mask and gown (risk ratio (RR) 0.27, 95% confidence interval (CI) 0.17 to 0.43) but was more difficult to don (non-compliance: RR 7.5, 95% CI 1.81 to 31.1). In one RCT (59 participants) coveralls were more difficult to doff than isolation gowns (very low-certainty evidence). Gowns may protect better against contamination than aprons (small patches: mean difference (MD) -10.28, 95% CI -14.77 to -5.79). PPE made of more breathable material may lead to a similar number of spots on the trunk (MD 1.60, 95% CI -0.15 to 3.35) compared to more water-repellent material but may have greater user satisfaction (MD -0.46, 95% CI -0.84 to -0.08, scale of 1 to 5). According to three studies that tested more recently introduced full-body PPE ensembles, there may be no difference in contamination. Modified PPE versus standard PPE The following modifications to PPE design may lead to less contamination compared to standard PPE: sealed gown and glove combination (RR 0.27, 95% CI 0.09 to 0.78), a better fitting gown around the neck, wrists and hands (RR 0.08, 95% CI 0.01 to 0.55), a better cover of the gown-wrist interface (RR 0.45, 95% CI 0.26 to 0.78, low-certainty evidence), added tabs to grab to facilitate doffing of masks (RR 0.33, 95% CI 0.14 to 0.80) or gloves (RR 0.22, 95% CI 0.15 to 0.31). Donning and doffing Using Centers for Disease Control and Prevention (CDC) recommendations for doffing may lead to less contamination compared to no guidance (small patches: MD -5.44, 95% CI -7.43 to -3.45). One-step removal of gloves and gown may lead to less bacterial contamination (RR 0.20, 95% CI 0.05 to 0.77) but not to less fluorescent contamination (RR 0.98, 95% CI 0.75 to 1.28) than separate removal. Double-gloving may lead to less viral or bacterial contamination compared to single gloving (RR 0.34, 95% CI 0.17 to 0.66) but not to less fluorescent contamination (RR 0.98, 95% CI 0.75 to 1.28). Additional spoken instruction may lead to fewer errors in doffing (MD -0.9, 95% CI -1.4 to -0.4) and to fewer contamination spots (MD -5, 95% CI -8.08 to -1.92). Extra sanitation of gloves before doffing with quaternary ammonium or bleach may decrease contamination, but not alcohol-based hand rub. Training The use of additional computer simulation may lead to fewer errors in doffing (MD -1.2, 95% CI -1.6 to -0.7). A video lecture on donning PPE may lead to better skills scores (MD 30.70, 95% CI 20.14 to 41.26) than a traditional lecture. Face-to-face instruction may reduce noncompliance with doffing guidance more (odds ratio 0.45, 95% CI 0.21 to 0.98) than providing folders or videos only. AUTHORS' CONCLUSIONS We found low- to very low-certainty evidence that covering more parts of the body leads to better protection but usually comes at the cost of more difficult donning or doffing and less user comfort. More breathable types of PPE may lead to similar contamination but may have greater user satisfaction. Modifications to PPE design, such as tabs to grab, may decrease the risk of contamination. For donning and doffing procedures, following CDC doffing guidance, a one-step glove and gown removal, double-gloving, spoken instructions during doffing, and using glove disinfection may reduce contamination and increase compliance. Face-to-face training in PPE use may reduce errors more than folder-based training. We still need RCTs of training with long-term follow-up. We need simulation studies with more participants to find out which combinations of PPE and which doffing procedure protects best. Consensus on simulation of exposure and assessment of outcome is urgently needed. We also need more real-life evidence. Therefore, the use of PPE of HCW exposed to highly infectious diseases should be registered and the HCW should be prospectively followed for their risk of infection.
Collapse
Affiliation(s)
- Jos H Verbeek
- Cochrane Work Review Group, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Blair Rajamaki
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Sharea Ijaz
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Bronagh Blackwood
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Christina Tikka
- Finnish Institute of Occupational Health, TYÖTERVEYSLAITOS, Finland
| | | | - F Selcen Kilinc Balci
- National Personal Protective Technology Laboratory (NPPTL), National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Pittsburgh, PA, USA
| |
Collapse
|
2
|
Verbeek JH, Rajamaki B, Ijaz S, Sauni R, Toomey E, Blackwood B, Tikka C, Ruotsalainen JH, Kilinc Balci FS. Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst Rev 2020; 4:CD011621. [PMID: 32293717 PMCID: PMC7158881 DOI: 10.1002/14651858.cd011621.pub4] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND In epidemics of highly infectious diseases, such as Ebola, severe acute respiratory syndrome (SARS), or coronavirus (COVID-19), healthcare workers (HCW) are at much greater risk of infection than the general population, due to their contact with patients' contaminated body fluids. Personal protective equipment (PPE) can reduce the risk by covering exposed body parts. It is unclear which type of PPE protects best, what is the best way to put PPE on (i.e. donning) or to remove PPE (i.e. doffing), and how to train HCWs to use PPE as instructed. OBJECTIVES To evaluate which type of full-body PPE and which method of donning or doffing PPE have the least risk of contamination or infection for HCW, and which training methods increase compliance with PPE protocols. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and CINAHL to 20 March 2020. SELECTION CRITERIA We included all controlled studies that evaluated the effect of full-body PPE used by HCW exposed to highly infectious diseases, on the risk of infection, contamination, or noncompliance with protocols. We also included studies that compared the effect of various ways of donning or doffing PPE, and the effects of training on the same outcomes. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies, extracted data and assessed the risk of bias in included trials. We conducted random-effects meta-analyses were appropriate. MAIN RESULTS Earlier versions of this review were published in 2016 and 2019. In this update, we included 24 studies with 2278 participants, of which 14 were randomised controlled trials (RCT), one was a quasi-RCT and nine had a non-randomised design. Eight studies compared types of PPE. Six studies evaluated adapted PPE. Eight studies compared donning and doffing processes and three studies evaluated types of training. Eighteen studies used simulated exposure with fluorescent markers or harmless microbes. In simulation studies, median contamination rates were 25% for the intervention and 67% for the control groups. Evidence for all outcomes is of very low certainty unless otherwise stated because it is based on one or two studies, the indirectness of the evidence in simulation studies and because of risk of bias. Types of PPE The use of a powered, air-purifying respirator with coverall may protect against the risk of contamination better than a N95 mask and gown (risk ratio (RR) 0.27, 95% confidence interval (CI) 0.17 to 0.43) but was more difficult to don (non-compliance: RR 7.5, 95% CI 1.81 to 31.1). In one RCT (59 participants), people with a long gown had less contamination than those with a coverall, and coveralls were more difficult to doff (low-certainty evidence). Gowns may protect better against contamination than aprons (small patches: mean difference (MD) -10.28, 95% CI -14.77 to -5.79). PPE made of more breathable material may lead to a similar number of spots on the trunk (MD 1.60, 95% CI -0.15 to 3.35) compared to more water-repellent material but may have greater user satisfaction (MD -0.46, 95% CI -0.84 to -0.08, scale of 1 to 5). Modified PPE versus standard PPE The following modifications to PPE design may lead to less contamination compared to standard PPE: sealed gown and glove combination (RR 0.27, 95% CI 0.09 to 0.78), a better fitting gown around the neck, wrists and hands (RR 0.08, 95% CI 0.01 to 0.55), a better cover of the gown-wrist interface (RR 0.45, 95% CI 0.26 to 0.78, low-certainty evidence), added tabs to grab to facilitate doffing of masks (RR 0.33, 95% CI 0.14 to 0.80) or gloves (RR 0.22, 95% CI 0.15 to 0.31). Donning and doffing Using Centers for Disease Control and Prevention (CDC) recommendations for doffing may lead to less contamination compared to no guidance (small patches: MD -5.44, 95% CI -7.43 to -3.45). One-step removal of gloves and gown may lead to less bacterial contamination (RR 0.20, 95% CI 0.05 to 0.77) but not to less fluorescent contamination (RR 0.98, 95% CI 0.75 to 1.28) than separate removal. Double-gloving may lead to less viral or bacterial contamination compared to single gloving (RR 0.34, 95% CI 0.17 to 0.66) but not to less fluorescent contamination (RR 0.98, 95% CI 0.75 to 1.28). Additional spoken instruction may lead to fewer errors in doffing (MD -0.9, 95% CI -1.4 to -0.4) and to fewer contamination spots (MD -5, 95% CI -8.08 to -1.92). Extra sanitation of gloves before doffing with quaternary ammonium or bleach may decrease contamination, but not alcohol-based hand rub. Training The use of additional computer simulation may lead to fewer errors in doffing (MD -1.2, 95% CI -1.6 to -0.7). A video lecture on donning PPE may lead to better skills scores (MD 30.70, 95% CI 20.14 to 41.26) than a traditional lecture. Face-to-face instruction may reduce noncompliance with doffing guidance more (odds ratio 0.45, 95% CI 0.21 to 0.98) than providing folders or videos only. AUTHORS' CONCLUSIONS We found low- to very low-certainty evidence that covering more parts of the body leads to better protection but usually comes at the cost of more difficult donning or doffing and less user comfort, and may therefore even lead to more contamination. More breathable types of PPE may lead to similar contamination but may have greater user satisfaction. Modifications to PPE design, such as tabs to grab, may decrease the risk of contamination. For donning and doffing procedures, following CDC doffing guidance, a one-step glove and gown removal, double-gloving, spoken instructions during doffing, and using glove disinfection may reduce contamination and increase compliance. Face-to-face training in PPE use may reduce errors more than folder-based training. We still need RCTs of training with long-term follow-up. We need simulation studies with more participants to find out which combinations of PPE and which doffing procedure protects best. Consensus on simulation of exposure and assessment of outcome is urgently needed. We also need more real-life evidence. Therefore, the use of PPE of HCW exposed to highly infectious diseases should be registered and the HCW should be prospectively followed for their risk of infection.
Collapse
Affiliation(s)
- Jos H Verbeek
- Academic Medical Center, University of Amsterdam, Cochrane Work Review Group, Amsterdam, Netherlands, 1105AZ
| | - Blair Rajamaki
- University of Eastern Finland, School of Pharmacy, Kuopio, Finland
| | - Sharea Ijaz
- University of Bristol, Population Health Sciences, Bristol Medical School, Bristol, UK, BS1 2NT
| | | | | | - Bronagh Blackwood
- Queen's University Belfast, Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Building, 97 Lisburn Road, Belfast, Northern Ireland, UK, BT9 7LB
| | - Christina Tikka
- Finnish Institute of Occupational Health, TYÖTERVEYSLAITOS, Finland, FI-70032
| | - Jani H Ruotsalainen
- Finnish Medicines Agency, Assessment of Pharmacotherapies, Microkatu 1, Kuopio, Finland, FI-70210
| | - F Selcen Kilinc Balci
- Centers for Disease Control and Prevention (CDC), National Personal Protective Technology Laboratory (NPPTL), National Institute for Occupational Safety and Health (NIOSH), 626 Cochrans Mill Road, Pittsburgh, PA, USA, 15236
| |
Collapse
|
3
|
Therkorn J, Drewry D, Andonian J, Benishek L, Billman C, Forsyth ER, Garibaldi BT, Nowakowski E, Rainwater-Lovett K, Sauer L, Schiffhauer M, Maragakis LL. Development and Comparison of Complementary Methods to Study Potential Skin and Inhalational Exposure to Pathogens During Personal Protective Equipment Doffing. Clin Infect Dis 2019; 69:S231-S240. [PMID: 31517983 PMCID: PMC6761368 DOI: 10.1093/cid/ciz616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Fluorescent tracers are often used with ultraviolet lights to visibly identify healthcare worker self-contamination after doffing of personal protective equipment (PPE). This method has drawbacks, as it cannot detect pathogen-sized contaminants nor airborne contamination in subjects' breathing zones. METHODS A contamination detection/quantification method was developed using 2-µm polystyrene latex spheres (PSLs) to investigate skin contamination (via swabbing) and potential inhalational exposure (via breathing zone air sampler). Porcine skin coupons were used to estimate the PSL swabbing recovery efficiency and limit of detection (LOD). A pilot study with 5 participants compared skin contamination levels detected via the PSL vs fluorescent tracer methods, while the air sampler quantified potential inhalational exposure to PSLs during doffing. RESULTS Average PSL skin swab recovery efficiency was 40% ± 29% (LOD = 1 PSL/4 cm2 of skin). In the pilot study, all subjects had PSL and fluorescent tracer skin contamination. Two subjects had simultaneously located contamination of both types on a wrist and hand. However, for all other subjects, the PSL method enabled detection of skin contamination that was not detectable by the fluorescent tracer method. Hands/wrists were more commonly contaminated than areas of the head/face (57% vs 23% of swabs with PSL detection, respectively). One subject had PSLs detected by the breathing zone air sampler. CONCLUSIONS This study provides a well-characterized method that can be used to quantitate levels of skin and inhalational contact with simulant pathogen particles. The PSL method serves as a complement to the fluorescent tracer method to study PPE doffing self-contamination.
Collapse
Affiliation(s)
- Jennifer Therkorn
- Applied Biological Sciences, Johns Hopkins Applied Physics Laboratory, Laurel
| | - David Drewry
- Applied Biological Sciences, Johns Hopkins Applied Physics Laboratory, Laurel
| | - Jennifer Andonian
- Department of Hospital Epidemiology and Infection Control, Johns Hopkins Health System, Baltimore, Maryland
| | - Lauren Benishek
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carrie Billman
- Department of Hospital Epidemiology and Infection Control, Johns Hopkins Health System, Baltimore, Maryland
| | - Ellen R Forsyth
- Applied Biological Sciences, Johns Hopkins Applied Physics Laboratory, Laurel
| | | | - Elaine Nowakowski
- Department of Hospital Epidemiology and Infection Control, Johns Hopkins Health System, Baltimore, Maryland
| | | | - Lauren Sauer
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Maggie Schiffhauer
- Department of Hospital Epidemiology and Infection Control, Johns Hopkins Health System, Baltimore, Maryland
| | - Lisa L Maragakis
- Department of Hospital Epidemiology and Infection Control, Johns Hopkins Health System, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
4
|
Alhmidi H, Gonzalez-Orta M, Cadnum JL, Mana TSC, Jencson AL, Wilson BM, Donskey CJ. Contamination of health care personnel during removal of contaminated gloves. Am J Infect Control 2019; 47:850-852. [PMID: 30638677 DOI: 10.1016/j.ajic.2018.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 11/29/2022]
Abstract
In simulations of contaminated glove removal, 37% of health care personnel using their typical doffing technique contaminated their skin with a fluorescent solution. The frequency of contamination was significantly lower when the technique recommended by the Centers for Disease Control and Prevention was used versus not used (8 of 34, 24% vs 29 of 66, 44%). In simulations in which only the palm of the glove was contaminated, a modified doffing technique, to minimize the risk for contact with contaminated surfaces, reduced contamination of personnel.
Collapse
Affiliation(s)
- Heba Alhmidi
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
| | - Melany Gonzalez-Orta
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH; Department of Medicine, Cleveland Clinic Foundation, Cleveland, OH
| | - Jennifer L Cadnum
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
| | - Thriveen S C Mana
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
| | - Annette L Jencson
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
| | - Brigid M Wilson
- Geriatric Research, Education, and Clinical Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
| | - Curtis J Donskey
- Geriatric Research, Education, and Clinical Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH.
| |
Collapse
|
5
|
Verbeek JH, Rajamaki B, Ijaz S, Tikka C, Ruotsalainen JH, Edmond MB, Sauni R, Kilinc Balci FS. Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst Rev 2019; 7:CD011621. [PMID: 31259389 PMCID: PMC6601138 DOI: 10.1002/14651858.cd011621.pub3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In epidemics of highly infectious diseases, such as Ebola Virus Disease (EVD) or Severe Acute Respiratory Syndrome (SARS), healthcare workers (HCW) are at much greater risk of infection than the general population, due to their contact with patients' contaminated body fluids. Contact precautions by means of personal protective equipment (PPE) can reduce the risk. It is unclear which type of PPE protects best, what is the best way to remove PPE, and how to make sure HCW use PPE as instructed. OBJECTIVES To evaluate which type of full body PPE and which method of donning or doffing PPE have the least risk of self-contamination or infection for HCW, and which training methods increase compliance with PPE protocols. SEARCH METHODS We searched MEDLINE (PubMed up to 15 July 2018), Cochrane Central Register of Trials (CENTRAL up to 18 June 2019), Scopus (Scopus 18 June 2019), CINAHL (EBSCOhost 31 July 2018), and OSH-Update (up to 31 December 2018). We also screened reference lists of included trials and relevant reviews, and contacted NGOs and manufacturers of PPE. SELECTION CRITERIA We included all controlled studies that compared the effects of PPE used by HCW exposed to highly infectious diseases with serious consequences, such as Ebola or SARS, on the risk of infection, contamination, or noncompliance with protocols. This included studies that used simulated contamination with fluorescent markers or a non-pathogenic virus.We also included studies that compared the effect of various ways of donning or doffing PPE, and the effects of training in PPE use on the same outcomes. DATA COLLECTION AND ANALYSIS Two authors independently selected studies, extracted data and assessed risk of bias in included trials. We planned to perform meta-analyses but did not find sufficiently similar studies to combine their results. MAIN RESULTS We included 17 studies with 1950 participants evaluating 21 interventions. Ten studies are Randomised Controlled Trials (RCTs), one is a quasi RCT and six have a non-randomised controlled design. Two studies are awaiting assessment.Ten studies compared types of PPE but only six of these reported sufficient data. Six studies compared different types of donning and doffing and three studies evaluated different types of training. Fifteen studies used simulated exposure with fluorescent markers or harmless viruses. In simulation studies, contamination rates varied from 10% to 100% of participants for all types of PPE. In one study HCW were exposed to Ebola and in another to SARS.Evidence for all outcomes is based on single studies and is very low quality.Different types of PPEPPE made of more breathable material may not lead to more contamination spots on the trunk (Mean Difference (MD) 1.60 (95% Confidence Interval (CI) -0.15 to 3.35) than more water repellent material but may have greater user satisfaction (MD -0.46; 95% CI -0.84 to -0.08, scale of 1 to 5).Gowns may protect better against contamination than aprons (MD large patches -1.36 95% CI -1.78 to -0.94).The use of a powered air-purifying respirator may protect better than a simple ensemble of PPE without such respirator (Relative Risk (RR) 0.27; 95% CI 0.17 to 0.43).Five different PPE ensembles (such as gown vs. coverall, boots with or without covers, hood vs. cap, length and number of gloves) were evaluated in one study, but there were no event data available for compared groups.Alterations to PPE design may lead to less contamination such as added tabs to grab masks (RR 0.33; 95% CI 0.14 to 0.80) or gloves (RR 0.22 95% CI 0.15 to 0.31), a sealed gown and glove combination (RR 0.27; 95% CI 0.09 to 0.78), or a better fitting gown around the neck, wrists and hands (RR 0.08; 95% CI 0.01 to 0.55) compared to standard PPE.Different methods of donning and doffing proceduresDouble gloving may lead to less contamination compared to single gloving (RR 0.36; 95% CI 0.16 to 0.78).Following CDC recommendations for doffing may lead to less contamination compared to no guidance (MD small patches -5.44; 95% CI -7.43 to -3.45).Alcohol-based hand rub used during the doffing process may not lead to less contamination than the use of a hypochlorite based solution (MD 4.00; 95% CI 0.47 to 34.24).Additional spoken instruction may lead to fewer errors in doffing (MD -0.9, 95% CI -1.4 to -0.4).Different types of trainingThe use of additional computer simulation may lead to fewer errors in doffing (MD -1.2, 95% CI -1.6 to -0.7).A video lecture on donning PPE may lead to better skills scores (MD 30.70; 95% CI 20.14,41.26) than a traditional lecture.Face to face instruction may reduce noncompliance with doffing guidance more (OR 0.45; 95% CI 0.21 to 0.98) than providing folders or videos only.There were no studies on effects of training in the long term or on resource use.The quality of the evidence is very low for all comparisons because of high risk of bias in all studies, indirectness of evidence, and small numbers of participants. AUTHORS' CONCLUSIONS We found very low quality evidence that more breathable types of PPE may not lead to more contamination, but may have greater user satisfaction. Alterations to PPE, such as tabs to grab may decrease contamination. Double gloving, following CDC doffing guidance, and spoken instructions during doffing may reduce contamination and increase compliance. Face-to-face training in PPE use may reduce errors more than video or folder based training. Because data come from single small studies with high risk of bias, we are uncertain about the estimates of effects.We still need randomised controlled trials to find out which training works best in the long term. We need better simulation studies conducted with several dozen participants to find out which PPE protects best, and what is the safest way to remove PPE. Consensus on the best way to conduct simulation of exposure and assessment of outcome is urgently needed. HCW exposed to highly infectious diseases should have their use of PPE registered and should be prospectively followed for their risk of infection in the field.
Collapse
Affiliation(s)
- Jos H Verbeek
- University of Eastern FinlandCochrane Work Review GroupKuopioFinland70201
| | - Blair Rajamaki
- University of Eastern FinlandInstitute of Public Health and Clinical Nutrition, Occupational Health UnitKuopioFinland
| | - Sharea Ijaz
- University of BristolPopulation Health Sciences, Bristol Medical SchoolBristolUKBS1 2NT
| | - Christina Tikka
- Finnish Institute of Occupational HealthCochrane Work Review GroupTYÖTERVEYSLAITOSFinlandFI‐70032
| | - Jani H Ruotsalainen
- Coronel Institute of Occupational HealthCochrane Work Review GroupAcademic Medical Center, University of AmsterdamPO Box 22700AmsterdamNetherlands1100 DE
| | - Michael B Edmond
- University of Iowa Hospitals and ClinicsC512 GH, 200 Hawkins DriveIowa CityIAUSA52241
| | - Riitta Sauni
- Finnish Institute of Occupational HealthP.O.Box 486TampereFinlandFI‐33101
| | - F Selcen Kilinc Balci
- Centers for Disease Control and Prevention (CDC)National Personal Protective Technology Laboratory (NPPTL), National Institute for Occupational Safety and Health (NIOSH)626 Cochrans Mill RoadPittsburghPAUSA15236
| | | |
Collapse
|
6
|
Munoz-Gutierrez K, Canales R, Reynolds K, Verhougstraete M. Floor and environmental contamination during glove disposal. J Hosp Infect 2019; 101:347-353. [DOI: 10.1016/j.jhin.2018.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/15/2018] [Indexed: 11/30/2022]
|
7
|
Suen LKP, Guo YP, Tong DWK, Leung PHM, Lung D, Ng MSP, Lai TKH, Lo KYK, Au-Yeung CH, Yu W. Self-contamination during doffing of personal protective equipment by healthcare workers to prevent Ebola transmission. Antimicrob Resist Infect Control 2018; 7:157. [PMID: 30607244 PMCID: PMC6303998 DOI: 10.1186/s13756-018-0433-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
Background Healthcare workers (HCWs) use personal protective equipment (PPE) in Ebola virus disease (EVD) situations. However, preventing the contamination of HCWs and the environment during PPE removal crucially requires improved strategies. This study aimed to compare the efficacy of three PPE ensembles, namely, Hospital Authority (HA) Standard Ebola PPE set (PPE1), Dupont Tyvek Model, style 1422A (PPE2), and HA isolation gown for routine patient care and performing aerosol-generating procedures (PPE3) to prevent EVD transmission by measuring the degree of contamination of HCWs and the environment. Methods A total of 59 participants randomly performed PPE donning and doffing. The trial consisted of PPE donning, applying fluorescent solution on the PPE surface, PPE doffing of participants, and estimation of the degree of contamination as indicated by the number of fluorescent stains on the working clothes and environment. Protocol deviations during PPE donning and doffing were monitored. Results PPE2 and PPE3 presented higher contamination risks than PPE1. Environmental contaminations such as those originating from rubbish bin covers, chairs, faucets, and sinks were detected. Procedure deviations were observed during PPE donning and doffing, with PPE1 presenting the lowest overall deviation rate (%) among the three PPE ensembles (p < 0.05). Conclusion Contamination of the subjects’ working clothes and surrounding environment occurred frequently during PPE doffing. Procedure deviations were observed during PPE donning and doffing. Although PPE1 presented a lower contamination risk than PPE2 and PPE3 during doffing and protocol deviations, the design of PPE1 can still be further improved. Future directions should focus on designing a high-coverage-area PPE with simple ergonomic features and on evaluating the doffing procedure to minimise the risk of recontamination. Regular training for users should be emphasised to minimise protocol deviations, and in turn, guarantee the best protection to HCWs. Electronic supplementary material The online version of this article (10.1186/s13756-018-0433-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lorna K P Suen
- 1School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China, China
| | - Yue Ping Guo
- 1School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China, China
| | - Danny W K Tong
- 2Hospital Authority, Hong Kong, Special Administrative Region of China, China
| | - Polly H M Leung
- 3Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China, China
| | - David Lung
- Department of Clinical Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong, Special Administrative Region of China, China
| | - Mandy S P Ng
- 5Infectious Disease Centre, Princess Margaret Hospital, Hong Kong, Special Administrative Region of China, China
| | - Timothy K H Lai
- 1School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China, China
| | - Kiki Y K Lo
- 1School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China, China
| | - Cypher H Au-Yeung
- 1School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Special Administrative Region of China, China
| | - Winnie Yu
- 6Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, Special Administrative Region of China, China
| |
Collapse
|
8
|
Gleser M, Schwab F, Solbach P, Vonberg RP. Modified gloves: A chance for the prevention of nosocomial infections. Am J Infect Control 2018; 46:266-269. [PMID: 28967512 DOI: 10.1016/j.ajic.2017.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Non-sterile gloves primarily serve as a barrier protection for health care workers (HCWs). However, pathogens may often contaminate the skin of HCWs during glove removal; therefore, pathogens may be further transmitted and cause nosocomial infections. METHODS A field study was conducted comparing contamination rates when using standard gloves or a new modified product equipped with an additional flap (doffing aid) for easier removal. Gloves were removed after bathing gloved hands in an artificial fluorescent lotion. The number of contamination spots was then visually examined using ultraviolet light. RESULTS There were 317 individuals who participated in this study: 146 participants (104 nurses and 42 physicians) used standard gloves, whereas 171 participants (118 nurses and 53 physicians) used the modified product. Use of the modified gloves instead of the standard product (15.8% vs 73.3%, respectively; P < .001) and being a physician rather than a nurse (29.5% vs 47.7%, respectively; P = .003) were the only independent risk factors for reduction of contamination. CONCLUSIONS This study shows that the modified product could, at least in vitro, significantly reduce the rate of hand and wrist contamination during removal compared with standard gloves. By this, it may significantly improve the overall quality of patient care when used on the wards directly at the patient's site.
Collapse
|
9
|
A Randomized Trial of Two Cover Gowns Comparing Contamination of Healthcare Personnel During Removal of Personal Protective Equipment. Infect Control Hosp Epidemiol 2017; 39:97-100. [PMID: 29168446 DOI: 10.1017/ice.2017.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In a randomized trial, a gown designed to allow easy removal at the neck and with increased skin coverage and snugness of fit at the wrist significantly reduced contamination of personnel during personal protective equipment (PPE) removal. Our results suggest that simple modifications of PPE can reduce contamination of personnel. Infect Control Hosp Epidemiol 2018;39:97-100.
Collapse
|
10
|
Alhmidi H, Koganti S, Tomas ME, Cadnum JL, Jencson A, Donskey CJ. A pilot study to assess use of fluorescent lotion in patient care simulations to illustrate pathogen dissemination and train personnel in correct use of personal protective equipment. Antimicrob Resist Infect Control 2016; 5:40. [PMID: 27777761 PMCID: PMC5072336 DOI: 10.1186/s13756-016-0141-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Simulations using fluorescent tracers can be useful in understanding the spread of pathogens and in devising effective infection control strategies. METHODS During simulated patient care interactions in which providers wore gloves and gowns, we evaluated environmental and personnel dissemination of fluorescent lotion and bacteriophage MS2 from a contaminated mannequin. The frequency of skin and clothing contamination after removal of personal protective equipment (PPE) was compared before versus after an intervention that included education and practice in PPE donning and doffing. RESULTS Ten healthcare personnel participated in 30 pre-intervention and 30 post-intervention patient care simulations. Fluorescent lotion and bacteriophage MS2 were rapidly disseminated to touched surfaces throughout the room; there was no difference in the frequency of contamination before versus after the PPE training intervention. After the intervention, there was a decrease in skin and/or clothing contamination with fluorescent lotion (9/30, 30 % versus 1/30, 3 %; P = 0.01) and bacteriophage MS2 (8/30, 27 % versus 2/30, 7 %; P = 0.08) and there was a significant reduction in the concentration of bacteriophage MS2 recovered from hands (0.31 versus 0.07 log10plaque-forming units; P < 0.01). CONCLUSIONS Our findings suggest that simulations with fluorescent lotion can be a useful teaching tool to illustrate the spread of pathogens and provide further evidence that simple PPE training interventions can be effective in reducing contamination of personnel.
Collapse
Affiliation(s)
- Heba Alhmidi
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH USA
| | - Sreelatha Koganti
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH USA
| | - Myreen E Tomas
- Geriatric Research, Education, and Clinical Center, Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 USA
| | - Jennifer L Cadnum
- Geriatric Research, Education, and Clinical Center, Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 USA
| | - Annette Jencson
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH USA
| | - Curtis J Donskey
- Geriatric Research, Education, and Clinical Center, Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106 USA ; Case Western Reserve University School of Medicine, Cleveland, OH USA
| |
Collapse
|
11
|
Verbeek JH, Ijaz S, Mischke C, Ruotsalainen JH, Mäkelä E, Neuvonen K, Edmond MB, Sauni R, Balci FSK, Mihalache RC. Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst Rev 2016; 4:CD011621. [PMID: 27093058 PMCID: PMC10068873 DOI: 10.1002/14651858.cd011621.pub2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND In epidemics of highly infectious diseases, such as Ebola Virus Disease (EVD) or SARS, healthcare workers (HCW) are at much greater risk of infection than the general population, due to their contact with patients' contaminated body fluids. Contact precautions by means of personal protective equipment (PPE) can reduce the risk. It is unclear which type of PPE protects best, what is the best way to remove PPE, and how to make sure HCWs use PPE as instructed. OBJECTIVES To evaluate which type or component of full-body PPE and which method of donning or removing (doffing) PPE have the least risk of self-contamination or infection for HCWs, and which training methods most increase compliance with PPE protocols. SEARCH METHODS We searched MEDLINE (PubMed up to 8 January 2016), Cochrane Central Register of Trials (CENTRAL up to 20 January 2016), EMBASE (embase.com up to 8 January 2016), CINAHL (EBSCOhost up to 20 January 2016), and OSH-Update up to 8 January 2016. We also screened reference lists of included trials and relevant reviews, and contacted NGOs and manufacturers of PPE. SELECTION CRITERIA We included all eligible controlled studies that compared the effect of types or components of PPE in HCWs exposed to highly infectious diseases with serious consequences, such as EVD and SARS, on the risk of infection, contamination, or noncompliance with protocols. This included studies that simulated contamination with fluorescent markers or a non-pathogenic virus.We also included studies that compared the effect of various ways of donning or removing PPE, and the effects of various types of training in PPE use on the same outcomes. DATA COLLECTION AND ANALYSIS Two authors independently selected studies, extracted data and assessed risk of bias in included trials. We intended to perform meta-analyses but we did not find sufficiently similar studies to combine their results. MAIN RESULTS We included nine studies with 1200 participants evaluating ten interventions. Of these, eight trials simulated the exposure with a fluorescent marker or virus or bacteria containing fluids. Five studies evaluated different types of PPE against each other but two did not report sufficient data. Another two studies compared different types of donning and doffing and three studies evaluated the effect of different types of training.None of the included studies reported a standardised classification of the protective properties against viral penetration of the PPE, and only one reported the brand of PPE used. None of the studies were conducted with HCWs exposed to EVD but in one study participants were exposed to SARS. Different types of PPE versus each otherIn simulation studies, contamination rates varied from 25% to 100% of participants for all types of PPE. In one study, PPE made of more breathable material did not lead to a statistically significantly different number of spots with contamination but did have greater user satisfaction (Mean Difference (MD) -0.46 (95% Confidence Interval (CI) -0.84 to -0.08, range 1 to 5, very low quality evidence). In another study, gowns protected better than aprons. In yet another study, the use of a powered air-purifying respirator protected better than a now outdated form of PPE. There were no studies on goggles versus face shields, on long- versus short-sleeved gloves, or on the use of taping PPE parts together. Different methods of donning and doffing procedures versus each otherTwo cross-over simulation studies (one RCT, one CCT) compared different methods for donning and doffing against each other. Double gloving led to less contamination compared to single gloving (Relative Risk (RR) 0.36; 95% CI 0.16 to 0.78, very low quality evidence) in one simulation study, but not to more noncompliance with guidance (RR 1.08; 95% CI 0.70 to 1.67, very low quality evidence). Following CDC recommendations for doffing led to less contamination in another study (very low quality evidence). There were no studies on the use of disinfectants while doffing. Different types of training versus each otherIn one study, the use of additional computer simulation led to less errors in doffing (MD -1.2, 95% CI -1.6 to -0.7) and in another study additional spoken instruction led to less errors (MD -0.9, 95% CI -1.4 to -0.4). One retrospective cohort study assessed the effect of active training - defined as face-to-face instruction - versus passive training - defined as folders or videos - on noncompliance with PPE use and on noncompliance with doffing guidance. Active training did not considerably reduce noncompliance in PPE use (Odds Ratio (OR) 0.63; 95% CI 0.31 to 1.30) but reduced noncompliance with doffing procedures (OR 0.45; 95% CI 0.21 to 0.98, very low quality evidence). There were no studies on how to retain the results of training in the long term or on resource use.The quality of the evidence was very low for all comparisons because of high risk of bias in studies, indirectness of evidence, and small numbers of participants. This means that it is likely that the true effect can be substantially different from the one reported here. AUTHORS' CONCLUSIONS We found very low quality evidence that more breathable types of PPE may not lead to more contamination, but may have greater user satisfaction. We also found very low quality evidence that double gloving and CDC doffing guidance appear to decrease the risk of contamination and that more active training in PPE use may reduce PPE and doffing errors more than passive training. However, the data all come from single studies with high risk of bias and we are uncertain about the estimates of effects.We need simulation studies conducted with several dozens of participants, preferably using a non-pathogenic virus, to find out which type and combination of PPE protects best, and what is the best way to remove PPE. We also need randomised controlled studies of the effects of one type of training versus another to find out which training works best in the long term. HCWs exposed to highly infectious diseases should have their use of PPE registered and should be prospectively followed for their risk of infection.
Collapse
Affiliation(s)
- Jos H Verbeek
- Cochrane Work Review Group, Finnish Institute of Occupational Health, Kuopio, Finland
| | - Sharea Ijaz
- Cochrane Work Review Group, Finnish Institute of Occupational Health, Kuopio, Finland
| | - Christina Mischke
- Cochrane Work Review Group, Finnish Institute of Occupational Health, Kuopio, Finland
| | - Jani H Ruotsalainen
- Cochrane Work Review Group, Finnish Institute of Occupational Health, Kuopio, Finland
| | - Erja Mäkelä
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Kaisa Neuvonen
- Cochrane Work Review Group, Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Riitta Sauni
- Finnish Institute of Occupational Health, Tampere, Finland
| | - F Selcen Kilinc Balci
- National Personal Protective Technology Laboratory (NPPTL), National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Pittsburgh, PA, USA
| | - Raluca C Mihalache
- Cochrane Work Review Group, Finnish Institute of Occupational Health, Kuopio, Finland
| |
Collapse
|
12
|
Seamless Suits: Reducing Personnel Contamination Through Improved Personal Protective Equipment Design. Infect Control Hosp Epidemiol 2016; 37:742-4. [PMID: 27068020 DOI: 10.1017/ice.2016.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Picheansathian W, Chotibang J. Glove utilization in the prevention of cross transmission: a systematic review. ACTA ACUST UNITED AC 2015. [DOI: 10.11124/01938924-201513040-00013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Beam EL, Gibbs SG, Hewlett AL, Iwen PC, Nuss SL, Smith PW. Method for investigating nursing behaviors related to isolation care. Am J Infect Control 2014; 42:1152-6. [PMID: 25444261 DOI: 10.1016/j.ajic.2014.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although an emphasis has been placed on protecting patients by improving health care worker compliance with infection control techniques, challenges associated with patient isolation do exist. To address these issues, a more consistent mechanism to evaluate specific clinical behaviors safely is needed. METHODS The research method described in this study used a high fidelity simulation using a live standardized patient recorded by small cameras. Immediately after the simulation experience, nurses were asked to view and comment on their performance. A demographic survey and a video recorded physical evaluation provided participant description. A questionnaire component 1 month after the simulation experience offered insight into the timing of behavior change in clinical practice. RESULTS Errors in behaviors related to donning and doffing equipment for isolation care were noted among the nurses in the study despite knowing they were being video recorded. This simulation-based approach to clinical behavior analysis provided rich data on patient care delivery. CONCLUSION Standard educational techniques have not led to ideal compliance, and this study demonstrated the potential for using video feedback to enhance learning and ultimately reduce behaviors, which routinely increase the likelihood of disease transmission. This educational research method could be applied to many complicated clinical skills.
Collapse
Affiliation(s)
- Elizabeth L Beam
- College of Nursing, University of Nebraska Medical Center, Omaha, NE.
| | - Shawn G Gibbs
- Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Angela L Hewlett
- Infectious Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Peter C Iwen
- Pathology/Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Suzanne L Nuss
- Care Transitions and Nursing Outcomes, Nebraska Medical Center, Omaha, NE
| | - Philip W Smith
- Infectious Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
15
|
Guo YP, Li Y, Wong PLH. Environment and body contamination: a comparison of two different removal methods in three types of personal protective clothing. Am J Infect Control 2014; 42:e39-45. [PMID: 24679582 PMCID: PMC7115291 DOI: 10.1016/j.ajic.2013.12.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND This study aimed to examine the body contamination rates and environmental contamination levels during the removal of 3 types of personal protective clothing (PPC) by the individual accustomed removal method (IARM) and gown removal methods recommended by the Centers for Disease Control and Prevention (CDC). METHODS Fifty participants performed IARM and CDC-recommended gown removal methods to remove 3 types of PPC (ie, cotton gown, water resistant gown, and plastic apron) in random order at 2 separate sessions after applying Glo Germ simulated germ lotion on the gown's surface. A video demonstrating the CDC-recommended gown removal method was shown between the 2 sessions. After PPC removal, fluorescent stains were counted by an ultraviolet scan under dim light. RESULTS Following IARM, contaminants were splashed in the surroundings, particularly on the front part of the subject. The plastic apron and cotton gown obtained the highest and lowest contaminative hazards, respectively, to the hands, shoes, and environment. Females, nurses, and senior staff had serious hand or shoe contamination. The CDC removal method more significantly reduced body and environmental contamination of small fluorescent stains (<1 cm(2)), but not of large patches (>1 cm(2)), than IARM. CONCLUSION The effect of gown removal, PPC type, discarding PPC location, training of infection control measures, hand hygiene, and special work shoes should be considered daily.
Collapse
Affiliation(s)
- Y P Guo
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yi Li
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Peony L H Wong
- Schools of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
16
|
Wiwanitkit V. Glove removal method and distance: what else can affect contamination? Am J Infect Control 2011; 39:611. [PMID: 21636168 DOI: 10.1016/j.ajic.2010.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 11/17/2022]
|