1
|
Fabrizio G, Sivori F, Cavallo I, Truglio M, Toma L, Sperati F, Francalancia M, Obregon F, Pamparau L, Kovacs D, Pimpinelli F, Di Domenico EG. Efficacy of sodium hypochlorite in overcoming antimicrobial resistance and eradicating biofilms in clinical pathogens from pressure ulcers. Front Microbiol 2024; 15:1432883. [PMID: 39050624 PMCID: PMC11266179 DOI: 10.3389/fmicb.2024.1432883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Sodium hypochlorite (NaOCl) is widely recognized for its broad-spectrum antimicrobial efficacy in skin wound care. This study investigates the effectiveness of NaOCl against a range of bacterial and fungal isolates from pressure ulcer (PU) patients. We analyzed 20 bacterial isolates from PU patients, comprising carbapenem-resistant Klebsiella pneumoniae (CRKP), multidrug-resistant Acinetobacter baumannii (MDRAB), methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible Staphylococcus aureus (MSSA), along with 5 Candida albicans isolates. Antibiotic resistance profiles were determined using standard susceptibility testing. Whole-genome sequencing (WGS) was employed to identify antimicrobial resistance genes (ARGs) and disinfectant resistance genes (DRGs). Genetic determinants of biofilm formation were also assessed. The antimicrobial activity of NaOCl was evaluated by determining the minimum inhibitory concentration (MIC) and the minimal biofilm eradication concentration (MBEC) for both planktonic and biofilm-associated cells. CRKP and MDRAB showed resistance to fluoroquinolones and carbapenems, while MRSA exhibited resistance to β-lactams and levofloxacin. MSSA displayed a comparatively lower resistance profile. WGS identified significant numbers of ARGs in CRKP and MDRAB, with fewer DRGs compared to MRSA and MSSA. All isolates possessed genes associated with fimbriae production and adhesion, correlating with pronounced biofilm biomass production. NaOCl demonstrated substantial antimicrobial activity against both planktonic cells and biofilms. The MIC90 for planktonic bacterial cells was 0.125 mg/mL, and the MBEC90 ranged from 0.225 to 0.5 mg/mL. For planktonic C. albicans, the MIC90 was 0.150 mg/mL, and the MBEC90 was 0.250 mg/mL. These results highlight the challenge in treating biofilm-associated infections and underscore the potential of NaOCl as a robust antimicrobial agent against difficult-to-treat biofilm infections at concentrations lower than those typically found in commercial disinfectants.
Collapse
Affiliation(s)
- Giorgia Fabrizio
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Luigi Toma
- Medical Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Sperati
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Massimo Francalancia
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francisco Obregon
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Luisa Pamparau
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Daniela Kovacs
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Nkemngong C, Teska P. Biofilms, mobile genetic elements and the persistence of pathogens on environmental surfaces in healthcare and food processing environments. Front Microbiol 2024; 15:1405428. [PMID: 38894974 PMCID: PMC11183103 DOI: 10.3389/fmicb.2024.1405428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Biofilms are the natural state for bacterial and fungal species. To achieve surface hygiene in commercial facilities, the presence of biofilms must be adequately considered. However, standard disinfectant and sanitizer efficacy tests required by the US-EPA and the European Committee for Standardization (CEN) do not currently consider the role of environmental biofilms. This selective review will discuss what biofilms are and why they are important. We will also cover where they are commonly found in healthcare and food processing facilities and explore how current antimicrobial test methods required for product registration do not test for the presence of biofilms. Additionally, we will explore how a lack of efficacy against biofilms may play a role in the development of antimicrobial resistance in healthcare facilities due to the exchange of mobile genetic elements that occur readily in a biofilm matrix.
Collapse
Affiliation(s)
| | - Peter Teska
- Diversey-A Solenis Company, Fort Mill, SC, United States
| |
Collapse
|
3
|
Geraldes C, Tavares L, Gil S, Oliveira M. Biocides in the Hospital Environment: Application and Tolerance Development. Microb Drug Resist 2023; 29:456-476. [PMID: 37643289 DOI: 10.1089/mdr.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Hospital-acquired infections are a rising problem with consequences for patients, hospitals, and health care workers. Biocides can be employed to prevent these infections, contributing to eliminate or reduce microorganisms' concentrations at the hospital environment. These antimicrobials belong to several groups, each with distinct characteristics that need to be taken into account in their selection for specific applications. Moreover, their activity is influenced by many factors, such as compound concentration and the presence of organic matter. This article aims to review some of the chemical biocides available for hospital infection control, as well as the main factors that influence their efficacy and promote susceptibility decreases, with the purpose to contribute for reducing misusage and consequently for preventing the development of resistance to these antimicrobials.
Collapse
Affiliation(s)
- Catarina Geraldes
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Luís Tavares
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Solange Gil
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
- Department of Animal Health, Biological Isolation and Containment Unit (BICU), Veterinary Hospital, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Manuela Oliveira
- Department of Animal Health, Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
4
|
Bourne ME, Gloder G, Weldegergis BT, Slingerland M, Ceribelli A, Crauwels S, Lievens B, Jacquemyn H, Dicke M, Poelman EH. Parasitism causes changes in caterpillar odours and associated bacterial communities with consequences for host-location by a hyperparasitoid. PLoS Pathog 2023; 19:e1011262. [PMID: 36947551 PMCID: PMC10069771 DOI: 10.1371/journal.ppat.1011262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Microorganisms living in and on macroorganisms may produce microbial volatile compounds (mVOCs) that characterise organismal odours. The mVOCs might thereby provide a reliable cue to carnivorous enemies in locating their host or prey. Parasitism by parasitoid wasps might alter the microbiome of their caterpillar host, affecting organismal odours and interactions with insects of higher trophic levels such as hyperparasitoids. Hyperparasitoids parasitise larvae or pupae of parasitoids, which are often concealed or inconspicuous. Odours of parasitised caterpillars aid them to locate their host, but the origin of these odours and its relationship to the caterpillar microbiome are unknown. Here, we analysed the odours and microbiome of the large cabbage white caterpillar Pieris brassicae in relation to parasitism by its endoparasitoid Cotesia glomerata. We identified how bacterial presence in and on the caterpillars is correlated with caterpillar odours and tested the attractiveness of parasitised and unparasitised caterpillars to the hyperparasitoid Baryscapus galactopus. We manipulated the presence of the external microbiome and the transient internal microbiome of caterpillars to identify the microbial origin of odours. We found that parasitism by C. glomerata led to the production of five characteristic volatile products and significantly affected the internal and external microbiome of the caterpillar, which were both found to have a significant correlation with caterpillar odours. The preference of the hyperparasitoid was correlated with the presence of the external microbiome. Likely, the changes in external microbiome and body odour after parasitism were driven by the resident internal microbiome of caterpillars, where the bacterium Wolbachia sp. was only present after parasitism. Micro-injection of Wolbachia in unparasitised caterpillars increased hyperparasitoid attraction to the caterpillars compared to untreated caterpillars, while no differences were found compared to parasitised caterpillars. In conclusion, our results indicate that host-parasite interactions can affect multi-trophic interactions and hyperparasitoid olfaction through alterations of the microbiome.
Collapse
Affiliation(s)
- Mitchel E Bourne
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marijn Slingerland
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Andrea Ceribelli
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Mamdoh H, Hassanein KM, Eltoony LF, Khalifa WA, Hamed E, Alshammari TO, Abd El-Kareem DM, El-Mokhtar MA. Clinical and Bacteriological Analyses of Biofilm-Forming Staphylococci Isolated from Diabetic Foot Ulcers. Infect Drug Resist 2023; 16:1737-1750. [PMID: 36999125 PMCID: PMC10046123 DOI: 10.2147/idr.s393724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/28/2023] [Indexed: 04/01/2023] Open
Abstract
Background Diabetes mellitus is a chronic disease that is associated with increased morbidity and mortality. Unfortunately, foot ulcers and amputations due to diabetes are very common in developing countries. The purpose of this study was to characterize the clinical presentation of diabetic foot ulcer (DFU) infections, isolate the causative agent, and analyze the biofilm formation and distribution of biofilm-related genes among isolated Staphylococci. Material and Methods The study included 100 diabetic patients suffering from DFUs attending Assiut University Hospital. Swabs were collected and antimicrobial susceptibility testing of the isolates was performed. Biofilm formation was tested phenotypically among staphylococcal isolates and the frequency of different biofilm genes was analyzed by PCR. Clinical presentations of diabetic foot ulcers were correlated with bacterial genetic characteristics. Spa types were determined using DNA Gear-a software. Results Microbiological analysis showed that 94/100 of the DFUs were positive for bacterial growth. The majority of infections were polymicrobial (54%, n=54/100). Staphylococci were the most commonly detected organisms, of which S. aureus represented 37.5% (n=24/64), S. haemolyticus 23.4% (n=15/64), S. epidermidis 34.3% (n=22/64) and other CNS 4.7% (n=3/64). Interestingly, co-infection with more than one species of Staphylococci was observed in 17.1% (n=11/64) of samples. A high level of antibiotic resistance was observed, where 78.1% (n=50/64) of Staphylococci spp were multidrug-resistant (MDR). Phenotypic detection showed that all isolated Staphylococci were biofilm-formers with different grades. Analysis of biofilm-forming genes among Staphylococci showed that the most predominant genes were icaD, spa, and bap. Isolates with a higher number of biofilm-related genes were associated with strong biofilm formation. Sequencing of the spa gene in S. aureus showed that our isolates represent a collection of 17 different spa types. Conclusion The majority of DFUs in our hospital are polymicrobial. Staphylococci other than S.aureus are major contributors to infected DFUs. MDR and biofilm formation are marked among isolates, which is paralleled by the presence of different categories of virulence-related genes. All severely infected wounds were associated with either strong or intermediate biofilm formers. The severity of DFU is directly related to the number of biofilm genes.
Collapse
Affiliation(s)
- Hend Mamdoh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Khaled M Hassanein
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lobna Farag Eltoony
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Walaa A Khalifa
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Entsar Hamed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Doaa M Abd El-Kareem
- Department of Clinical Pathology, Faculty of Medicine Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Correspondence: Mohamed A El-Mokhtar, Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt, Email
| |
Collapse
|
6
|
Kim J, Park CM, Choi SH, Yang MJ, Lee JY, Jeon BS, Ku HO, Kim MS. Assessment of acute inhalation toxicity of citric acid and sodium hypochlorite in rats. J Vet Sci 2023; 24:e22. [PMID: 37012031 PMCID: PMC10071277 DOI: 10.4142/jvs.22253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Citric acid (CA) and sodium hypochlorite (NaOCl) have been used to disinfect animals to protect them against avian influenza and foot-and-mouth disease. OBJECTIVES We performed a good laboratory practice (GLP)-compliant animal toxicity study to assess the acute toxic effects of CA and NaOCl aerosol exposure in Sprague-Dawley rats. METHODS Groups of five rats per sex were exposed for 4 h to four concentrations of the two chemicals, i.e., 0.00, 0.22, 0.67, and 2.00 mg/L, using a nose-only exposure. After a single exposure to the chemicals, clinical signs, body weight, and mortality was observed during the observation period. On day 15, an autopsy, and then gross findings, and histopathological analysis were performed. RESULTS After exposure to CA and NaOCl, body weight loss was observed but recovered. Two males died in the CA 2.00 mg/L group and, two males and one female died in the 2.00 mg/L NaOCl group. In the gross findings and histopathological analysis, discoloration of the lungs was observed in the CA exposed group and inflammatory lesions with discoloration of the lungs were observed in the NaOCl exposed group. These results suggest that the lethal concentration 50 (LC50) of CA is 1.73390 mg/L for males and > 1.70 mg/L for females. For NaOCl, the LC50 was 2.22222 mg/L for males and 2.39456 mg/L for females. CONCLUSIONS The Globally Harmonized System is category 4 for both CA and NaOCl. In this study, the LC50 results were obtained through a GLP-based acute inhalation toxicity assessment. These results provide useful data to reset safety standards for CA and NaOCl use.
Collapse
Affiliation(s)
- Jinhee Kim
- Inhaolation toxicology research group, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Chul-Min Park
- Inhaolation toxicology research group, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Su Hyun Choi
- Inhaolation toxicology research group, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Mi Jin Yang
- Inhaolation toxicology research group, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Ju-Yeon Lee
- Inhaolation toxicology research group, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Byung-Suk Jeon
- Veterinary drugs and biologics division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hyun-Ok Ku
- Veterinary drugs and biologics division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Min-Seok Kim
- Inhaolation toxicology research group, Korea Institute of Toxicology, Jeongeup 56212, Korea
| |
Collapse
|
7
|
Chaggar GK, Nkemngong CA, Li X, Teska PJ, Oliver HF. Hydrogen peroxide, sodium dichloro-s-triazinetriones and quaternary alcohols significantly inactivate the dry-surface biofilms of Staphylococcus aureus and Pseudomonas aeruginosa more than quaternary ammoniums. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35275049 PMCID: PMC9558353 DOI: 10.1099/mic.0.001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Globally, healthcare-associated infections (HAI) are the most frequent adverse outcome in healthcare delivery. Although bacterial biofilms contribute significantly to the incidence of HAI, few studies have investigated the efficacy of common disinfectants against dry-surface biofilms (DSB). The objective of this study was to evaluate the bactericidal efficacy of seven Environmental Protection Agency (EPA)-registered liquid disinfectants against DSB of Staphylococcus aureus and Pseudomonas aeruginosa. We hypothesized that overall, there will be significant differences among the bactericidal efficacies of tested disinfectants by product type and active ingredient class. We also hypothesized that depending on the species, higher bactericidal efficacies against DSB will be exhibited after 24 h of dehydration compared to 72 h. Wet-surface biofilms of S. aureus and P. aeruginosa were grown following EPA-MLB-SOP-MB-19 and dehydrated for 24 and 72 h to establish DSB. Seven EPA-registered disinfectants were tested against dehydrated DSB following EPA-MLB-SOP-MB-20. Overall, quaternary ammonium plus alcohol, sodium dichloro-s-triazinetrione and hydrogen peroxide products were more efficacious against DSB than quaternary ammoniums for both tested species. While there was no significant difference in the log10 reductions between 24 and 72 h S. aureus biofilms, significantly higher log10 reductions were observed when products were challenged with 24 h P. aeruginosa DSB compared to 72 h P. aeruginosa DSB. Species type, active ingredient class and dry time significantly impact disinfectant efficacy against DSB of S. aureus or P. aeruginosa.
Collapse
Affiliation(s)
- Gurpreet K. Chaggar
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Carine A. Nkemngong
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Diversey Inc., Charlotte, NC 28273, USA
| | | | | | - Haley F. Oliver
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- *Correspondence: Haley F. Oliver,
| |
Collapse
|
8
|
Huang C, Tao S, Yuan J, Li X. Effect of sodium hypochlorite on biofilm of Klebsiella pneumoniae with different drug resistance. Am J Infect Control 2022; 50:922-928. [PMID: 34986390 DOI: 10.1016/j.ajic.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Biofilm formation is a major factor in the resistance mechanism of Klebsiella pneumoniae. This study aimed to evaluate the effects of sodium hypochlorite on the biofilm of K. pneumoniae with different drug resistance. METHODS We collected 3 different types of K. pneumoniae respectively. The growth trend of biofilms of different drug-resistant K. pneumoniae was quantified by measuring the OD590 for 7 consecutive days using crystal violet staining. Scanning confocal fluorescence microscopy was used to observe biofilm morphology. RESULTS After adding sodium hypochlorite, there were significant differences between the OD590 value of the 200, 500, and 1,000 µg/mL groups and the positive control group (all P < .05) on the fifth day. Concentrations of 2,000 and 5,000 µg/mL sodium hypochlorite were added after the biofilm had matured. In the 5,000 µg/mL sodium hypochlorite group, the OD590 of K. pneumoniae biofilm in the 3 groups decreased significantly compared with the blank control group (all P < .05). CONCLUSIONS Sodium hypochlorite inhibited and cleared the biofilm of K. pneumoniae with different drug resistance, and the effect was enhanced with the increase of concentration in the range of bacteriostatic and bactericidal concentration.
Collapse
Affiliation(s)
- Chenlei Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Shaoneng Tao
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Jinlong Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xiaoning Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| |
Collapse
|
9
|
Thomas RE, Thomas BC. Reducing Biofilm Infections in Burn Patients' Wounds and Biofilms on Surfaces in Hospitals, Medical Facilities and Medical Equipment to Improve Burn Care: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13195. [PMID: 34948803 PMCID: PMC8702030 DOI: 10.3390/ijerph182413195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022]
Abstract
Biofilms in burns are major problems: bacterial communities rapidly develop antibiotic resistance, and 60% of burn mortality is attributed to biofilms. Key pathogens are Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and multidrug-resistant Acinetobacter baumanii. Purpose: identify current and novel interventions to reduce biofilms on patients' burns and hospital surfaces and equipment. Medline and Embase were searched without date or language limits, and 31 possible interventions were prioritised: phages, nano-silver, AgSD-NLs@Cur, Acticoat and Mepilex silver, acetic acid, graphene-metal combinations, CuCo2SO4 nanoparticles, Chlorhexidene acetate nanoemulsion, a hydrogel with moxifloxacin, carbomer, Chitosan and Boswellia, LED light therapy with nano-emodin or antimicrobial blue light + Carvacrol to release reactive oxygen species, mannosidase + trypsin, NCK-10 (a napthalene compound with a decyl chain), antimicrobial peptide PV3 (includes two snake venoms), and polypeptides P03 and PL2. Most interventions aimed to penetrate cell membranes and reported significant reductions in biofilms in cfu/mL or biofilm mass or antibiotic minimal inhibitory concentrations or bacterial expression of virulence or quorum sensing genes. Scanning electron microscopy identified important changes in bacterial surfaces. Patients with biofilms need isolating and treating before full admission to hospital. Cleaning and disinfecting needs to include identifying biofilms on keyboards, tablets, cell phones, medical equipment (especially endoscopes), sinks, drains, and kitchens.
Collapse
Affiliation(s)
- Roger E. Thomas
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | |
Collapse
|
10
|
Amini Tapouk F, Nabizadeh R, Mirzaei N, Hosseini Jazani N, Yousefi M, Valizade Hasanloei MA. Comparative efficacy of hospital disinfectants against nosocomial infection pathogens. Antimicrob Resist Infect Control 2020; 9:115. [PMID: 32698895 PMCID: PMC7374963 DOI: 10.1186/s13756-020-00781-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Due to the increasing rate of hospital-acquired infections, it is essential to select appropriate disinfectant agents. In this study, the efficacy of hospital disinfectants against nosocomial infection pathogens was compared. METHODS High level disinfectants (Steranios 2%, Deconex HLDPA, and Microzed Quatenol) were tested for their antibacterial effects by determining their minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) against Enterococcus faecalis ATCC 29212 and Burkholderia cepacia ATCC 10673. RESULTS E. faecalis, as gram-positive bacterium, was more susceptible to high level disinfectants compared to gram-negative B.cepacia. The MIC = MBC values of 2% Steranios, Deconex HLDPA and Microzed Quatenol against E. faecalis and B.cepacia were 0.31, 9.77, 2.2 mg/L and 9.8, 78.13, 70.31 mg/L, respectively. CONCLUSIONS According to the findings of this study, the most effective disinfectants against both E. faecalis and B.cepacia were Steranios 2%, Microzed Quatenol, and Deconex HLDPA in order. Considering the importance of these bacterial strains in healthcare-associated infections, the use of these effective disinfectants is recommended in the hospitals.
Collapse
Affiliation(s)
- Fahim Amini Tapouk
- Department of Environmental Health Engineering, School of Public Health, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. .,Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Nezam Mirzaei
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Nima Hosseini Jazani
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
11
|
Mufarrih SH, Qureshi NQ, Rashid RH, Ahmed B, Irfan S, Zubairi AJ, Noordin S. Microbial Colonization of Pneumatic Tourniquets in the Orthopedic Operating Room. Cureus 2019; 11:e5308. [PMID: 31592363 PMCID: PMC6773449 DOI: 10.7759/cureus.5308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background The rate of surgical site infections following orthopedic procedures is approximately 2% globally. Potential sources of contamination in the operating room include pneumatic tourniquets, blood pressure cuffs, and stethoscopes, among others. Our study aims to investigate microbial colonization on reusable pneumatic tourniquets stored and used in the orthopedic department of our institution and evaluate the efficacy of the cleaning protocols employed. Methods Over a course of two weeks, 26 samples were obtained. A total of 14 pneumatic tourniquets were sampled preoperatively on Monday morning following the weekly cleaning protocol of soaking the tourniquets in sodium hypochlorite for 30 minutes while 12 tourniquets were cultured immediately following the postoperative cleaning protocol of wiping the tourniquet clean with a cloth soaked in sodium hypochlorite. Samples were cultured on MacConkey and sheep blood agar and incubated at 37-degrees centigrade for a total of 48 hours. Organisms were identified and colony count was documented. The analysis was performed using the Fisher Exact test on SPSS v23 (IBM Corp., Armonk, NY, US). Results All 14 samples obtained after being soaked in sodium hypochlorite for 30 minutes cultured negative. However, four out of 12 (33%) samples obtained after simply wiping the pneumatic tourniquet with a cloth soaked in sodium hypochlorite cultured coagulase-negative Staphylococci. The difference between the two was significant (p=0.002). Conclusion Postoperative tourniquets, wiped with a cloth soaked in sodium hypochlorite and ready to be used on the next patient, were found to be contaminated with coagulase-negative Staphylococcus. This species is notorious for causing surgical site infections following implant-related surgeries potentially through direct inoculation and cross-infections intraoperatively and in storage. Efforts to identify the relationship with postoperative surgical site infections need to be made to suggest more aggressive cleaning protocols.
Collapse
Affiliation(s)
| | | | | | | | - Seema Irfan
- Microbiology, Aga Khan University, Karachi, PAK
| | | | | |
Collapse
|
12
|
Lineback CB, Nkemngong CA, Wu ST, Li X, Teska PJ, Oliver HF. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrob Resist Infect Control 2018; 7:154. [PMID: 30568790 PMCID: PMC6298007 DOI: 10.1186/s13756-018-0447-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/05/2018] [Indexed: 01/18/2023] Open
Abstract
Background Antimicrobial disinfectants are used as primary treatment options against pathogens on surfaces in healthcare facilities to help prevent healthcare associated infections (HAIs). On many surfaces, pathogenic microorganisms exist as biofilms and form an extracellular matrix that protects them from the antimicrobial effects of disinfectants. Disinfectants are used as all-purpose antimicrobials though very few specifically make biofilm efficacy claims. The objective of this study was to evaluate the efficacy of eight registered disinfectants (six registered by the Environmental Protection Agency and two products registered in by the European Chemical Agency) with general bactericidal claims, but currently no biofilm efficacy claims, against Staphylococcus aureus ATTC-6538 and Pseudomonas aeruginosa ATCC-15442 biofilms. We hypothesized that hydrogen peroxide and sodium hypochlorite disinfectant products would be more effective than quaternary ammonium chlorides. Methods This study tested the bactericidal efficacy of eight registered disinfectant products against S. aureus ATCC-6538 and P. aeruginosa ATCC-15442 grown on glass coupons using a Center for Disease Control (CDC) biofilm reactor and EPA MLB SOP MB-19. Bactericidal efficacy was determined after treating coupons with disinfectants following standard EPA MLB SOP MB-20. Results Overall, sodium hypochlorite and hydrogen peroxide disinfectants had significantly higher bactericidal efficacies than quaternary ammonium chloride disinfectants. We also found that all tested disinfectants except for quaternary ammonium chloride disinfectants met and exceeded the EPA standard for bactericidal efficacy against biofilms. Conclusion In general, bactericidal efficacy against biofilms differed by active ingredient. The efficacies of sodium hypochlorite and hydrogen peroxide disinfectants did not vary between strains, but there were significant differences between strains treated with quaternary ammonium chloride disinfectants.
Collapse
Affiliation(s)
- Caitlinn B Lineback
- 1Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 USA
| | - Carine A Nkemngong
- 1Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 USA
| | - Sophie Tongyu Wu
- 1Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 USA
| | | | | | - Haley F Oliver
- 1Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
13
|
Campana R, Ciandrini E, Baffone W. Experimental approach for a possible integrated protocol to determine sanitizer activity against both planktonic bacteria and related biofilms. Food Res Int 2018; 111:472-479. [PMID: 30007709 DOI: 10.1016/j.foodres.2018.05.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/24/2018] [Accepted: 05/28/2018] [Indexed: 01/01/2023]
Abstract
The persistence of pathogenic bacteria in industrial settings is linked to biofilm embedded bacteria resistance to antimicrobial and disinfectant methods effective against planktonic cells. We proposed an experimental approach to evaluate sanitizers effectiveness against both planktonic microorganisms and related biofilms as possible integration of the official EN 1276 procedure. Firstly, the efficacy of three chemicals sanitizers was tested on planktonic cells of Escherichia coli O157:H7 ATCC 35150, Staphylococcus aureus ATCC 43387, Pseudomonas aeruginosa ATCC 9027, Enterococcus faecalis ATCC 29212 and Candida albicans ATCC 14053 using the suspension test indicated by EN 1276 in both dirty and clear simulated conditions (0.3% or 0.03% of bovine serum albumen). The sanitizers were tested against the related biofilms developed on stainless steel for 48 h at room temperature. The sanitizers (SANI 626, SUPERIG, IGIEN 155) reached 5-logarithmic reduction at the manufacture's recommended concentrations after 30 s and 5 min against planktonic microorganisms but, sometimes, the organic load interfered with their activity. The same concentrations tested with the proposed protocol weren't effective against biofilms and a log reduction >3 was reached using higher concentrations of the sanitizers and 15 min of contact, with the exception of IGIEN 155. The efficacy of a disinfectant/sanitizer is assessed against planktonic microorganisms and bacteria adhered to surface, while those embedded in biofilms are not taken into consideration. The proposed protocol could be used to evaluate the effectiveness of a sanitizer also against microorganisms organized in biofilms, in order to give to the users more detailed information on its activity.
Collapse
Affiliation(s)
- Raffaella Campana
- Department of Biomolecular Science, Division of Toxicological, Hygiene and Environmental Science, University of Urbino Carlo Bo, Urbino, Italy.
| | - Eleonora Ciandrini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Wally Baffone
- Department of Biomolecular Science, Division of Toxicological, Hygiene and Environmental Science, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|