3
|
Cho Y, Song MK, Jeong SC, Lee K, Heo Y, Kim TS, Ryu JC. MicroRNA response of inhalation exposure to hexanal in lung tissues from Fischer 344 rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1909-1921. [PMID: 26403475 DOI: 10.1002/tox.22192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 06/05/2023]
Abstract
In previous studies, we have investigated the relationships between environmental chemicals and health risk based on omics analysis and identified significant biomarkers. Our current findings indicate that hexanal may be an important toxicant of the pulmonary system in epigenetic insights. MicroRNA (miRNA) is an important indicator of biomedical risk assessment and target identification. Hexanal is highly detectable in the exhaled breath of patients with chronic obstructive pulmonary disease (COPD) and chronic inflammatory lung disease. In this study, we aimed to identify hexanal-characterized miRNA-mRNA correlations involved in lung toxicity. Microarray analysis identified 56 miRNAs that commonly changed their expression more than 1.3-fold in three doses (600, 1000, and 1500 ppm) within hexanal-exposed Fischer 344 rats by inhalation, and 226 genes were predicted to be target genes of miRNAs through TargetScan analysis. By integrating analyses of miRNA and mRNA expression profiles, we identified one anti-correlated target gene (Chga; chromogranin A; parathyroid secretory protein 1). Comparative toxicogenomics database (CTD) analysis of this gene showed that Chga is involved with several disease categories such as cancer, respiratory tract disease, nervous system disease, and cardiovascular disease. Further research is necessary to elucidate the mechanisms of hexanal-responsive toxicologic pathways at the molecular level. This study concludes that our integrated approach to miRNA and mRNA enables us to identify molecular events in disease development induced by hexanal in an in vivo rat model. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1909-1921, 2016.
Collapse
Affiliation(s)
- Yoon Cho
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-701, Korea
| | - Mi-Kyung Song
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Seung-Chan Jeong
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Kyuhong Lee
- Human and Environmental Toxicology, University of Science and Technology, Gajeong-Ro 217, Yuseong-Gu, Daejeon, 305-350, Korea
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, 30, Baekhak 1-Gil, Jeongeup-Si, Jeollabuk-Do, 580-185, Korea
| | - Yongju Heo
- Human and Environmental Toxicology, University of Science and Technology, Gajeong-Ro 217, Yuseong-Gu, Daejeon, 305-350, Korea
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, 30, Baekhak 1-Gil, Jeongeup-Si, Jeollabuk-Do, 580-185, Korea
| | - Tae Sung Kim
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-701, Korea
| | - Jae-Chun Ryu
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
- Human and Environmental Toxicology, University of Science and Technology, Gajeong-Ro 217, Yuseong-Gu, Daejeon, 305-350, Korea
| |
Collapse
|
5
|
Ghanemi A, Boubertakh B. Shorter and sturdier bridges between traditional Chinese medicines and modern pharmacology. Saudi Pharm J 2015; 23:330-2. [PMID: 26106282 PMCID: PMC4475857 DOI: 10.1016/j.jsps.2014.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/15/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Abdelaziz Ghanemi
- Key Laboratory of Brain and Cognitive Sciences and Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming 650223, Yunnan Province, PR China
| | - Besma Boubertakh
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province, PR China
| |
Collapse
|
6
|
Ghanemi A, Hu X. Elements toward novel therapeutic targeting of the adrenergic system. Neuropeptides 2015; 49:25-35. [PMID: 25481798 DOI: 10.1016/j.npep.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/30/2014] [Accepted: 11/19/2014] [Indexed: 01/14/2023]
Abstract
Adrenergic receptors belong to the family of the G protein coupled receptors that represent important targets in the modern pharmacotherapies. Studies on different physiological and pathophysiological properties of the adrenergic system have led to novel evidences and theories that suggest novel possible targeting of such system in a variety of pathologies and disorders, even beyond the classical known therapeutic possibilities. Herein, those advances have been illustrated with selected concepts and different examples. Furthermore, we illustrated the applications and the therapeutic implications that such findings and advances might have in the contexts of experimental pharmacology, therapeutics and clinic. We hope that the content of this work will guide researches devoted to the adrenergic aspects that combine neurosciences with pharmacology.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; University of Chinese Academy of Science, Beijing, China.
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Key State Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
10
|
Ghanemi A. Targeting G protein coupled receptor-related pathways as emerging molecular therapies. Saudi Pharm J 2013; 23:115-29. [PMID: 25972730 PMCID: PMC4420995 DOI: 10.1016/j.jsps.2013.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Psychiatric neural networks and neuropharmacology: Selected advances and novel implications. Saudi Pharm J 2013; 22:95-100. [PMID: 24648819 DOI: 10.1016/j.jsps.2013.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/25/2013] [Indexed: 01/13/2023] Open
Abstract
Psychiatric disorders are often considered as simple imbalances between a limited number of cerebral neurotransmitters. In fact, it is more complicated than this "simple approach" and each psychiatric disorder constitutes network dysfunction within which several agents and factors are implicated. Thus, the therapeutical perspectives and implications are as vast and as numerous as the diversity of those network dysfunctions. Furthermore, the description of factors influencing diseases prognoses and treatment efficacy indicates new elements to consider both in therapies and drug researches.
Collapse
|