1
|
Turunen JA, Tuisku IS, Repo P, Mörtenhumer S, Kawan S, Järvinen RS, Korsbäck A, Immonen AT, Kivelä TT. Epithelial recurrent erosion dystrophy (ERED) from the splice site altering COL17A1 variant c.3156C>T in families of Finnish-Swedish ancestry. Acta Ophthalmol 2024; 102:296-305. [PMID: 37289141 DOI: 10.1111/aos.15716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE To describe four Finnish families with epithelial recurrent erosion dystrophy (ERED) caused by the pathogenic variant c.3156C>T in collagen type XVII alpha 1 chain gene (COL17A1). METHODS Eleven affected and two unaffected individuals underwent clinical ophthalmological examination, anterior segment photography, and corneal topography. Two of them underwent phototherapeutic keratectomy (PTK). Genetic analysis included both next-generation and Sanger sequencing. Specimens from the manual keratectomy of one patient were available for ophthalmic pathologic examination, including immunohistochemistry. RESULTS The common splice-site altering synonymous variant c.3156C > T, p.(Gly1052=) in COL17A1 was confirmed in 15 individuals with ERED from the four families. Subepithelial corneal scarring grades varied and increased with age, leading to decreased best-corrected visual acuity. PTK improved vision in 58- and 67-year-old individuals without reactivating the disease. The keratectomy specimens showed an uneven epithelium and a spectrum of basement membrane abnormalities, including breaks, fragmentation, multiplication and entrapment within the subepithelial scar, reflecting recurrent erosions. The stromal cells consisted of varying proportions of bland and activated fibroblasts and myofibroblasts, reflecting different ages of scars. The family with the largest number of known affected generations originated from Southern Sweden. CONCLUSION The phenotype in the Finnish ERED families is consistent with earlier reports of the c.3156C > T variant, although the severity has varied between reports. The phenotype may be modulated by other genes. This study suggests a likely founder effect of the variant in both Finnish and Swedish populations due to their shared population histories. If vision is compromised, PTK can be considered especially in older patients.
Collapse
Affiliation(s)
- Joni A Turunen
- Ophthalmic Genetics Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Eye Genetics Group, Folkhälsan Research Center, Helsinki, Finland
| | - Ilpo S Tuisku
- Cornea and Anterior Segment Surgery Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pauliina Repo
- Ophthalmic Genetics Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Eye Genetics Group, Folkhälsan Research Center, Helsinki, Finland
| | - Sanna Mörtenhumer
- Cornea and Anterior Segment Surgery Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sabita Kawan
- Eye Genetics Group, Folkhälsan Research Center, Helsinki, Finland
| | | | - Anna Korsbäck
- Cornea and Anterior Segment Surgery Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annamari T Immonen
- Eye Genetics Group, Folkhälsan Research Center, Helsinki, Finland
- Cornea and Anterior Segment Surgery Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tero T Kivelä
- Ophthalmic Pathology Laboratory, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Pathology, HUSLAB, Helsinki, Finland
| |
Collapse
|
2
|
Chen AC, Niruthisard D, Chung DD, Chuephanich P, Aldave AJ. Identification of A Novel TGFBI Gene Mutation (p.Serine524Cystine) Associated with Late Onset Recurrent Epithelial Erosions and Bowman Layer Opacities. Ophthalmic Genet 2020; 41:639-644. [PMID: 32880217 DOI: 10.1080/13816810.2020.1814345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Most transforming growth factor beta-induced (TGFBI) corneal dystrophies are associated with a characteristic phenotype, clinical course, and a conserved mutation in the TGFBI gene. However, we report a novel TGFBI missense mutation associated with a late-onset, variant Bowman layer dystrophy. METHODS Participants underwent slit-lamp examination and multimodal imaging. Polymerase chain reaction amplification and Sanger sequencing were performed on saliva-derived genomic DNA to screen TGFBI exons 4 and 12 as well as COL17A1 exon 46. PolyPhen-2 and SIFT were used to predict the functional impact of any identified variants. RESULTS A 56-year-old Thai woman reported a four-year history of decreased vision and intermittent eye irritation, suggestive of recurrent epithelial erosions, in both eyes. Slit-lamp exam revealed bilateral, irregular, limbal-sparing Bowman layer opacities, which were also noted on anterior segment optical coherence tomography. Phototherapeutic keratectomy was performed in the right eye, improving the best-corrected visual acuity from 20/50 to 20/30. Sequencing of the TGFBI gene revealed a novel heterozygous, missense mutation in exon 12 (c.1571 C > G; p.Ser524Cys), which was present in an affected son and absent in an unaffected son, and was predicted to be damaging by PolyPhen-2 and SIFT. The patient was diagnosed with a variant Bowman layer dystrophy given the late onset of an atypical phenotype and the identification of a novel TGFBI mutation. CONCLUSIONS A novel TGFBI missense mutation is associated with a late-onset Bowman layer dystrophy. Given the atypical clinical appearance and course, molecular genetic analysis was utilized to establish a definitive diagnosis.
Collapse
Affiliation(s)
- Angela C Chen
- Stein Eye Institute, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
| | - Duangratn Niruthisard
- Stein Eye Institute, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
- Department of Ophthalmology, Banphaeo General Hospital (Public Organization) , Samutsakhon, Thailand
| | - Doug D Chung
- Stein Eye Institute, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
| | - Pichaya Chuephanich
- Department of Ophthalmology, Phramongkutklao Hospital, Phramongkutklao College of Medicine , Bangkok, Thailand
| | - Anthony J Aldave
- Stein Eye Institute, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
| |
Collapse
|
3
|
Lisch W, Weiss JS. Early and late clinical landmarks of corneal dystrophies. Exp Eye Res 2020; 198:108139. [PMID: 32726603 DOI: 10.1016/j.exer.2020.108139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023]
Abstract
Corneal dystrophies (CDs) represent a heterogenous group of genetic diseases (Lisch and Weiss, 2019). The International Committee of Classification of Corneal Dystrophies (IC3D) distinguishes between 22 distinct forms of corneal dystrophy (CD) which are predominantly autosomal dominant, although autosomal recessive and X-chromosomal dominant and recessive patterns do exist. A detailed corneal examination of as many affected family members as possible can show the phenotypic differences of the various generations. There are few publications which describe the different CDs with regard to the early and late phenotypes. According to early and late phenotype, three types of CD are generally classified: (1) Thirteen CDs with early and late clinical landmarks. However, it must be pointed out that the different penetrances of the gene often leads to quantitative differences in the corneal phenotype in peers in distinct generations of the same family. (2) Seven CDs with late onset and very little progression of the corneal changes. (3) Two CDs with congenital haze which can be interpreted as the final phenotype of this dystrophy. This applies to autosomal dominant and recessive inheritance.
Collapse
Affiliation(s)
- Walter Lisch
- Department of Ophthalmology, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Jayne S Weiss
- Department of Ophthalmology, Pathology, and Pharmacology, Louisiana State University, School of Medicine, New Orleans, USA.
| |
Collapse
|
4
|
Soh YQ, Kocaba V, Weiss JS, Jurkunas UV, Kinoshita S, Aldave AJ, Mehta JS. Corneal dystrophies. Nat Rev Dis Primers 2020; 6:46. [PMID: 32528047 DOI: 10.1038/s41572-020-0178-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Corneal dystrophies are broadly defined as inherited disorders that affect any layer of the cornea and are usually progressive, bilateral conditions that do not have systemic effects. The 2015 International Classification of Corneal Dystrophies classifies corneal dystrophies into four classes: epithelial and subepithelial dystrophies, epithelial-stromal TGFBI dystrophies, stromal dystrophies and endothelial dystrophies. Whereas some corneal dystrophies may result in few or mild symptoms and morbidity throughout a patient's lifetime, others may progress and eventually result in substantial visual and ocular disturbances that require medical or surgical intervention. Corneal transplantation, either with full-thickness or partial-thickness donor tissue, may be indicated for patients with advanced corneal dystrophies. Although corneal transplantation techniques have improved considerably over the past two decades, these surgeries are still associated with postoperative risks of disease recurrence, graft failure and other complications that may result in blindness. In addition, a global shortage of cadaveric corneal graft tissue critically limits accessibility to corneal transplantation in some parts of the world. Ongoing advances in gene therapy, regenerative therapy and cell augmentation therapy may eventually result in the development of alternative, novel treatments for corneal dystrophies, which may substantially improve the quality of life of patients with these disorders.
Collapse
Affiliation(s)
- Yu Qiang Soh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Viridiana Kocaba
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Netherlands Institute for Innovative Ocular Surgery, Rotterdam, Netherlands
| | - Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University, School of Medicine, New Orleans, USA
| | - Ula V Jurkunas
- Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Schepens Eye Research Institute, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anthony J Aldave
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
5
|
Clinical and genetic update of corneal dystrophies. Exp Eye Res 2019; 186:107715. [PMID: 31301286 DOI: 10.1016/j.exer.2019.107715] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 11/23/2022]
Abstract
The International Committee for Classification of Corneal Dystrophies (IC3D) distinguishes between 22 distinct forms of corneal dystrophy which are predominantly autosomal dominant, although autosomal recessive and X-chromosomal dominant patterns do exist. Before any genetic examination, there should be documentation of a detailed corneal exam of as many affected and unaffected family members as possible, because detailed phenotypic description is essential for accurate diagnosis. Corneal documentation should be performed in direct and indirect illumination at the slit lamp with the pharmacologically dilated pupil. For the majority of the corneal dystrophies, a phenotype-genotype correlation has not been demonstrated. However, for the dystrophies associated with mutations in the transforming growth factor, ß-induced gene (TGFBI) a general phenotype-genotype correlation is evident. The discovery of collagen, type XVII, alpha 1 mutation (COL17A1), causative in the called epithelial recurrent erosion dystrophy (ERED) was a very important step in the accurate diagnosis of corneal dystrophies. This led to the subsequent discovery that the entity previously called 10q Thiel-Behnke corneal dystrophy, was in reality actually COL17A1 ERED, and not Thiel-Behnke corneal dystrophy. In addition to the phenotypic landmarks, we describe the current genotype of the individual corneal dystrophies. Differential diagnosis can be aided by information on histopathology, optical coherence tomography (OCT), and confocal microscopy.
Collapse
|
6
|
Finis D, Stammen J, Lisch W, Geerling G. [Epithelial Dystrophies of the Cornea]. Klin Monbl Augenheilkd 2019; 236:e23-e36. [PMID: 30776844 DOI: 10.1055/a-0849-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In 2015, the first revision of the international classification of corneal dystrophies (IC3D) has been published. According to this latest version of the IC3D the dystrophies of the cornea are divided into · epithelial and subepithelial dystrophies,. · epithelial-stromal TGFBI dystrophies,. · stromal dystrophies, and. · Descemet-membrane and endothelial dystrophies.. This article summarizes the epithelial and subepithelial dystrophies of the cornea, which, according to IC3D are the following: · epithelial basement membrane dystrophy (EBMD),. · epithelial recurrent erosion dystrophy (ERED),. · subepithelial mucinous corneal dystrophy (SMCD),. · Meesmann corneal dystrophy (MECD),. · Lisch epithelial corneal dystrophy (LECD),. · gelatinous drop-like corneal dystrophy (GDLD).. The main problem concerning almost all dystrophies of the corneal epithelium are epithelial defects (erosion) associated with pain, epiphora and red eyes. In addition, all dystrophies of the epithelium tend to relapse.While therapy is usually initiated with topical therapeutics, in the course of the disease invasive procedures like phototherapeutic keratectomy (PTK) (possibly with the administration of mitomycin C) or in severe cases even keratoplasty (preferably as deep anterior lamellar keratoplasty; DALK) have to be used. Due to the origin of the disease in the epithelial stem cells at the limbus, the replacement of these cells can also be discussed.
Collapse
|
7
|
Vahedi F, Chung DD, Gee KM, Chuephanich P, Aldave AJ. Epithelial Recurrent Erosion Dystrophy Secondary to COL17A1 c.3156C>T Mutation in a Non-white Family. Cornea 2018; 37:909-911. [PMID: 29708937 PMCID: PMC5932625 DOI: 10.1097/ico.0000000000001619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To report the identification of the collagen, type XVII, alpha 1 (COL17A1) c.3156C>T mutation associated with epithelial recurrent erosion dystrophy (ERED) in a Thai family. METHODS Slit-lamp examination was performed to determine the affected status of each member of a Thai family, with multiple members demonstrating scattered Bowman layer opacities. After genomic deoxyribonucleic acid (DNA) was isolated from saliva, polymerase chain reaction (PCR) amplification and Sanger sequencing were performed to screen COL17A1 and exons 4 and 12 of the transforming growth factor β-induced gene. RESULTS The 67-year-old proband and her 4 siblings were examined by slit-lamp biomicroscopy, which identified bilateral subepithelial opacities in the proband and in one of the 4 siblings. In both the proband and the affected sister, screening of the COL17A1 gene identified a heterozygous c.3156C>T synonymous mutation that has been previously demonstrated to introduce a cryptic splice donor site, likely leading to aberrant splicing of COL17A1. This mutation was not identified in the unaffected siblings, and no mutations were identified in exons 4 and 12 of the transforming growth factor β-induced gene in any of the screened family members. CONCLUSIONS ERED associated with a COL17A1 mutation has been previously reported in only 6 families, all white. Identification of the c.3156C>T mutation, previously identified in 5 of these 6 families, in the Thai family we report indicates conservation of the genetic basis of ERED across different races and underscores the importance of ophthalmologists around the globe being familiar with ERED, which has only recently become a recognized corneal dystrophy.
Collapse
Affiliation(s)
- Farnoosh Vahedi
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | | | | | | |
Collapse
|
8
|
Siebelmann S, Scholz P, Sonnenschein S, Bachmann B, Matthaei M, Cursiefen C, Heindl LM. Anterior segment optical coherence tomography for the diagnosis of corneal dystrophies according to the IC3D classification. Surv Ophthalmol 2018; 63:365-380. [DOI: 10.1016/j.survophthal.2017.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
|
9
|
Abstract
Degenerative or hereditary corneal diseases are sometimes difficult to discriminate. Corneal dystrophies affect approximately 0.09 % of the population. They are identified by the IC3D classification based on their phenotype, genotype and evidence gathered for their diagnosis. Practically, the ophthalmologist manages functional symptoms, such as recurrent erosions, visual loss and amblyopia, photophobia, foreign body sensation, and sometimes pain and aesthetic concerns. Medical treatments consist of drops to promote healing, ointments, hyperosmotic agents and bandage contact lenses. Less invasive surgical treatments are used as second line therapy (phototherapeutic keratectomy, lamellar keratectomy). More invasive procedures may eventually be utilized (lamellar or penetrating keratoplasty). Anterior lamellar or endothelial keratoplasty are now preferred to penetrating keratoplasty, although the latter still remains the only possible option in some cases. Some rare dystrophies require coordinated and comprehensive medical care.
Collapse
Affiliation(s)
- J-L Bourges
- Université Paris Descartes, Sorbonne Paris Cité, 15, rue École-de-Médecine, 75006 Paris, France; Unité d'ophtalmologie de l'Hôtel-Dieu, service d'ophtalmologie, hôpitaux universitaires Paris Centre, Assistance publique-Hôpitaux de Paris, 1, place du Parvis-Notre-Dame, 75004 Paris, France; Équipe 17, Inserm UMRS 1138, centre de recherche des Cordeliers, 15, rue de l'École-de-Médecine, 75006 Paris, France.
| |
Collapse
|
10
|
Bourges JL. Corneal dystrophies. J Fr Ophtalmol 2017; 40:e177-e192. [PMID: 28583694 DOI: 10.1016/j.jfo.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Degenerative or hereditary corneal diseases are sometimes difficult to discriminate. Corneal dystrophies affect approximately 0.09% of the population. They are identified by the IC3D classification based on their phenotype, genotype and evidence gathered for their diagnosis. In practice, the ophthalmologist manages functional symptoms such as recurrent erosions, visual loss and amblyopia, photophobia, foreign body sensation, and sometimes pain and aesthetic concerns. Medical treatments consist of drops to promote healing, ointments, hyperosmotic agents and bandage contact lenses. Less invasive surgical treatments are used as second line therapy (phototherapeutic keratectomy, lamellar keratectomy). More invasive procedures may eventually be utilized (lamellar or penetrating keratoplasty). Anterior lamellar or endothelial keratoplasty are now preferred to penetrating keratoplasty, although the latter still remains the only possible option in some cases. Some rare dystrophies require coordinated and comprehensive medical care.
Collapse
Affiliation(s)
- J-L Bourges
- Université Paris Descartes, Sorbonne Paris Cité, 15, rue de l'École-de-Médecine, 75006 Paris, France; Ophthalmology Unit, Ophthalmology Service, Hôtel-Dieu, Hôpitaux Universitaires Paris Centre, Assistance publique-Hôpitaux de Paris, 1, place du Parvis-Notre-Dame, 75004 Paris, France; Équipe 17, Inserm UMRS 1138, Centre de Recherche des Cordeliers, 15, rue de l'École-de-Médecine, 75006 Paris, France.
| |
Collapse
|
11
|
Oliver VF, van Bysterveldt KA, Cadzow M, Steger B, Romano V, Markie D, Hewitt AW, Mackey DA, Willoughby CE, Sherwin T, Crosier PS, McGhee CN, Vincent AL. A COL17A1 Splice-Altering Mutation Is Prevalent in Inherited Recurrent Corneal Erosions. Ophthalmology 2016; 123:709-22. [PMID: 26786512 DOI: 10.1016/j.ophtha.2015.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/06/2015] [Accepted: 12/05/2015] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Corneal dystrophies are a genetically heterogeneous group of disorders. We previously described a family with an autosomal dominant epithelial recurrent erosion dystrophy (ERED). We aimed to identify the underlying genetic cause of ERED in this family and 3 additional ERED families. We sought to characterize the potential function of the candidate genes using the human and zebrafish cornea. DESIGN Case series study of 4 white families with a similar ERED. An experimental study was performed on human and zebrafish tissue to examine the putative biological function of candidate genes. PARTICIPANTS Four ERED families, including 28 affected and 17 unaffected individuals. METHODS HumanLinkage-12 arrays (Illumina, San Diego, CA) were used to genotype 17 family members. Next-generation exome sequencing was performed on an uncle-niece pair. Segregation of potential causative mutations was confirmed using Sanger sequencing. Protein expression was determined using immunohistochemistry in human and zebrafish cornea. Gene expression in zebrafish was assessed using whole-mount in situ hybridization. Morpholino-induced transient gene knockdown was performed in zebrafish embryos. MAIN OUTCOME MEASURES Linkage microarray, exome analysis, DNA sequence analysis, immunohistochemistry, in situ hybridization, and morpholino-induced genetic knockdown results. RESULTS Linkage microarray analysis identified a candidate region on chromosome chr10:12,576,562-112,763,135, and exploration of exome sequencing data identified 8 putative pathogenic variants in this linkage region. Two variants segregated in 06NZ-TRB1 with ERED: COL17A1 c.3156C→T and DNAJC9 c.334G→A. The COL17A1 c.3156C→T variant segregated in all 4 ERED families. We showed biologically relevant expression of these proteins in human cornea. Both proteins are expressed in the cornea of zebrafish embryos and adults. Zebrafish lacking Col17a1a and Dnajc9 during development show no gross corneal phenotype. CONCLUSIONS The COL17A1 c.3156C→T variant is the likely causative mutation in our recurrent corneal erosion families, and its presence in 4 independent families suggests that it is prevalent in ERED. This same COL17A1 c.3156C→T variant recently was identified in a separate pedigree with ERED. Our study expands the phenotypic spectrum of COL17A1 disease from autosomal recessive epidermolysis bullosa to autosomal dominant ERED and identifies COL17A1 as a key protein in maintaining integrity of the corneal epithelium.
Collapse
Affiliation(s)
- Verity F Oliver
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Katherine A van Bysterveldt
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Murray Cadzow
- Department of Biochemistry, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Bernhard Steger
- Department of Corneal and External Eye Diseases, St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Vito Romano
- Department of Corneal and External Eye Diseases, St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - David Markie
- Pathology Department, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; Lions Eye Institute, University of Western Australia, Perth, Australia
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Colin E Willoughby
- Department of Corneal and External Eye Diseases, St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom; Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Trevor Sherwin
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Charles N McGhee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Andrea L Vincent
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand.
| |
Collapse
|
12
|
Sacchetti M, Macchi I, Tiezzi A, La Cava M, Massaro-Giordano G, Lambiase A. Pathophysiology of Corneal Dystrophies: From Cellular Genetic Alteration to Clinical Findings. J Cell Physiol 2015; 231:261-9. [DOI: 10.1002/jcp.25082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Marta Sacchetti
- Cornea and Ocular Surface Unit; Ospedale San Raffaele, IRCCS-Milan; Milano Italy
| | - Ilaria Macchi
- Department of Ophthalmology; University of Rome “Campus Bio-Medico”; Rome Italy
| | - Alessandro Tiezzi
- Section of Ophthalmology, Department of Sense Organs; University of Rome “Sapienza”; Rome Italy
| | - Maurizio La Cava
- Section of Ophthalmology, Department of Sense Organs; University of Rome “Sapienza”; Rome Italy
| | | | - Alessandro Lambiase
- Section of Ophthalmology, Department of Sense Organs; University of Rome “Sapienza”; Rome Italy
| |
Collapse
|
13
|
Maharana PK, Dubey A, Jhanji V, Vajpayee RB. The diagnosis and management of recurrent corneal erosion syndrome. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.1076335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Jonsson F, Byström B, Davidson AE, Backman LJ, Kellgren TG, Tuft SJ, Koskela T, Rydén P, Sandgren O, Danielson P, Hardcastle AJ, Golovleva I. Mutations in collagen, type XVII, alpha 1 (COL17A1) cause epithelial recurrent erosion dystrophy (ERED). Hum Mutat 2015; 36:463-73. [PMID: 25676728 DOI: 10.1002/humu.22764] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/02/2015] [Indexed: 01/04/2023]
Abstract
Corneal dystrophies are a clinically and genetically heterogeneous group of inherited disorders that bilaterally affect corneal transparency. They are defined according to the corneal layer affected and by their genetic cause. In this study, we identified a dominantly inherited epithelial recurrent erosion dystrophy (ERED)-like disease that is common in northern Sweden. Whole-exome sequencing resulted in the identification of a novel mutation, c.2816C>T, p.T939I, in the COL17A1 gene, which encodes collagen type XVII alpha 1. The variant segregated with disease in a genealogically expanded pedigree dating back 200 years. We also investigated a unique COL17A1 synonymous variant, c.3156C>T, identified in a previously reported unrelated dominant ERED-like family linked to a locus on chromosome 10q23-q24 encompassing COL17A1. We show that this variant introduces a cryptic donor site resulting in aberrant pre-mRNA splicing and is highly likely to be pathogenic. Bi-allelic COL17A1 mutations have previously been associated with a recessive skin disorder, junctional epidermolysis bullosa, with recurrent corneal erosions being reported in some cases. Our findings implicate presumed gain-of-function COL17A1 mutations causing dominantly inherited ERED and improve understanding of the underlying pathology.
Collapse
Affiliation(s)
- Frida Jonsson
- Department of Medical Biosciences/Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Vincent AL. Corneal dystrophies and genetics in the International Committee for Classification of Corneal Dystrophies era: a review. Clin Exp Ophthalmol 2013; 42:4-12. [PMID: 24433354 DOI: 10.1111/ceo.12149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/06/2013] [Indexed: 02/02/2023]
Abstract
Many of the corneal dystrophies have now been genetically characterized, and a system was established in 2008 by The International Committee for Classification of Corneal Dystrophies (IC3D) in an attempt to standardize the nomenclature. IC3D provided a classification system whereby all dystrophies can be categorized on the basis of the underlying genetic knowledge. Since that time, further work has established even more phenotypic and allelic heterogeneity than anticipated, particular for Fuchs endothelial corneal dystrophy and posterior polymorphous dystrophy. Using genome-wide association studies, a number of genes are now implicated both in normal corneal quantitative traits, such as central corneal thickness, as well as in disease. There is also a trend towards functional characterization of the genetic variants involved to elucidate the pathophysiology of these entities. This review article will provide an overview of the knowledge to date, with an emphasis on findings since the IC3D classification was published in 2008.
Collapse
Affiliation(s)
- Andrea L Vincent
- Department of Ophthalmology, National Eye Centre, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|