1
|
Donato L, Scimone C, Alibrandi S, Vadalà M, Castellucci M, Bonfiglio VME, Scalinci SZ, Abate G, D'Angelo R, Sidoti A. The genomic mosaic of mitochondrial dysfunction: Decoding nuclear and mitochondrial epigenetic contributions to maternally inherited diabetes and deafness pathogenesis. Heliyon 2024; 10:e34756. [PMID: 39148984 PMCID: PMC11324998 DOI: 10.1016/j.heliyon.2024.e34756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Aims Maternally inherited diabetes and deafness (MIDD) is a complex disorder characterized by multiorgan clinical manifestations, including diabetes, hearing loss, and ophthalmic complications. This pilot study aimed to elucidate the intricate interplay between nuclear and mitochondrial genetics, epigenetic modifications, and their potential implications in the pathogenesis of MIDD. Main methods A comprehensive genomic approach was employed to analyze a Sicilian family affected by clinically characterized MIDD, negative to the only known causative m.3243 A > G variant, integrating whole-exome sequencing and whole-genome bisulfite sequencing of both nuclear and mitochondrial analyses. Key findings Rare and deleterious variants were identified across multiple nuclear genes involved in retinal homeostasis, mitochondrial function, and epigenetic regulation, while complementary mitochondrial DNA analysis revealed a rich tapestry of genetic diversity across genes encoding components of the electron transport chain and ATP synthesis machinery. Epigenetic analyses uncovered significant differentially methylated regions across the genome and within the mitochondrial genome, suggesting a nuanced landscape of epigenetic modulation. Significance The integration of genetic and epigenetic data highlighted the potential crosstalk between nuclear and mitochondrial regulation, with specific mtDNA variants influencing methylation patterns and potentially impacting the expression and regulation of mitochondrial genes. This pilot study provides valuable insights into the complex molecular mechanisms underlying MIDD, emphasizing the interplay between nucleus and mitochondrion, tracing the way for future research into targeted therapeutic interventions and personalized approaches for disease management.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Maria Vadalà
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Massimo Castellucci
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Vincenza Maria Elena Bonfiglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | | | - Giorgia Abate
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| |
Collapse
|
2
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
3
|
Chwiejczak K, Byles D, Gerry P, Von Lany H, Tasiopoulou A, Hattersley A. Multimodal analysis in symptomatic MIDD-associated retinopathy. A case report and literature review. GMS OPHTHALMOLOGY CASES 2023; 13:Doc23. [PMID: 38111473 PMCID: PMC10726563 DOI: 10.3205/oc000231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Purpose To present results of contemporary multimodal ophthalmic imaging in a case of maternally inherited diabetes and deafness (MIDD) and a literature review of MIDD. Methods A case of a 47-year-old female with diabetes mellitus, severe insulin resistance, familial lipodystrohy, deafness and increasing problems with vision is reported. A full ophthalmic examination was done, including best corrected visual acuity (BCVA, LogMAR), funduscopy, and imaging studies: optical coherence tomography (OCT), OCT angiography (OCT-A), fundus autofloresence (FAF), visual fields (HVF) 10-2 , electrophysiology (EP) and genetic testing were performed. Literature available on the topic was reviewed. Results BCVA was 0.06 LogMAR in the right eye and 0.1 LogMAR in the left. Funduscopy revealed atrophy (AT) and pigmentary changes but no diabetic retinopathy. HVF confirmed corresponding defects. The imaging and diagnostic tests showed the following abnormalities: FAF: hypoautofluoresence in areas of AT and mottled appearance in the macular and peripapillary area; OCT: attenuation of outer retinal layers and retinal pigment epithelium (RPE) in the AT; OCT-A: thinning of the deep capillary plexus and choriocapillaris; EP: abnormalities on full field electroretinogram (ERG), 30 Hz flicker and single cone flash response; multifocal ERG: reduced responses; genetic testing: A-to-G transition mutation at position 3243 of the mitochondrial genome, typical for MIDD. After one year OCT ganglion cell analysis showed loss of thickness. Conclusions Genetic testing should be considered in diabetic patients with pigmentary retinopathy. Imaging studies and diagnostic testing showed structural and functional retinal changes, confined to the macula and progressive in nature.
Collapse
Affiliation(s)
- Katarzyna Chwiejczak
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- The University of Sydney, Australia
| | - Daniel Byles
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Paul Gerry
- Neurophysiology Department, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Hirut Von Lany
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Anastasia Tasiopoulou
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
- Athens Eye Center, Athens, Greece
| | - Andrew Hattersley
- The MacLeod Diabetes and Endocrine Centre, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
- College of Medicine and Health, University of Exeter, United Kingdom
| |
Collapse
|
4
|
Chen BS, Harvey JP, Gilhooley MJ, Jurkute N, Yu-Wai-Man P. Mitochondria and the eye-manifestations of mitochondrial diseases and their management. Eye (Lond) 2023; 37:2416-2425. [PMID: 37185957 PMCID: PMC10397317 DOI: 10.1038/s41433-023-02523-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Historically, distinct mitochondrial syndromes were recognised clinically by their ocular features. Due to their predilection for metabolically active tissue, mitochondrial diseases frequently involve the eye, resulting in a range of ophthalmic manifestations including progressive external ophthalmoplegia, retinopathy and optic neuropathy, as well as deficiencies of the retrochiasmal visual pathway. With the wider availability of genetic testing in clinical practice, it is now recognised that genotype-phenotype correlations in mitochondrial diseases can be imprecise: many classic syndromes can be associated with multiple genes and genetic variants, and the same genetic variant can have multiple clinical presentations, including subclinical ophthalmic manifestations in individuals who are otherwise asymptomatic. Previously considered rare diseases with no effective treatments, considerable progress has been made in our understanding of mitochondrial diseases with new therapies emerging, in particular, gene therapy for inherited optic neuropathies.
Collapse
Affiliation(s)
- Benson S Chen
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Joshua P Harvey
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Michael J Gilhooley
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
- The National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Neringa Jurkute
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
- The National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
5
|
Mullin NK, Voigt AP, Flamme-Wiese MJ, Liu X, Riker MJ, Varzavand K, Stone EM, Tucker BA, Mullins RF. Multimodal single-cell analysis of nonrandom heteroplasmy distribution in human retinal mitochondrial disease. JCI Insight 2023; 8:e165937. [PMID: 37289546 PMCID: PMC10443808 DOI: 10.1172/jci.insight.165937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Variants within the high copy number mitochondrial genome (mtDNA) can disrupt organelle function and lead to severe multisystem disease. The wide range of manifestations observed in patients with mitochondrial disease results from varying fractions of abnormal mtDNA molecules in different cells and tissues, a phenomenon termed heteroplasmy. However, the landscape of heteroplasmy across cell types within tissues and its influence on phenotype expression in affected patients remains largely unexplored. Here, we identify nonrandom distribution of a pathogenic mtDNA variant across a complex tissue using single-cell RNA-Seq, mitochondrial single-cell ATAC sequencing, and multimodal single-cell sequencing. We profiled the transcriptome, chromatin accessibility state, and heteroplasmy in cells from the eyes of a patient with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and from healthy control donors. Utilizing the retina as a model for complex multilineage tissues, we found that the proportion of the pathogenic m.3243A>G allele was neither evenly nor randomly distributed across diverse cell types. All neuroectoderm-derived neural cells exhibited a high percentage of the mutant variant. However, a subset of mesoderm-derived lineage, namely the vasculature of the choroid, was near homoplasmic for the WT allele. Gene expression and chromatin accessibility profiles of cell types with high and low proportions of m.3243A>G implicate mTOR signaling in the cellular response to heteroplasmy. We further found by multimodal single-cell sequencing of retinal pigment epithelial cells that a high proportion of the pathogenic mtDNA variant was associated with transcriptionally and morphologically abnormal cells. Together, these findings show the nonrandom nature of mitochondrial variant partitioning in human mitochondrial disease and underscore its implications for mitochondrial disease pathogenesis and treatment.
Collapse
Affiliation(s)
- Nathaniel K. Mullin
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA
| | - Andrew P. Voigt
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA
| | - Miles J. Flamme-Wiese
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Xiuying Liu
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Megan J. Riker
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Katayoun Varzavand
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Edwin M. Stone
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Budd A. Tucker
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| | - Robert F. Mullins
- University of Iowa Institute for Vision Research, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences and
| |
Collapse
|
6
|
Tong HF, Lee HCH, Tong TYT, Lam SF, Sheng B, Chan KW, Li JKY, Tam HKV, Ching CK. Neurological manifestations in m.3243A>G-related disease triggered by metformin. J Diabetes Complications 2022; 36:108111. [PMID: 35123869 DOI: 10.1016/j.jdiacomp.2021.108111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION m.3243A>G-related disease has multi-systemic manifestations including diabetes mellitus. It is uncertain whether metformin would trigger neurological manifestations of this disease. This study aims to review the diagnosis and management of m.3243A>G-related diabetes genetically confirmed by our laboratory and to evaluate the risk of metformin use triggering neurological manifestations. METHODS Cases with m.3243A>G detected between 2009 and 2020 were reviewed. Cases with diabetes mellitus were included. Cases with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) before diabetes onset were excluded. Odds ratio was calculated for association between metformin use and newly developed neurological manifestations. RESULTS Sixteen patients were identified. Odds ratio for metformin use was 3.50 [0.37-33.0; p = 0.3287]. One illustrative case with clear causal relationship between metformin use and neurological manifestations was described in detail. CONCLUSION m.3243A>G-related diabetes mellitus is underdiagnosed. Red flags including positive family history, short stature, low body weight and hearing loss are often overlooked. Early diagnosis allows regular systemic assessment. In the era of precision medicine and novel therapies, it is prudent to avoid metformin as it could trigger neurological manifestations in this condition. Coenzyme Q10, DPP-IV inhibitors, SGLT2 inhibitors and GLP-1 receptor agonists may be considered.
Collapse
Affiliation(s)
- Hok-Fung Tong
- Kowloon West Cluster Laboratory Genetic Service, Department of Pathology, Princess Margaret Hospital, Hong Kong
| | - Han-Chih Hencher Lee
- Kowloon West Cluster Laboratory Genetic Service, Department of Pathology, Princess Margaret Hospital, Hong Kong
| | - Tsz-Yan Tammy Tong
- Kowloon West Cluster Laboratory Genetic Service, Department of Pathology, Princess Margaret Hospital, Hong Kong
| | - Siu-Fung Lam
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong; Health Sense Diabetes & Endocrine Centre, Hong Kong
| | - Bun Sheng
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong
| | - Kin-Wah Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong
| | | | - Ho-Kee Vicki Tam
- Department of Medicine and Geriatrics, Caritas Medical Centre, Hong Kong
| | - Chor-Kwan Ching
- Kowloon West Cluster Laboratory Genetic Service, Department of Pathology, Princess Margaret Hospital, Hong Kong.
| |
Collapse
|
7
|
Meunier I, Bocquet B, Defoort-Dhellemmes S, Smirnov V, Arndt C, Picot MC, Dollfus H, Charif M, Audo I, Huguet H, Zanlonghi X, Lenaers G. Characterization of SSBP1-related optic atrophy and foveopathy. Sci Rep 2021; 11:18703. [PMID: 34548540 PMCID: PMC8455542 DOI: 10.1038/s41598-021-98150-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Dominant optic atrophy (DOA) is genetically heterogeneous and most commonly caused by mutations in OPA1. To distinguish between the classical OPA1-related and the recently identified SSBP1-related DOAs, the retina and fovea of 27 patients carrying the SSBP1 p.Arg38Gln variant were scrutinized using 20° × 20° macular cube and 30° and 55° field fundus autofluorescence photographs. Age of onset, visual acuity, retinal nerve fiber layer and macular thicknesses were recorded. Three SSBP1-patients were asymptomatic, 10 had isolated DOA, and 12 had a combined DOA plus foveopathy. The foveopathy, with a tiny defect of the ellipsoid and interdigitation lines, was similar in all patients, independent of age. There were no significant statistical differences in terms of visual acuity and SD-OCT measurements between patients with isolated DOA (mean visual acuity in decimals: 0.54 ± 0.41) and those with combined foveopathy (0.50 ± 0.23). Two patients over 50 years of age developed a progressive rod-cone dystrophy, leading to severe visual impairment. SSBP1-related DOA shares similarities with OPA1-related DOA with an incomplete penetrance and an early childhood visual impairment. Nevertheless, the presence of a congenital foveopathy with no impact on visual acuity is a major criterion to distinguish SSBP1 cases and orient the appropriate genetic analysis.
Collapse
Affiliation(s)
- Isabelle Meunier
- National reference centre for inherited sensory diseases, University Hospital of Montpellier, University of Montpellier, Montpellier, France. .,Sensgene Care Network, Strasbourg, France. .,Institute for Neurosciences of Montpellier, Inserm, University of Montpellier, Montpellier, France.
| | - Béatrice Bocquet
- National reference centre for inherited sensory diseases, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,Sensgene Care Network, Strasbourg, France.,Institute for Neurosciences of Montpellier, Inserm, University of Montpellier, Montpellier, France
| | - Sabine Defoort-Dhellemmes
- Sensgene Care Network, Strasbourg, France.,Department of Neuro-Ophthalmology and Electrophysiology, Robert Salengro Hospital, Lille, France
| | - Vasily Smirnov
- Sensgene Care Network, Strasbourg, France.,Department of Neuro-Ophthalmology and Electrophysiology, Robert Salengro Hospital, Lille, France
| | - Carl Arndt
- Department of Ophthalmology, University Hospital of Reims, Reims, France
| | - Marie Christine Picot
- Clinical Investigation Center (CIC) and Clinical Research and Epidemiology Unit (URCE), Montpellier, France
| | - Hélène Dollfus
- Sensgene Care Network, Strasbourg, France.,Department of Ophthalmology, National Center for Rare Disorders in Ophthalmic Genetics CARGO, Strasbourg Hospital, Strasbourg, France
| | - Majida Charif
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Isabelle Audo
- Sensgene Care Network, Strasbourg, France.,CNRS, INSERM, Institut de la Vision, Sorbonne Université, Paris, France.,DHU Sight Restore, INSERM-DHOS CIC1423, CHNO des Quinze-Vingts, Paris, France
| | - Hélèna Huguet
- Clinical Investigation Center (CIC) and Clinical Research and Epidemiology Unit (URCE), Montpellier, France
| | - Xavier Zanlonghi
- Sensgene Care Network, Strasbourg, France.,Clinic Jules Verne, Nantes, France.,Department of Ophthalmology, University Hospital of Rennes, Rennes, France
| | - Guy Lenaers
- UMR CNRS 6015 - INSERM U1083, University of Angers MitoLab Team, University Hospital of Angers, Angers, France
| |
Collapse
|
8
|
Birtel J, von Landenberg C, Gliem M, Gliem C, Reimann J, Kunz WS, Herrmann P, Betz C, Caswell R, Nesbitt V, Kornblum C, Issa PC. Mitochondrial Retinopathy. Ophthalmol Retina 2021; 6:65-79. [PMID: 34257060 DOI: 10.1016/j.oret.2021.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To report the retinal phenotype and the associated genetic and systemic findings in patients with mitochondrial disease. DESIGN Retrospective case series. PARTICIPANTS Twenty-three patients with retinopathy and mitochondrial disease, including chronic progressive external ophthalmoplegia (CPEO), maternally inherited diabetes and deafness (MIDD), mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Kearns-Sayre syndrome, neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome, and other systemic manifestations. METHODS Review of case notes, retinal imaging, electrophysiologic assessment, molecular genetic testing including protein modeling, and histologic analysis of muscle biopsy. MAIN OUTCOME MEASURES Phenotypic characteristics of mitochondrial retinopathy. RESULTS Genetic testing identified sporadic large-scale mitochondrial DNA deletions and variants in MT-TL1, MT-ATP6, MT-TK, MT-RNR1, or RRM2B. Based on retinal imaging, 3 phenotypes could be differentiated: type 1 with mild, focal pigmentary abnormalities; type 2 characterized by multifocal white-yellowish subretinal deposits and pigment changes limited to the posterior pole; and type 3 with widespread granular pigment alterations. Advanced type 2 and 3 retinopathy presented with chorioretinal atrophy that typically started in the peripapillary and paracentral areas with foveal sparing. Two patients exhibited a different phenotype: 1 revealed an occult retinopathy, and the patient with RRM2B-associated retinopathy showed no foveal sparing, no severe peripapillary involvement, and substantial photoreceptor atrophy before loss of the retinal pigment epithelium. Two patients with type 1 disease showed additional characteristics of mild macular telangiectasia type 2. Patients with type 1 and mild type 2 or 3 disease demonstrated good visual acuity and no symptoms associated with the retinopathy. In contrast, patients with advanced type 2 or 3 disease often reported vision problems in dim light conditions, reduced visual acuity, or both. Short-wavelength autofluorescence usually revealed a distinct pattern, and near-infrared autofluorescence may be severely reduced in type 3 disease. The retinal phenotype was key to suspecting mitochondrial disease in 11 patients, whereas 12 patients were diagnosed before retinal examination. CONCLUSIONS Different types of mitochondrial retinopathy show characteristic features. Even in absence of visual symptoms, their recognition may facilitate the often challenging and delayed diagnosis of mitochondrial disease, in particular in patients with mild or nebulous multisystem disease.
Collapse
Affiliation(s)
- Johannes Birtel
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Christina von Landenberg
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany; Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Martin Gliem
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carla Gliem
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Wolfram S Kunz
- Department of Epileptology, Life & Brain Center, University Hospital Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Christian Betz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Richard Caswell
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, United Kingdom
| | - Victoria Nesbitt
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Nuffield Department of Women's & Reproductive Health, The Churchill Hospital, Oxford, United Kingdom
| | - Cornelia Kornblum
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany; Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
9
|
Oh JK, Lima de Carvalho JR, Nuzbrokh Y, Ryu J, Chemudupati T, Mahajan VB, Sparrow JR, Tsang SH. Retinal Manifestations of Mitochondrial Oxidative Phosphorylation Disorders. Invest Ophthalmol Vis Sci 2021; 61:12. [PMID: 33049060 PMCID: PMC7571321 DOI: 10.1167/iovs.61.12.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose The purpose of this paper was to discuss manifestations of primary mitochondrial dysfunctions and whether the retinal pigment epithelium or the photoreceptors are preferentially affected. Methods A retrospective analysis was performed of patients with clinically and laboratory confirmed diagnoses of maternally inherited diabetes and deafness (MIDD) or Kearns–Sayre syndrome (KSS). Patients underwent full ophthalmic examination, full-field electroretinogram, and multimodal imaging studies, including short-wavelength autofluorescence, spectral domain-optical coherence tomography, and color fundus photography. Results A total of five patients with MIDD and four patients with KSS were evaluated at two tertiary referral centers. Mean age at initial evaluation was 50.3 years old. Nascent outer retinal tubulations corresponding with faint foci of autofluorescence were observed in two patients with MIDD. Characteristic features of this cohort included a foveal sparing phenotype observed in 13 of 18 eyes (72%), global absence of intraretinal pigment migration, and preserved retinal function on full-field electroretinogram testing in 12 of 16 eyes (75%). One patient diagnosed with MIDD presented with an unusual pattern of atrophy surrounding the parapapillary region and one patient with KSS presented with an atypical choroideremia-like phenotype. Conclusions MIDD and KSS are phenotypically heterogeneous disorders. Several features of disease suggest that primary mitochondrial dysfunction may first affect the retinal pigment epithelium followed by secondary photoreceptor loss. Similarities between primary mitochondrial degenerations and retinal disorders, such as age-related macular degeneration may suggest a primary role of mitochondria in the pathogenesis of these oligogenic disorders.
Collapse
Affiliation(s)
- Jin Kyun Oh
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,State University of New York at Downstate Medical Center, Brooklyn, New York, United States
| | - Jose Ronaldo Lima de Carvalho
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares (EBSERH) - Hospital das Clinicas de Pernambuco (HCPE), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.,Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Yan Nuzbrokh
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States
| | - Joseph Ryu
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States
| | - Teja Chemudupati
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| | - Janet R Sparrow
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology and Columbia Stem Cell Initiative (CSCI), Columbia University Irving Medical Center, New York, New York, United States
| | - Stephen H Tsang
- Jonas Children's Vision Care, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology and Columbia Stem Cell Initiative (CSCI), Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
10
|
Müller PL, Liefers B, Treis T, Rodrigues FG, Olvera-Barrios A, Paul B, Dhingra N, Lotery A, Bailey C, Taylor P, Sánchez CI, Tufail A. Reliability of Retinal Pathology Quantification in Age-Related Macular Degeneration: Implications for Clinical Trials and Machine Learning Applications. Transl Vis Sci Technol 2021; 10:4. [PMID: 34003938 PMCID: PMC7938003 DOI: 10.1167/tvst.10.3.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the interreader agreement for grading of retinal alterations in age-related macular degeneration (AMD) using a reading center setting. Methods In this cross-sectional case series, spectral-domain optical coherence tomography (OCT; Topcon 3D OCT, Tokyo, Japan) scans of 112 eyes of 112 patients with neovascular AMD (56 treatment naive, 56 after three anti-vascular endothelial growth factor injections) were analyzed by four independent readers. Imaging features specific for AMD were annotated using a novel custom-built annotation platform. Dice score, Bland-Altman plots, coefficients of repeatability, coefficients of variation, and intraclass correlation coefficients were assessed. Results Loss of ellipsoid zone, pigment epithelium detachment, subretinal fluid, and drusen were the most abundant features in our cohort. Subretinal fluid, intraretinal fluid, hypertransmission, descent of the outer plexiform layer, and pigment epithelium detachment showed highest interreader agreement, while detection and measures of loss of ellipsoid zone and retinal pigment epithelium were more variable. The agreement on the size and location of the respective annotation was more consistent throughout all features. Conclusions The interreader agreement depended on the respective OCT-based feature. A selection of reliable features might provide suitable surrogate markers for disease progression and possible treatment effects focusing on different disease stages. Translational Relevance This might give opportunities for a more time- and cost-effective patient assessment and improved decision making as well as have implications for clinical trials and training machine learning algorithms.
Collapse
Affiliation(s)
- Philipp L. Müller
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Bart Liefers
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tim Treis
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Filipa Gomes Rodrigues
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Abraham Olvera-Barrios
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Bobby Paul
- Barking, Havering and Redbridge University Hospitals NHS Trust, Romford, UK
| | | | - Andrew Lotery
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Clare Bailey
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Paul Taylor
- Institute of Health Informatics, University College London, London, UK
| | - Clarisa I. Sánchez
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Adnan Tufail
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
11
|
Structural Features Associated With the Development and Progression of RORA Secondary to Maternally Inherited Diabetes and Deafness. Am J Ophthalmol 2020; 218:136-147. [PMID: 32446735 DOI: 10.1016/j.ajo.2020.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE To investigate the development and progression of retinal pigment epithelial and outer retinal atrophy (RORA) secondary to maternally inherited diabetes and deafness (MIDD). DESIGN Retrospective observational case series. METHODS Thirty-six eyes of 18 patients (age range, 22.4-71.6 years) with genetically proven MIDD and serial optical coherence tomography (OCT) images were included. As proposed reference standard to diagnose and stage atrophy, OCT images were longitudinally evaluated and analyzed for presence and precursors of RORA. RORA was defined as an area of (1) hypertransmission, (2) disruption of the retinal pigment epithelium, (3) photoreceptor degeneration, and (4) absence of other signs of a retinal pigment epithelial tear. RESULTS The majority of patients revealed areas of RORA in a circular area around the fovea of between 5° and 15° eccentricity. Over the observation time (range, 0.5-8.5 years), evidence for a consistent sequence of OCT features from earlier disease stages to the end stage of RORA could be found, starting with loss of ellipsoid zone and subretinal deposits, followed by loss of external limiting membrane and loss of retinal pigment epithelium with hypertransmission of OCT signal into the choroid, and leading to loss of the outer nuclear layer bordered by hyporeflective wedges. Outer retinal tabulations seemed to develop in regions of coalescent areas of RORA. CONCLUSIONS The development and progression of RORA could be tracked in MIDD patients using OCT images, allowing potential definition of novel surrogate markers. Similarities to OCT features in age-related macular degeneration, where mitochondrial dysfunction has been implicated in the pathogenesis, support wide-ranging benefits from proof-of-concept studies in MIDD.
Collapse
|
12
|
Müller PL, Pfau M, Schmitz-Valckenberg S, Fleckenstein M, Holz FG. Optical Coherence Tomography-Angiography in Geographic Atrophy. Ophthalmologica 2020; 244:42-50. [PMID: 32772015 DOI: 10.1159/000510727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022]
Abstract
Geographic atrophy (GA) represents the non-exudative late stage of age-related macular degeneration and constitutes a leading cause of legal blindness in the developed world. It is characterized by areas of loss of outer retinal layers including photoreceptors, degeneration of the retinal pigment epithelium, and rarefication of the choriocapillaris. As all three layers are functionally connected, the precise temporal sequence and relative contribution of these layers towards the development and progression of GA is unclear. The advent of optical coherence tomography angiography (OCT-A) has allowed for three-dimensional visualization of retinal blood flow. Using OCT-A, recent studies have demonstrated that choriocapillaris flow alterations are particularly associated with the development of GA, exceed atrophy boundaries spatially, and are a prognostic factor for future GA progression. Furthermore, OCT-A may be helpful to differentiate GA from mimicking diseases. Evidence for a potential protective effect of specific forms of choroidal neovascularization in the context of GA has been reported. This article aims to give a comprehensive review of the current literature concerning the application of OCT-A in GA, and summarizes the opportunities and limitations with regard to pathophysiologic considerations, differential diagnosis, study design, and patient assessment.
Collapse
Affiliation(s)
- Philipp L Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany, .,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom,
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Monika Fleckenstein
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Müller PL, Tufail A. Reply to Comment on: Progression of Retinopathy Secondary to Maternally Inherited Diabetes and Deafness - Evaluation of Predicting Parameters. Am J Ophthalmol 2020; 216:284. [PMID: 32402376 DOI: 10.1016/j.ajo.2020.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
|
14
|
Finsterer J, Scorza FA, Scorza CA. Comment on Progression of Retinopathy Secondary to Maternally Inherited Diabetes and Deafness: Evaluation of Predicting Parameters. Am J Ophthalmol 2020; 216:283-284. [PMID: 32359701 DOI: 10.1016/j.ajo.2020.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/26/2022]
|
15
|
Prediction of Function in ABCA4-Related Retinopathy Using Ensemble Machine Learning. J Clin Med 2020; 9:jcm9082428. [PMID: 32751377 PMCID: PMC7463567 DOI: 10.3390/jcm9082428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Full-field electroretinogram (ERG) and best corrected visual acuity (BCVA) measures have been shown to have prognostic value for recessive Stargardt disease (also called “ABCA4-related retinopathy”). These functional tests may serve as a performance-outcome-measure (PerfO) in emerging interventional clinical trials, but utility is limited by variability and patient burden. To address these limitations, an ensemble machine-learning-based approach was evaluated to differentiate patients from controls, and predict disease categories depending on ERG (‘inferred ERG’) and visual impairment (‘inferred visual impairment’) as well as BCVA values (‘inferred BCVA’) based on microstructural imaging (utilizing spectral-domain optical coherence tomography) and patient data. The accuracy for ‘inferred ERG’ and ‘inferred visual impairment’ was up to 99.53 ± 1.02%. Prediction of BCVA values (‘inferred BCVA’) achieved a precision of ±0.3LogMAR in up to 85.31% of eyes. Analysis of the permutation importance revealed that foveal status was the most important feature for BCVA prediction, while the thickness of outer nuclear layer and photoreceptor inner and outer segments as well as age of onset highly ranked for all predictions. ‘Inferred ERG’, ‘inferred visual impairment’, and ‘inferred BCVA’, herein, represent accurate estimates of differential functional effects of retinal microstructure, and offer quasi-functional parameters with the potential for a refined patient assessment, and investigation of potential future treatment effects or disease progression.
Collapse
|