1
|
Yang L, Wang G, Tian H, Jia S, Wang S, Cui R, Zhuang A. RBMS1 reflects a distinct microenvironment and promotes tumor progression in ocular melanoma. Exp Eye Res 2024; 246:109990. [PMID: 38969283 DOI: 10.1016/j.exer.2024.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Ocular melanoma, including uveal melanoma (UM) and conjunctival melanoma (CM), is the most common ocular cancer among adults with a high rate of recurrence and poor prognosis. Loss of epigenetic homeostasis disturbed gene expression patterns, resulting in oncogenesis. Herein, we comprehensively analyzed the DNA methylation, transcriptome profiles, and corresponding clinical information of UM patients through multiple machine-learning algorithms, finding that a methylation-driven gene RBMS1 was correlated with poor clinical outcomes of UM patients. RNA-seq and single-cell RNA-seq analyses revealed that RBMS1 reflected diverse tumor microenvironments, where high RBMS1 expression marked an immune active TME. Furthermore, we found that tumor cells were identified to have the higher communication probability in RBMS1+ state. The functional enrichment analysis revealed that RBMS1 was associated with pigment granule and melanosome, participating in cell proliferation as well as apoptotic signaling pathway. Biological experiments were performed and demonstrated that the silencing of RBMS1 inhibited ocular melanoma proliferation and promoted apoptosis. Our study highlighted that RBMS1 reflects a distinct microenvironment and promotes tumor progression in ocular melanoma, contributing to the therapeutic customization and clinical decision-making.
Collapse
Affiliation(s)
- Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Gaoming Wang
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Shichong Jia
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Tianjin Eye Institute, Tianjin, 300020, PR China
| | - Shaoyun Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| | - Ran Cui
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| |
Collapse
|
2
|
Lalloo F, Kulkarni A, Chau C, Nielsen M, Sheaff M, Steele J, van Doorn R, Wadt K, Hamill M, Torr B, Tischkowitz M, Hanson H. Clinical practice guidelines for the diagnosis and surveillance of BAP1 tumour predisposition syndrome. Eur J Hum Genet 2023; 31:1261-1269. [PMID: 37607989 PMCID: PMC10620132 DOI: 10.1038/s41431-023-01448-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
BRCA1-associated protein-1 (BAP1) is a recognised tumour suppressor gene. Germline BAP1 pathogenic/likely pathogenic variants are associated with predisposition to multiple tumours, including uveal melanoma, malignant pleural and peritoneal mesothelioma, renal cell carcinoma and specific non-malignant neoplasms of the skin, as part of the autosomal dominant BAP1-tumour predisposition syndrome. The overall lifetime risk for BAP1 carriers to develop at least one BAP1-associated tumour is up to 85%, although due to ascertainment bias, current estimates of risk are likely to be overestimated. As for many rare cancer predisposition syndromes, there is limited scientific evidence to support the utility of surveillance and, therefore, management recommendations for BAP1 carriers are based on expert opinion. To date, European recommendations for BAP1 carriers have not been published but are necessary due to the emerging phenotype of this recently described syndrome and increased identification of BAP1 carriers via large gene panels or tumour sequencing. To address this, the Clinical Guideline Working Group of the CanGene-CanVar project in the United Kingdom invited European collaborators to collaborate to develop guidelines to harmonize surveillance programmes within Europe. Recommendations with respect to BAP1 testing and surveillance were achieved following literature review and Delphi survey completed by a core group and an extended expert group of 34 European specialists including Geneticists, Ophthalmologists, Oncologists, Dermatologists and Pathologists. It is recognised that these largely evidence-based but pragmatic recommendations will evolve over time as further data from research collaborations informs the phenotypic spectrum and surveillance outcomes.
Collapse
Affiliation(s)
- Fiona Lalloo
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anju Kulkarni
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Cindy Chau
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael Sheaff
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Jeremy Steele
- Department of Oncology, Barts Health NHS Trust, London, UK
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karin Wadt
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Monica Hamill
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, London, UK
| | - Beth Torr
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, London, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Helen Hanson
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, London, UK.
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
3
|
Shu W, Wang JZ, Zhu X, Wang K, Cherepanoff S, Conway RM, Madigan MC, Lim LA, Zhu H, Zhu L, Murray M, Zhou F. Lapatinib dysregulates HER2 signaling and impairs the viability of human uveal melanoma cells. J Cancer 2023; 14:3477-3495. [PMID: 38021158 PMCID: PMC10647189 DOI: 10.7150/jca.88446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
Uveal melanoma (UM) is the principal type of intraocular malignancy in adults. Up to 50% of UM patients develop metastatic disease with very poor survival. There are few drugs available to treat the primary or metastatic UM. This study was undertaken to evaluate the anti-cancer effect of lapatinib and corroborate the potential of HER2 inhibition in the treatment of UM. The anti-UM activity of lapatinib was assessed using cell viability, cell death and cell cycle analysis, and its anti-metastatic actions were evaluated using would healing, invasion and colony formation assays. Immunoblotting was used to substantiate the actions of lapatinib on apoptotic and HER2 signaling. The anti-UM activity of lapatinib was further evaluated in a UM xenograft mouse model. Lapatinib decreased the viability of four UM cell lines (IC50: 3.67-6.53 µM). The antiproliferative activity of lapatinib was corroborated in three primary cell lines isolated from UM patient tumors. In UM cell lines, lapatinib promoted apoptosis and cell cycle arrest, and strongly inhibited cell migration, invasion and reproductive cell growth. Lapatinib dysregulated HER2-AKT/ERK/PI3K signalling leading to the altered expression of apoptotic factors and cell cycle mediators in UM cell lines. Importantly, lapatinib suppressed tumourigenesis in mice carrying UM cell xenografts. Together the present findings are consistent with the assertion that HER2 is a viable therapeutic target in UM. Lapatinib is active in primary and metastatic UM as a clinically approved HER2 inhibitor. The activity of lapatinib in UM patients could be evaluated in future clinical trials.
Collapse
Affiliation(s)
- Wenying Shu
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong Province 511400, China
| | - Janney Z Wang
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province 214063, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province 214063, China
| | - Svetlana Cherepanoff
- SydPath, Department of Anatomical Pathology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - R. Max Conway
- Ocular Oncology Unit, Sydney Eye Hospital and The Kinghorn Cancer Centre, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW 2006, Australia
| | - Li-Anne Lim
- Ocular Oncology Unit, Sydney Eye Hospital and The Kinghorn Cancer Centre, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Murray
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia
| |
Collapse
|
4
|
Clevenger LM, Wrenn JD, Bena J, Sodhi G, Tullio K, Singh AD. Clustering of uveal melanoma: County wide analysis within Ohio. PLoS One 2023; 18:e0290284. [PMID: 37594976 PMCID: PMC10437964 DOI: 10.1371/journal.pone.0290284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
PURPOSE To determine if a greater than expected number of cases (clustering) of uveal melanoma occurred within Ohio for any specific region or time period as compared to others. DESIGN Analysis of population database. METHODS Ohio Cancer Incidence Surveillance System (OCISS) database (2000-2019) was accessed for the diagnosis of uveal melanoma using the International Classification of Disease for Oncology codes: C69.3 (choroid), C69.4 (ciliary body and iris). Counties within Ohio were grouped by geographic regions (7) and socioeconomic variables. Age- and race-standardized incidence ratios (SIR) were calculated to determine temporal or geographic clustering. RESULTS Over the twenty-year period, the total number of uveal melanoma cases reported within Ohio were 1,617 with the overall age-adjusted annual incidence of 6.72 cases per million population (95% CI 6.30-7.16). There was an increase in the incidence of uveal melanoma over 20 years (p<0.001) across seven geographic regions, but no significant difference in incidence rates between the regions. There was no difference in incidence based on county classification by age composition (p = 0.14) or education level (p = 0.11). Counties with a low median household income (p<0.001), those classified as urban (p = 0.004), and those with a greater minority population (p = 0.004) had lower incidence. Less populated counties had a higher incidence of uveal melanoma (p<0.001). CONCLUSIONS There is no evidence of geographic or temporal clustering of uveal melanoma within Ohio from 2000 to 2019.
Collapse
Affiliation(s)
- Leanne M. Clevenger
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jacquelyn D. Wrenn
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - James Bena
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Guneet Sodhi
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Katherine Tullio
- Cancer Health Analytics, Taussig Cancer Institute, Cleveland Clinic and Health Equity (Ohio), CareSource, Columbus, Ohio, United States of America
| | - Arun D. Singh
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
5
|
Xie J, Chen L, Cao Y, Ma C, Zhao W, Li J, Yao W, Hu Y, Wang M, Shi J. Single cell sequencing analysis constructed the N7-methylguanosine (m7G)-related prognostic signature in uveal melanoma. Aging (Albany NY) 2023; 15:2082-2096. [PMID: 36920166 PMCID: PMC10085590 DOI: 10.18632/aging.204592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Uveal melanoma is a highly malignant tumor in the eye. Its recurrence and metastasis are common, and the prognosis is poor. METHODS The transcriptome data of UVM were downloaded from TCGA database, and the single cell sequencing dataset GSE139829 was downloaded from GEO database. Weighted co-expression network analysis was used to explore the modules associated with m7G. Lasso regression was used to construct M7G-related prognostic signature. Immune infiltration analysis was used to explore the significance of the model in the tumor immune microenvironment. Finally, cell assays were used to explore the function of key genes in the MUM-2B and OCM-1 cell lines of UVM. RESULTS The prognostic signature was constructed by Cox regression and Lasso regression. Patients could be divided into high-risk group and low-risk group by this signature, and the high-risk group had worse prognosis (P<0.05). Cell experiments showed that the proliferation, invasion and migration ability of UVM cell lines were significantly decreased after the knockdown of PAG1, a key gene in signature, which proved that PAG1 might be a potential target of UVM. CONCLUSIONS Our study explored the significance of m7G in UVM, provided biomarkers for its diagnosis and treatment.
Collapse
Affiliation(s)
- Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Liang Chen
- Department of Hepatobiliary Surgery, Jiaxing First Hospital, Jiaxing 314001, Zhejiang, China
| | - Yuan Cao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Chenfeng Ma
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu, China
| | - Wenhu Zhao
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - JinJing Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, Jiangsu, China
| | - Wen Yao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yiming Hu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Ming Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jingping Shi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
6
|
Franca RA, Della Monica R, Corvino S, Chiariotti L, Del Basso De Caro M. WHO grade and pathological markers of meningiomas: Clinical and prognostic role. Pathol Res Pract 2023; 243:154340. [PMID: 36738518 DOI: 10.1016/j.prp.2023.154340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
In recent years, WHO grading criteria have emerged as an inaccurate tool to correctly predict the risk of progression/recurrence for meningioma patients. Therefore, great efforts were made to find further prognostic factors that could predict the clinical course of meningiomas. Why morphological criteria are not able alone to correctly predict outcome in all patients? What are the biological parameters underlying a more aggressive behavior? Are there any molecular markers can be integrated in the risk assessment? Could new technologies, such as methylome profiling, contribute to provide additional tools in patients prognostic evaluation? We performed a literature review to find answers to these questions. Meningiomas have been demonstrated to be extremely heterogeneous neoplasms, also from the genetic and epigenetic standpoints. However, WHO Classification of Tumours of the central Nervous System 5th edition introduced only CDKN2A/B deletion and TERT promoter mutations as poor prognostic, grade 3 defining parameters. The different proposals of integrated grading, taking into account cytogenetic alterations and study of methylation profile, have not yet been incorporated in WHO grading criteria. Work in progress: this is the summary of current knowledge. Further studies are needed to expand the diagnostic and prognostic equipment to be integrated into clinical practice.
Collapse
Affiliation(s)
- Raduan Ahmed Franca
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", Naples, Italy.
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, via Gaetano Salvatore, 486, Naples, Italy.
| | - Sergio Corvino
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, Università di Napoli Federico II, Naples 80131, Italy.
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, via Gaetano Salvatore, 486, Naples, Italy.
| | - Marialaura Del Basso De Caro
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
7
|
Carvajal RD, Sacco JJ, Jager MJ, Eschelman DJ, Olofsson Bagge R, Harbour JW, Chieng ND, Patel SP, Joshua AM, Piperno-Neumann S. Advances in the clinical management of uveal melanoma. Nat Rev Clin Oncol 2023; 20:99-115. [PMID: 36600005 DOI: 10.1038/s41571-022-00714-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Melanomas arising in the uveal tract of the eye are a rare form of the disease with a biology and clinical phenotype distinct from their more common cutaneous counterparts. Treatment of primary uveal melanoma with radiotherapy, enucleation or other modalities achieves local control in more than 90% of patients, although 40% or more ultimately develop distant metastases, most commonly in the liver. Until January 2022, no systemic therapy had received regulatory approval for patients with metastatic uveal melanoma, and these patients have historically had a dismal prognosis owing to the limited efficacy of the available treatments. A series of seminal studies over the past two decades have identified highly prevalent early, tumour-initiating oncogenic genomic aberrations, later recurring prognostic alterations and immunological features that characterize uveal melanoma. These advances have driven the development of a number of novel emerging treatments, including tebentafusp, the first systemic therapy to achieve regulatory approval for this disease. In this Review, our multidisciplinary and international group of authors summarize the biology of uveal melanoma, management of primary disease and surveillance strategies to detect recurrent disease, and then focus on the current standard and emerging regional and systemic treatment approaches for metastatic uveal melanoma.
Collapse
Affiliation(s)
- Richard D Carvajal
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Joseph J Sacco
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - David J Eschelman
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - J William Harbour
- Department of Ophthalmology and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas D Chieng
- Medical Imaging Services, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Sapna P Patel
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony M Joshua
- Department of Medical Oncology, Kinghorn Cancer Centre, St Vincent's Hospital Sydney and Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, New South Wales, Australia
| | | |
Collapse
|
8
|
Yang L, Wang G, Shi H, Jia S, Ruan J, Cui R, Ge S. Methylation-driven gene DLL3 is a potential prognostic biomarker in ocular melanoma correlating with metastasis. Front Oncol 2022; 12:964902. [PMID: 36338696 PMCID: PMC9630341 DOI: 10.3389/fonc.2022.964902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022] Open
Abstract
Background Ocular melanoma is an aggressive malignancy with a high rate of metastasis and poor prognosis. Increasing evidence indicated that DNA methylation plays an important role in the occurrence and development of ocular melanoma. Hence, exploring new diagnostic and prognostic biomarkers at the genetic level may be beneficial to the prognosis of patients with ocular melanoma. Methods We collected DNA methylation and gene expression profiles of human UM (uveal melanoma) and CM (conjunctival melanoma) samples from various datasets. We conducted differential methylation and expression analyses to screen the potential biomarkers. Correlation analysis was performed to investigate the relationships between the expression level of DLL3 (delta-like protein 3) and the methylation level of its corresponding CpGs. We explored the prognostic and diagnostic value of DLL3 in UM and CM. Functional annotation and GSEA (gene set enrichment analysis) were applied to get insight into the possible biological roles of DLL3. A cohort of 60 ocular melanoma patients as well as UM and CM cell lines were used to validate our findings in bioinformatic analyses. Results We found that DLL3 was a methylation-driven gene correlating with UM metastasis. The CpGs of DLL3 are mainly located in the gene body and their methylation level positively correlated to DLL3 expression. Multivariate Cox regression analysis revealed that DLL3 was an independent protective factor for UM patients. High DLL3 expression significantly prolonged the overall survival and disease-free survival of UM patients. DLL3 also showed a promising power to distinguish CM from normal tissues. Functional annotation exhibited that DLL3 may suppress UM progression through modulating immune activities and down-regulating various signaling pathways. External datasets, biospecimens, and cell lines further validated the aberrant expression and prognostic role of DLL3 in ocular melanoma. Conclusion Methylation-driven gene DLL3 could serve as a new potential diagnostic and prognostic biomarker in ocular melanoma. Our findings may contribute to improving the clinical outcomes of patients with UM or CM.
Collapse
Affiliation(s)
- Ludi Yang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Gaoming Wang
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shichong Jia
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Tianjin Eye Institute, Tianjin, China
| | - Jing Ruan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- *Correspondence: Jing Ruan, ; Ran Cui, ; Shengfang Ge,
| | - Ran Cui
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jing Ruan, ; Ran Cui, ; Shengfang Ge,
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- *Correspondence: Jing Ruan, ; Ran Cui, ; Shengfang Ge,
| |
Collapse
|
9
|
Wang T, Zhu T, Zhang Y, Bai J, Xue Y, Xu G, Lu L, Peng Q. Pan-cancer analysis of the prognostic and immunological role of BRCA1-associated protein 1 gene (BAP1): friend or foe? Gene X 2022; 840:146765. [PMID: 35905855 DOI: 10.1016/j.gene.2022.146765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/08/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND BRCA1-associated protein 1 gene (BAP1) plays a key role in some cancers. However, it has not yet been elucidated whether BAP1 modulates the pathogenesis and progression of human cancers through some common cellular and molecular mechanisms, and a pan-cancer analysis for the roles of BAP1 has not yet been conducted. METHODS A systematic assessment of the BAP1 gene was presented using bioinformatics analysis and R software. Based on gene expression omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, differential expression of BAP1, survival prognosis and genetic alterations of BAP1, correlations between BAP1 expression and immune infiltrates, enrichment analysis and receiver operating curves (ROC) were performed across 33 TCGA cancers. RESULTS BAP1 was highly expressed in several cancers and high BAP1 expression resulted in different survival prognoses. BAP1 DNA methylation status was changed in uveal melanoma (UVM) cases and a high level of BAP1 phosphorylation was found at the S292 locus in several cancers (colon cancer, lung adenocarcinoma, breast cancer, ovarian cancer, and uterine cancer). The statistically significant correlations of BAP1 expression and immune infiltration may contribute to the prognostic survivals in several cancers including UVM, skin cutaneous melanoma (SKCM), and lung adenocarcinoma (LUAD). Additionally, the correlations between BAP1 expression and tumor mutation burden (TMB)/microsatellite instability (MSI) across TCGA cancers were also explored. Finally, the analysis revealed that BAP1 expression level had high sensitivity and specificity for liver hepatocellular carcinoma (LIHC), kidney renal clear cell carcinoma (KIRC), and pancreatic adenocarcinoma (PAAD) patients. CONCLUSION This study has revealed statistically significant correlations of BAP1 expression with survival analysis, DNA methylation, protein phosphorylation, genetic alteration, and immune infiltration across multiple TCGA cancers, suggesting that BAP1 may potentially serve as a potential therapeutic target and prognostic biomarker for several cancers.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine. No. 301, Yanchang Middle Road, Jing'an District, Shanghai, China
| | - Tong Zhu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, No. 1239, Siping Road, Yangpu District, Shanghai, China
| | - Yuanyuan Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine. No. 301, Yanchang Middle Road, Jing'an District, Shanghai, China
| | - Jianhao Bai
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine. No. 301, Yanchang Middle Road, Jing'an District, Shanghai, China
| | - Yawen Xue
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine. No. 301, Yanchang Middle Road, Jing'an District, Shanghai, China
| | - Guotong Xu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, China; Department of Pharmacology, Tongji University School of Medicine, No. 1239, Siping Road, Yangpu District, Shanghai, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, No. 1239, Siping Road, Yangpu District, Shanghai, China.
| | - Qing Peng
- Department of Ophthalmology, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine. No. 301, Yanchang Middle Road, Jing'an District, Shanghai, China.
| |
Collapse
|
10
|
Zhuang A, Chai P, Wang S, Zuo S, Yu J, Jia S, Ge S, Jia R, Zhou Y, Shi W, Xu X, Ruan J, Fan X. Metformin promotes histone deacetylation of optineurin and suppresses tumour growth through autophagy inhibition in ocular melanoma. Clin Transl Med 2022; 12:e660. [PMID: 35075807 PMCID: PMC8787022 DOI: 10.1002/ctm2.660] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To explore the therapeutic potential and the underlying mechanism of metformin, an adenosine monophosphate-activated kinase (AMPK) activator, in ocular melanoma. METHODS CCK8, transwell, and colony formation assays were performed to detect the proliferation and migration ability of ocular melanoma cells. A mouse orthotopic xenograft model was built to detect ocular tumor growth in vivo. Western blot, immunofluorescence, and electron microscopy were adopted to evaluate the autophagy levels of ocular melanoma cells, and high-throughput proteomics and CUT & Tag assays were performed to analyze the candidate for autophagy alteration. RESULTS Here, we revealed for the first time that a relatively low dose of metformin induced significant tumorspecific inhibition of the proliferation and migration of ocular melanoma cells both in vitro and in vivo. Intriguingly, we found that metformin significantly attenuated autophagic influx in ocular melanoma cells. Through high-throughput proteomics analysis, we revealed that optineurin (OPTN), which is a key candidate for autophagosome formation and maturation, was significantly downregulated after metformin treatment. Moreover, excessive OPTN expression was associated with an unfavorable prognosis of patients. Most importantly, we found that a histone deacetylase, SIRT1, was significantly upregulated after AMPK activation, resulting in histone deacetylation in the OPTN promoter. CONCLUSIONS Overall, we revealed for the first time that metformin significantly inhibited the progression of ocular melanoma, and verified that metformin acted as an autophagy inhibitor through histone deacetylation of OPTN. This study provides novel insights into metformin - guided suppression of ocular melanoma and the potential mechanism underlying the dual role of metformin in autophagy regulation.
Collapse
Affiliation(s)
- Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Peiwei Chai
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shaoyun Wang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Sipeng Zuo
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shichong Jia
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yixiong Zhou
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Wodong Shi
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaofang Xu
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jing Ruan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
11
|
Seedor RS, Orloff M, Sato T. Genetic Landscape and Emerging Therapies in Uveal Melanoma. Cancers (Basel) 2021; 13:5503. [PMID: 34771666 PMCID: PMC8582814 DOI: 10.3390/cancers13215503] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite successful treatment of primary uveal melanoma, up to 50% of patients will develop systemic metastasis. Metastatic disease portends a poor outcome, and no adjuvant or metastatic therapy has been FDA approved. The genetic landscape of uveal melanoma is unique, providing prognostic and potentially therapeutic insight. In this review, we discuss our current understanding of the molecular and cytogenetic mutations in uveal melanoma, and the importance of obtaining such information. Most of our knowledge is based on primary uveal melanoma and a better understanding of the mutational landscape in metastatic uveal melanoma is needed. Clinical trials targeting certain mutations such as GNAQ/GNA11, BAP1, and SF3B1 are ongoing and promising. We also discuss the role of liquid biopsies in uveal melanoma in this review.
Collapse
Affiliation(s)
- Rino S. Seedor
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.O.); (T.S.)
| | | | | |
Collapse
|
12
|
Shao YF, DeBenedictis M, Yeaney G, Singh AD. Germ Line BAP1 Mutation in Patients with Uveal Melanoma and Renal Cell Carcinoma. Ocul Oncol Pathol 2021; 7:340-345. [PMID: 34722490 DOI: 10.1159/000516695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
Uveal melanoma (UM) and renal cell carcinoma (RCC) can occur sporadically and as a manifestation of BAP1 tumor predisposition syndrome. We aimed to understand the prevalence of germ line BAP1 pathogenic variants in patients with UM and RCC. We reviewed patients managed at Cleveland Clinic between November 2003 and November 2019 who were diagnosed with UM and RCC. Charts were reviewed for demographic and cancer-related characteristics. RCC samples were tested for BAP1 protein expression using immunohistochemical (IHC) staining, and testing for germ line BAP1 pathogenic variants was performed as part of routine clinical care. Thirteen patients were included in the study. The average age at diagnosis of UM was 61.3 years. Seven patients underwent fine-needle aspiration biopsy for prognostic testing of UM (low risk =5, high risk =2). Twelve patients were treated with plaque radiation therapy, and 3 patients developed metastatic disease requiring systemic therapy. The median time to diagnosis of RCC from time of diagnosis of UM was 0 months. RCC samples were available for 7 patients for BAP1 IHC staining (intact =6, loss =1). All patients underwent nephrectomy (total = 3, partial = 8, unknown =2), and 1 received systemic therapy for metastatic RCC. Six patients underwent germ line BAP1 genetic testing. Of these, 1 patient was heterozygous for a pathogenic variant of BAP1 gene: c.1781-1782delGG, p.Gly594Valfs*48. The overall prevalence of germ line BAP1 pathogenic variants in our study was high (1/6; 17%; 95% CI 0-46%). Patients with UM and RCC should be referred for genetic counseling to discuss genetic testing.
Collapse
Affiliation(s)
- Yusra F Shao
- Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Gabrielle Yeaney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Arun D Singh
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Miller M, Schoenfield L, Abdel-Rahman M, Cebulla CM. Is Uveal Melanoma a Hormonally Sensitive Cancer? A Review of the Impact of Sex Hormones and Pregnancy on Uveal Melanoma. Ocul Oncol Pathol 2021; 7:239-250. [PMID: 34604195 PMCID: PMC8443925 DOI: 10.1159/000514650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite a higher incidence and worse prognosis of uveal melanoma (UM) in men, there have been many case reports of pregnant patients with aggressive UM. This has led researchers to explore the influence of sex hormones and pregnancy on the development and progression of UM and hormones as potential therapeutic targets. SUMMARY A systematic literature review was conducted. More work is needed to elucidate the basis of sex differences in UM incidence and survival. The evaluation of germline BAP1 mutation would be beneficial in patients with UM presenting at a young age. Importantly, multiple studies reported no significant difference between the 5-year survival and 5-year metastasis-free survival rates between nonpregnant women with UM and pregnant women with UM. Multiple case-control studies disagree on how parity affects risk of UM. However, most studies agree that oral contraceptives and hormone replacement therapy have no effect on the incidence of UM. Current treatment strategies for pregnant patients with UM are discussed. Looking forward, this review reports recent research on targeted receptor-based chemotherapy, which is based on evidence of estrogen receptor (ER), estrogen-related receptor alpha (ERRα), and luteinizing hormone-releasing hormone (LHRH) receptor expression in UM. KEY MESSAGES Based on review of the literature, UM is not a contraindication to oral contraceptives, hormone replacement therapy, or pregnancy. Globe-sparing radiation can be used as a treatment option for pregnant patients. Due to the presence of ER on a subset of unselected UM, its potential for adjunctive targeted therapy with agents like tamoxifen should be explored. Lessons from cutaneous melanoma regarding tissue ratios of estrogen receptors (ERα:ERβ) should be applied to assess their therapeutic predictive value. In addition, ERRα-targeted therapeutics and LHRH analogs are worthy of further exploration in UM.
Collapse
Affiliation(s)
- Manisha Miller
- Havener Eye Institute, Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Lynn Schoenfield
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mohamed Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Colleen M. Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|