1
|
Peta KT, Durandt C, van Heerden MB, Joubert AM, Pepper MS, Ambele MA. Effect of 2-methoxyestradiol on mammary tumor initiation and progression. Cancer Rep (Hoboken) 2024; 7:e2068. [PMID: 38600057 PMCID: PMC11006714 DOI: 10.1002/cnr2.2068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The anti-cancer agent 2-methoxyestradiol (2-ME) has been shown to have anti-proliferative and anti-angiogenic properties. Previously, the effect of 2-ME on early- and late-stage breast cancer (BC) was investigated in vivo using a transgenic mouse model (FVB/N-Tg(MMTV-PyVT)) of spontaneous mammary carcinoma. Anti-tumor effects were observed in late-stage BC with no effect on early-stage BC. Given the contrasting results obtained from the different BC stages, we have now investigated the effect of 2-ME when administered before the appearance of palpable tumors. METHODS Each mouse received 100 mg/kg 2-ME on day 30 after birth, twice per week for 28 days, while control mice received vehicle only. Animals were terminated on day 59. Lung and mammary tissue were obtained for immunohistochemical analysis of CD163 and CD3 expression, and histological examination was performed to analyze tumor necrosis. Additionally, blood samples were collected to measure plasma cytokine levels. RESULTS 2-ME increased tumor mass when compared to the untreated animals (p = .0139). The pro-tumorigenic activity of 2-ME was accompanied by lower CD3+ T-cell numbers in the tumor microenvironment (TME) and high levels of the pro-inflammatory cytokine interleukin (IL)-1β. Conversely, 2-ME-treatment resulted in fewer CD163+ cells detectable in the TME, increased levels of tumor necrosis, increased IL-10 plasma levels, and low IL-6 and IL-27 plasma levels. CONCLUSION Taken together, these findings suggest that 2-ME promotes early-stage BC development.
Collapse
Affiliation(s)
- Kimberly T. Peta
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Chrisna Durandt
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Marlene B. van Heerden
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Anna M. Joubert
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Melvin A. Ambele
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
2
|
Rai R, Dey DK, Benbrook DM, Chandra V. Niclosamide causes lysosome-dependent cell death in endometrial cancer cells and tumors. Biomed Pharmacother 2023; 161:114422. [PMID: 36841028 DOI: 10.1016/j.biopha.2023.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Endometrial cancer is the most common female cancer showing continuous rise in its incidence and mortality rate. Despite the extensive research efforts in cancer therapeutics, still there is a lack of effective treatment options and the outcome is poor for patients with advanced and recurrent endometrial cancers. In this study, we aimed to evaluate the efficacy of niclosamide (NIC) against endometrial cancer. NIC is an FDA-approved anti-helminthic drug, which has been recently extensively studied as a potent anti-cancerous agent in several cancers. The anti-cancerous activity of NIC was analyzed in-vitro (ANC3A, Hec1B, and Ishikawa endometrial cancer cell lines) by cell viability-, soft agar-, invasion- and migration- assay. The action mechanism of NIC was demonstrated by western blot analysis and immune-fluorescence imaging and validated by specific inhibitors. The in-vivo efficacy of NIC was studied in the Ishikawa xenograft animal model. NIC effectively suppressed the viability (IC50<1 μM), colony formation ability, migration, and invasion of all endometrial cancer cells tested. We demonstrated that NIC inhibited AKT/mTOR signaling pathway and induced apoptosis and autophagy in endometrial cancer cells. Further study demonstrated that although NIC induced autophagosome formation, it inhibits autolysosome formation. In addition, we observed that NIC induced BAX co-localization with lysosome and inhibited Cathepsin B maturation from pro-cathepsin B, thereby inducing the lysosomal membrane permeability and release of hydrolytic enzymes from the lysosome to cytosol, which eventually contributed cell death. NIC also inhibited tumor weight and volume in the Ishikawa xenograft animal model without having any evidence of toxicity. Due to its potent anti-cancerous activity and safety profile, NIC seems to be a promising agent for human endometrial cancer therapeutics.
Collapse
Affiliation(s)
- Rajani Rai
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Debasish Kumar Dey
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Doris Mangiaracina Benbrook
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Vishal Chandra
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA..
| |
Collapse
|
3
|
The regulation of Hh/Gli1 signaling cascade involves Gsk3β- mediated mechanism in estrogen-derived endometrial hyperplasia. Sci Rep 2017; 7:6557. [PMID: 28747625 PMCID: PMC5529438 DOI: 10.1038/s41598-017-06370-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
The present study was undertaken to explore the functional involvement of Hh signaling and its regulatory mechanism in endometrial hyperplasia. Differential expression of Hh signaling molecules i.e., Ihh, Shh, Gli1 or Gsk3β was observed in endometrial hyperplasial (EH) cells as compared to normal endometrial cells. Estradiol induced the expression of Hh signaling molecules and attenuated the expression of Gsk3β whereas anti-estrogen (K1) or progestin (MPA) suppressed these effects in EH cells. Cyclopamine treatment or Gli1 siRNA knockdown suppressed the growth of EH cells and reduced the expression of proliferative markers. Estradiol also induced the nuclear translocation of Gli1 which was suppressed by both MPA and K1 in EH cells. While exploring non-canonical mechanism, LY-294002 (Gsk3β activator) caused a decrease in Gli1 expression indicating the involvement of Gsk3β in Gli1 regulation. Further, Gsk3β silencing promoted the expression and nuclear translocation of Gli1 demonstrating that Gsk3β serves as a negative kinase regulator of Gli1 in EH cells. Similar attenuation of Hh signaling molecules was observed in rats with uterine hyperplasia undergoing anti-estrogen treatment. The study suggested that Hh/Gli1 cascade (canonical pathway) as well as Gsk3β-Gli1 crosstalk (non-canonical pathway) play crucial role in estrogen-dependent cell proliferation in endometrial hyperplasia.
Collapse
|
4
|
Costa M, Dias TA, Brito A, Proença F. Biological importance of structurally diversified chromenes. Eur J Med Chem 2016; 123:487-507. [PMID: 27494166 DOI: 10.1016/j.ejmech.2016.07.057] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 06/21/2016] [Accepted: 07/23/2016] [Indexed: 12/20/2022]
Abstract
Compounds incorporating the chromene scaffold are largely present in natural products and display a wide variety of biological activities. Their low toxicity combined to the broad pharmacological properties have inspired medicinal chemists in the search for new therapeutic agents. This review covers the literature between 1993 and on the biological activity of 2H- and 4H-chromenes, both from natural and synthetic origin. Includes a section that identifies a selection of chromene-based natural products, followed by recent literature on bioactive natural chromenes and the corresponding source, covering plants and fruits. Synthetic chromenes are equally important and a separate section addresses the use of these derivatives as new leads for drug discovery. Different biological targets were identified, namely those associated with anticancer, antimicrobial, anti-inflammatory, antithrombotic and antipsychotic activities.
Collapse
Affiliation(s)
- Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tatiana A Dias
- Department of Chemistry, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Alexandra Brito
- Department of Chemistry, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Fernanda Proença
- Department of Chemistry, University of Minho, Campus of Gualtar, Braga, Portugal.
| |
Collapse
|
5
|
Chandra V, Kim JJ, Benbrook DM, Dwivedi A, Rai R. Therapeutic options for management of endometrial hyperplasia. J Gynecol Oncol 2015; 27:e8. [PMID: 26463434 PMCID: PMC4695458 DOI: 10.3802/jgo.2016.27.e8] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
Endometrial hyperplasia (EH) comprises a spectrum of changes in the endometrium ranging from a slightly disordered pattern that exaggerates the alterations seen in the late proliferative phase of the menstrual cycle to irregular, hyperchromatic lesions that are similar to endometrioid adenocarcinoma. Generally, EH is caused by continuous exposure of estrogen unopposed by progesterone, polycystic ovary syndrome, tamoxifen, or hormone replacement therapy. Since it can progress, or often occur coincidentally with endometrial carcinoma, EH is of clinical importance, and the reversion of hyperplasia to normal endometrium represents the key conservative treatment for prevention of the development of adenocarcinoma. Presently, cyclic progestin or hysterectomy constitutes the major treatment option for EH without or with atypia, respectively. However, clinical trials of hormonal therapies and definitive standard treatments remain to be established for the management of EH. Moreover, therapeutic options for EH patients who wish to preserve fertility are challenging and require nonsurgical management. Therefore, future studies should focus on evaluation of new treatment strategies and novel compounds that could simultaneously target pathways involved in the pathogenesis of estradiol-induced EH. Novel therapeutic agents precisely targeting the inhibition of estrogen receptor, growth factor receptors, and signal transduction pathways are likely to constitute an optimal approach for treatment of EH.
Collapse
Affiliation(s)
- Vishal Chandra
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jong Joo Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea
| | - Doris Mangiaracina Benbrook
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajani Rai
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea.
| |
Collapse
|
6
|
Chandra V, Fatima I, Manohar M, Popli P, Sirohi VK, Hussain MK, Hajela K, Sankhwar P, Dwivedi A. Inhibitory effect of 2-(piperidinoethoxyphenyl)-3-(4-hydroxyphenyl)-2H-benzo(b)pyran (K-1) on human primary endometrial hyperplasial cells mediated via combined suppression of Wnt/β-catenin signaling and PI3K/Akt survival pathway. Cell Death Dis 2014; 5:e1380. [PMID: 25144715 PMCID: PMC4454309 DOI: 10.1038/cddis.2014.334] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023]
Abstract
Endometrial hyperplasia is a precursor to the most common gynecologic cancer diagnosed in women. Apart from estrogenic induction, aberrant activation of the Wnt/β-catenin signal is well known to correlate with endometrial hyperplasia and its carcinoma. The benzopyran compound 2-(piperidinoethoxyphenyl)-3-(4-hydroxyphenyl)-2H-benzo (b) pyran(K-1), a potent antiestrogenic agent, has been shown to have apoptosis-inducing activity in rat uterine hyperplasia. The current study was undertaken to explore the effect of the benzopyran compound K-1 on growth and Wnt signaling in human endometrial hyperplasial cells. Primary culture of atypical endometrial hyperplasial cells was characterized by the epithelial cell marker cytokeratin-7. Results revealed that compound K-1 reduced the viability of primary endometrial hyperplasial cells and expression of ERα, PR, PCNA, Wnt7a, FZD6, pGsk3β and β-catenin without affecting the growth of the primary culture of normal endometrial cells. The β-catenin target genes CyclinD1 and c-myc were also found to be reduced, whereas the expression of axin2 and Wnt/β-catenin signaling inhibitor Dkk-1 was found to be upregulated, which caused the reduced interaction of Wnt7a and FZD6. Nuclear accumulation of β-catenin was found to be decreased by compound K-1. K-1 also suppressed the pPI3K/pAkt survival pathway and induced the cleavage of caspases and PARP, thus subsequently causing the apoptosis of endometrial hyperplasial cells. In conclusion, compound K-1 suppressed the growth of human primary endometrial hyperplasial cells through discontinued Wnt/β-catenin signaling and induced apoptosis via inhibiting the PI3K/Akt survival pathway.
Collapse
Affiliation(s)
- V Chandra
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - I Fatima
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - M Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - P Popli
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - V K Sirohi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - M K Hussain
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - K Hajela
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - P Sankhwar
- Department of Obstetrics & Gynecology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - A Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Fatima I, Saxena R, Kharkwal G, Hussain MK, Yadav N, Hajela K, Sankhwar PL, Dwivedi A. The anti-proliferative effect of 2-[piperidinoethoxyphenyl]-3-[4-hydroxyphenyl]-2H-benzo(b) pyran is potentiated via induction of estrogen receptor beta and p21 in human endometrial adenocarcinoma cells. J Steroid Biochem Mol Biol 2013; 138:123-31. [PMID: 23688837 DOI: 10.1016/j.jsbmb.2013.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/14/2022]
Abstract
In an effort to develop novel therapeutic agents for endometrial cancer, benzopyran derivatives synthesized at our institute display significant inhibitory activity on cellular growth in uterine cancer cells. The current study was undertaken to demonstrate and explore the estrogen receptor (ER) subtype mediated mechanism of action of benzopyran derivative 2-[piperidinoethoxyphenyl]-3-[4-hydroxyphenyl]-2H-benzo(b) pyran (K-1) in human endometrial cancer cells. K-1 competitively inhibited the estradiol binding to human ERα and ERβ and showed growth inhibitory activity in human endometrial Ishikawa, HEC1B and primary endometrial adenocarcinoma cells. Transient transactivation assays carried out in COS-1 cells have demonstrated the diminished ERα-ERE mediated- and induced the ERβ-ERE mediated-transactivation triggered by compound. It also induced ER-mediated transactivation of the cyclin-dependent kinase inhibitor (CDKI) p21(WAF-1) in both COS-1 cells and in Ishikawa cells. ERβ inducing effects of compound were blocked by ICI182,780. In endometrial adenocarcinoma cells, it induced ERβ and p21 expression significantly whereas the expression of fos, jun and ERα were significantly reduced. In addition, compound promoted ERα-β heterodimerization as observed in Ishikawa cells. These results demonstrate that the benzopyran compound suppressed the cellular growth via ERβ agonism, induction of p21 and via promoting the ERα-β heterodimerization, in addition to its antagonistic effects exerted on ERα, in human endometrial cancer cells. The study suggests that the dual action of benzopyran molecule may be of significant therapeutic value in ERα/β-positive cases of endometrial cancer.
Collapse
Affiliation(s)
- I Fatima
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226001, U.P., India
| | | | | | | | | | | | | | | |
Collapse
|
8
|
He F, Zhang W, Zhang H. Apoptotic signaling pathways in uteri of rats with endometrial hyperplasia induced by ovariectomy combined with estrogen. Gynecol Obstet Invest 2013; 76:51-6. [PMID: 23751213 DOI: 10.1159/000351109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022]
Abstract
AIMS To explore a new reliable method inducing an animal model similar to the morphology and apoptotic signaling pathways in endometrial hyperplasia patients. METHODS After the rats were ovariectomized, estradiol benzoate (60 µg/100 g) was intramuscularly injected on alternate days for 4 weeks. The morphology in the uterus was observed under a light microscope and by electron microscopy. The expression levels of survivin/caspase-3 and Fas/FasL were checked by immunohistochemistry, Western blotting and real-time polymerase chain reaction. RESULTS After the models were induced, the edema and hypertrophy in uteri were observed 4 weeks later. The glands in the endometrium had increased, indented hyperplasia of glandular cells appeared, and a pseudo-stratified phenomenon occurred. Under a transmission electron microscope, free ribosomes had markedly increased and the nucleus was enlarged in the cytoplasm. Compared with the control group, the expression of survivin increased (p < 0.05) while that of caspase-3 and Fas/FasL declined (p < 0.05). CONCLUSIONS In the rat model of endometrial hyperplasia induced by ovariectomy with pharmacological estrogen add-back treatment, survivin, caspase-3 and Fas/FasL signaling pathways play an important role in regulating the apoptosis of glandular cells in uteri.
Collapse
Affiliation(s)
- Fengjie He
- Department of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xi'an, China.
| | | | | |
Collapse
|
9
|
Chandra V, Fatima I, Saxena R, Hussain M, Hajela K, Sankhwar P, Roy B, Chandna S, Dwivedi A. Anti-tumorigenic action of 2-[piperidinoethoxyphenyl]-3-[4-hydroxyphenyl]-2H-benzo(b)pyran: Evidence for involvement of GPR30/EGFR signaling pathway. Gynecol Oncol 2013; 129:433-42. [DOI: 10.1016/j.ygyno.2013.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/11/2013] [Accepted: 02/03/2013] [Indexed: 01/01/2023]
|