1
|
Henry S, Lewis SM, Cyrill SL, Callaway MK, Chatterjee D, Hanasoge Somasundara AV, Jones G, He XY, Caligiuri G, Ciccone MF, Diaz IA, Biswas AA, Hernandez E, Ha T, Wilkinson JE, Egeblad M, Tuveson DA, Dos Santos CO. Host response during unresolved urinary tract infection alters female mammary tissue homeostasis through collagen deposition and TIMP1. Nat Commun 2024; 15:3282. [PMID: 38627380 PMCID: PMC11021735 DOI: 10.1038/s41467-024-47462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Exposure to pathogens throughout a lifetime influences immunity and organ function. Here, we explore how the systemic host-response to bacterial urinary tract infection (UTI) induces tissue-specific alterations to the mammary gland. Utilizing a combination of histological tissue analysis, single cell transcriptomics, and flow cytometry, we identify that mammary tissue from UTI-bearing mice displays collagen deposition, enlarged ductal structures, ductal hyperplasia with atypical epithelial transcriptomes and altered immune composition. Bacterial cells are absent in the mammary tissue and blood of UTI-bearing mice, therefore, alterations to the distal mammary tissue are mediated by the systemic host response to local infection. Furthermore, broad spectrum antibiotic treatment resolves the infection and restores mammary cellular and tissue homeostasis. Systemically, unresolved UTI correlates with increased plasma levels of the metalloproteinase inhibitor, TIMP1, which controls extracellular matrix remodeling and neutrophil function. Treatment of nulliparous and post-lactation UTI-bearing female mice with a TIMP1 neutralizing antibody, restores mammary tissue normal homeostasis, thus providing evidence for a link between the systemic host response during UTI and mammary gland alterations.
Collapse
Affiliation(s)
- Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stony Brook University, Graduate Program in Genetics, Stony Brook, NY, USA
| | - Steven Macauley Lewis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stony Brook University, Graduate Program in Genetics, Stony Brook, NY, USA
| | | | | | | | | | - Gina Jones
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xue-Yan He
- Department of Cell Biology and Physiology. School of Medicine in St. Louis. Washington University, St. Louis, MO, USA
| | | | | | | | - Amelia Aumalika Biswas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- SUNY Downstate Health Sciences University, Neural and Behavior Science, Brooklyn, NY, USA
| | | | - Taehoon Ha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - John Erby Wilkinson
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Mikala Egeblad
- Department of Cell Biology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
2
|
Von Vietinghoff S, Shevchuk O, Dobrindt U, Engel DR, Jorch SK, Kurts C, Miethke T, Wagenlehner F. The global burden of antimicrobial resistance - urinary tract infections. Nephrol Dial Transplant 2024; 39:581-588. [PMID: 37891013 DOI: 10.1093/ndt/gfad233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 10/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a significant global healthcare problem. Antibiotic use has accelerated the physiologic process of AMR, particularly in Gram-negative pathogens. Urinary tract infections (UTIs) are predominantly of a Gram-negative nature. Uropathogens are evolutionarily highly adapted and selected strains with specific virulence factors, suggesting common mechanisms in how bacterial cells acquire virulence and AMR factors. The simultaneous increase in resistance and virulence is a complex and context-dependent phenomenon. Among known AMR mechanisms, the plenitude of different β-lactamases is especially prominent. The risk for AMR in UTIs varies in different patient populations. A history of antibiotic consumption and the physiology of urinary flow are major factors that shape AMR prevalence. The urinary tract is in close crosstalk with the microbiome of other compartments, including the gut and genital tracts. In addition, pharmacokinetic properties and the physiochemical composition of urinary compartments can contribute to the emergence of AMR. Alternatives to antibiotic treatment and a broader approach to address bacterial infections are needed. Among the various alternatives studied, antimicrobial peptides and bacteriophage treatment appear to be highly promising approaches. We herein summarize the present knowledge of clinical and microbiological AMR in UTIs and discuss innovative approaches, namely new risk prediction tools and the use of non-antibiotic approaches to defend against uropathogenic microbes.
Collapse
Affiliation(s)
- Sibylle Von Vietinghoff
- University Hospital Bonn, Medical Clinic 1, Section for Nephrology and University Bonn, Germany
| | - Olga Shevchuk
- University Duisburg-Essen, University Hospital Essen, Institute of Experimental Immunology and Imaging, Department of Immunodynamics, Essen, Germany
| | - Ulrich Dobrindt
- University of Münster, Institute of Hygiene, Münster, Germany
| | - Daniel Robert Engel
- University Duisburg-Essen, University Hospital Essen, Institute of Experimental Immunology and Imaging, Department of Immunodynamics, Essen, Germany
| | | | | | - Thomas Miethke
- Medical Faculty of Mannheim University of Heidelberg, Institute for Medical Microbiology and Hygiene, Heidelberg, Germany
- Medical Faculty of Mannheim, Heidelberg University, Institute for Medical Microbiology and Hygiene, Mannheim, Germany
| | - Florian Wagenlehner
- Justus-Liebig University Giessen, Clinic for Urology, Paediatric Urology and Andrology, Giessen, Germany
| |
Collapse
|
3
|
Pucci Molineris M, Schibert F, Lima M, Accialini P, Cané L, Pelinsky P, Farina M, Herlax V. Induction of human-fetal-membrane remodeling in-vitro by the alpha hemolysin of Escherichia coli. Placenta 2024; 148:59-68. [PMID: 38401207 DOI: 10.1016/j.placenta.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
INTRODUCTION Almost 80% of urinary tract infections during pregnancy are caused by uropathogenic strains of Escherichia coli. Alpha-hemolysin, toxin secreted by them, has a fundamental role in this pathology development. Considering that urinary tract infections are related with premature rupture of fetal membranes, we proposed to evaluate the effects that alpha-hemolysin induces on human-fetal-membranes. METHODS Thirteen fetal membranes obtained from elective cesarean sections (>37 weeks) were mounted in a transwell-device generating two independent chambers. To mimic an ascendant-urinary-tract infection, membranes were incubated with different concentrations of pure alpha-hemolysin from the choriodecidual side during 24h. Extensive histological analyses were performed and transepithelial electrical-resistance were determined. Cell viability, metalloproteinase activity and cyclooxygenase-2- gene expression was estimated by lactate-dehydrogenase-release assay, zymography and RT-qPCR, respectively. Finally, four fetal membranes were treated with hemolysin preincubated with polyclonal anti-hemolysin antibodies. Cell viability and metalloproteinase activity were monitored. RESULTS After 24 h of treatment, fetal membranes evidenced a structural damage and a decrease in membrane resistance that progressed as the concentration of alpha hemolysin increased. While the amniotic-epithelial-layer remained practically unaffected, the chorion cells manifested an increase in vacuolization and necrosis. In addition, the extracellular matrix exhibited collagen-fiber disorganization, a marked decrease in fiber content, and became thicker in presence of the toxin. Cyclooxigenase-2 expression and metalloproteinase activity were also higher in the treated groups than in untreated ones. Finally, a preincubation of hemolysin with specific antibodies prevented the cytotoxicity on the chorion cells and the increase in metalloproteinase activity. DISCUSSION Hemolysin induces structural and molecular changes associated with the remodeling of human-fetal-membranes in-vitro.
Collapse
Affiliation(s)
- Melisa Pucci Molineris
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina.
| | - Florencia Schibert
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| | - María Lima
- Cátedra B de Patología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| | - Paula Accialini
- Laboratorio de Fisiopatología Placentaria, CEFyBO -Facultad de Medicina, Universidad de Buenos Aires, Paraguay N° 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Cané
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| | - Pablo Pelinsky
- Servicio de Ginecología y Obstetricia, Hospital Español de La Plata, 9 N° 175, La Plata, Buenos Aires, Argentina
| | - Mariana Farina
- Laboratorio de Fisiopatología Placentaria, CEFyBO -Facultad de Medicina, Universidad de Buenos Aires, Paraguay N° 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanesa Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| |
Collapse
|
4
|
Abstract
SUMMARY Urinary tract infection (UTI) is one of the more common perinatal complications, affecting approximately 8% of pregnancies (1, 2). These infections represent a spectrum, from asymptomatic bacteriuria, to symptomatic acute cystitis, to the most serious, pyelonephritis. The presence of UTIs has been associated with adverse pregnancy outcomes, including increased rates of preterm delivery and low birth weight. Screening for and treating asymptomatic bacteriuria have been shown in multiple studies to reduce the incidence of pyelonephritis in pregnancy (3-5). Given the frequency at which UTIs are encountered in pregnancy, the ability to recognize, diagnose, and treat them is essential for those providing care to pregnant individuals. This Clinical Consensus document was developed using an established protocol in conjunction with the authors listed.
Collapse
|
5
|
Cané L, Guzmán F, Balatti G, Daza Millone MA, Pucci Molineris M, Maté S, Martini MF, Herlax V. Biophysical Analysis to Assess the Interaction of CRAC and CARC Motif Peptides of Alpha Hemolysin of Escherichia coli with Membranes. Biochemistry 2023. [PMID: 37224476 DOI: 10.1021/acs.biochem.3c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Alpha hemolysin of Escherichia coli (HlyA) is a pore-forming protein, which is a prototype of the "Repeat in Toxins" (RTX) family. It was demonstrated that HlyA-cholesterol interaction facilitates the insertion of the toxin into membranes. Putative cholesterol-binding sites, called cholesterol recognition/amino acid consensus (CRAC), and CARC (analogous to CRAC but with the opposite orientation) were identified in the HlyA sequence. In this context, two peptides were synthesized, one derived from a CARC site from the insertion domain of the toxin (residues 341-353) (PEP 1) and the other one from a CRAC site from the domain between the acylated lysines (residues 639-644) (PEP 2), to study their role in the interaction of HlyA with membranes. The interaction of peptides with membranes of different lipid compositions (pure POPC and POPC/Cho of 4:1 and 2:1 molar ratios) was analyzed by surface plasmon resonance and molecular dynamics simulations. Results demonstrate that both peptides interact preferentially with Cho-containing membranes, although PEP 2 presents a lower KD than PEP 1. Molecular dynamics simulation results indicate that the insertion and interaction of PEP 2 with Cho-containing membranes are more prominent than those caused by PEP 1. The hemolytic activity of HlyA in the presence of peptides indicates that PEP 2 was the only one that inhibits HlyA activity, interfering in the binding between the toxin and cholesterol.
Collapse
Affiliation(s)
- Lucía Cané
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Galo Balatti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Roque Sáenz Peña 352, Bernal, Buenos Aires 1876, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA). Junín 956, Buenos Aires 1113, Argentina
| | - María Antonieta Daza Millone
- CCT-La Plata, CONICET. Universidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Sucursal 4 Casilla de Correo 16, La Plata 1900, Argentina
| | - Melisa Pucci Molineris
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| | - Sabina Maté
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| | - M Florencia Martini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA). Junín 956, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
| | - Vanesa Herlax
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| |
Collapse
|
6
|
Salmanov AG, Artyomenko V, Susidko OM, Korniyenko SM, Kovalyshyn OA, Rud VO, Voloshyn OA. URINARY TRACT INFECTIONS IN PREGNANT WOMEN IN UKRAINE: RESULTS OF A MULTICENTER STUDY (2020-2022). WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1527-1535. [PMID: 37622493 DOI: 10.36740/wlek202307103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
OBJECTIVE The aim: To obtain the first national estimates of the current prevalence rate of urinary tract infections (UTIs) in pregnant women and antimicrobial resistance of causing pathogens in Ukraine. PATIENTS AND METHODS Materials and methods: Prospective multicentre cohort study was conducted from January 2020 to December 2022. The study population consisted of 36,876 pregnant women from 17 regions of Ukraine. Antibiotic susceptibility was done by the disc diffusion test as recommended by European Committee on Antimicrobial Susceptibility Testing guidelines. RESULTS Results: A total 29.5% pregnant women were found to have UTIs. Among these cases, 36.5% Asymptomatic bacteriuria, 51.7% Cystitis and 11.8% Pyelonephritis were observed. Of all cases, 87.9% were defined as healthcare-acquired UTIs and 12.1% community-acquired UTIs. The most common uropathogen was Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa. Many uropathogens isolated from UTI cases were found to be multidrug resistant. CONCLUSION Conclusions: UTIs in pregnant women in Ukraine is a common occurrence and many cases are caused by pathogens that are resistant to antibiotics. Optimizing the management and empirical antimicrobial therapy may reduce the burden of UTIs in pregnant women, but prevention is the key element.
Collapse
Affiliation(s)
- Aidyn G Salmanov
- SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE; INSTITUTE OF PEDIATRICS, OBSTETRICS AND GYNECOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | | | | | | | | | - Victor O Rud
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Oleksandr A Voloshyn
- SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE; KYIV REGIONAL MATERNITY HOSPITAL, KYIV, UKRAINE
| |
Collapse
|
7
|
Hudson RE, Job KM, Sayre CL, Krepkova LV, Sherwin CM, Enioutina EY. Examination of Complementary Medicine for Treating Urinary Tract Infections Among Pregnant Women and Children. Front Pharmacol 2022; 13:883216. [PMID: 35571128 PMCID: PMC9094615 DOI: 10.3389/fphar.2022.883216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
Urinary tract infections (UTIs) are a significant clinical problem that pregnant women and children commonly experience. Escherichia coli is the primary causative organism, along with several other gram-negative and gram-positive bacteria. Antimicrobial drugs are commonly prescribed to treat UTIs in these patients. Conventional treatment can range from using broad-spectrum antimicrobial drugs for empirical or prophylactic therapy or patient-tailored therapy based on urinary cultures and sensitivity to prospective antibiotics. The ongoing emergence of multi-drug resistant pathogens has raised concerns related to commonly prescribed antimicrobial drugs such as those used routinely to treat UTIs. Consequently, several natural medicines have been explored as potential complementary therapies to improve health outcomes in patients with UTIs. This review discusses the effectiveness of commonly used natural products such as cranberry juice/extracts, ascorbic acid, hyaluronic acid, probiotics, and multi-component formulations intended to treat and prevent UTIs. The combination of natural products with prescribed antimicrobial treatments and use of formulations that contained high amounts of cranberry extracts appear to be most effective in preventing recurrent UTIs (RUTIs). The incorporation of natural products like cranberry, hyaluronic acid, ascorbic acid, probiotics, Canephron® N, and Cystenium II to conventional treatments of acute UTIs or as a prophylactic regimen for treatment RUTIs can benefit both pregnant women and children. Limited information is available on the safety of natural products in these patients' populations. However, based on limited historical information, these remedies appear to be safe and well-tolerated by patients.
Collapse
Affiliation(s)
- Rachel E. Hudson
- Department of Pediatrics, Post-Doctoral Fellow, Division of Clinical Pharmacology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Kathleen M. Job
- Department of Pediatrics, Research Assistant Professor, Division of Clinical Pharmacology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Casey L. Sayre
- Department of Pediatrics, Research Assistant Professor, Division of Clinical Pharmacology, University of Utah School of Medicine, Salt Lake City, UT, United States
- College of Pharmacy, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Lubov V. Krepkova
- Head of Toxicology Department, Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Catherine M. Sherwin
- Department of Pediatrics, Vice-Chair for Research, Professor, Wright State University Boonshoft School of Medicine/Dayton Children’s Hospital, Dayton, OH, United States
| | - Elena Y. Enioutina
- Department of Pediatrics, Research Assistant Professor, Division of Clinical Pharmacology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|