1
|
Wound Healing Impairment in Type 2 Diabetes Model of Leptin-Deficient Mice—A Mechanistic Systematic Review. Int J Mol Sci 2022; 23:ijms23158621. [PMID: 35955751 PMCID: PMC9369324 DOI: 10.3390/ijms23158621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is one of the most prevalent diseases in the world, associated with diabetic foot ulcers and impaired wound healing. There is an ongoing need for interventions effective in treating these two problems. Pre-clinical studies in this field rely on adequate animal models. However, producing such a model is near-impossible given the complex and multifactorial pathogenesis of T2DM. A leptin-deficient murine model was developed in 1959 and relies on either dysfunctional leptin (ob/ob) or a leptin receptor (db/db). Though monogenic, this model has been used in hundreds of studies, including diabetic wound healing research. In this study, we systematically summarize data from over one hundred studies, which described the mechanisms underlying wound healing impairment in this model. We briefly review the wound healing dynamics, growth factors’ dysregulation, angiogenesis, inflammation, the function of leptin and insulin, the role of advanced glycation end-products, extracellular matrix abnormalities, stem cells’ dysregulation, and the role of non-coding RNAs. Some studies investigated novel chronic diabetes wound models, based on a leptin-deficient murine model, which was also described. We also discussed the interventions studied in vivo, which passed into human clinical trials. It is our hope that this review will help plan future research.
Collapse
|
2
|
Mihai MM, Preda M, Lungu I, Gestal MC, Popa MI, Holban AM. Nanocoatings for Chronic Wound Repair-Modulation of Microbial Colonization and Biofilm Formation. Int J Mol Sci 2018; 19:E1179. [PMID: 29649179 PMCID: PMC5979353 DOI: 10.3390/ijms19041179] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
Wound healing involves a complex interaction between immunity and other natural host processes, and to succeed it requires a well-defined cascade of events. Chronic wound infections can be mono- or polymicrobial but their major characteristic is their ability to develop a biofilm. A biofilm reduces the effectiveness of treatment and increases resistance. A biofilm is an ecosystem on its own, enabling the bacteria and the host to establish different social interactions, such as competition or cooperation. With an increasing incidence of chronic wounds and, implicitly, of chronic biofilm infections, there is a need for alternative therapeutic agents. Nanotechnology shows promising openings, either by the intrinsic antimicrobial properties of nanoparticles or their function as drug carriers. Nanoparticles and nanostructured coatings can be active at low concentrations toward a large variety of infectious agents; thus, they are unlikely to elicit emergence of resistance. Nanoparticles might contribute to the modulation of microbial colonization and biofilm formation in wounds. This comprehensive review comprises the pathogenesis of chronic wounds, the role of chronic wound colonization and infection in the healing process, the conventional and alternative topical therapeutic approaches designed to combat infection and stimulate healing, as well as revolutionizing therapies such as nanotechnology-based wound healing approaches.
Collapse
Affiliation(s)
- Mara Mădălina Mihai
- Department of Oncologic Dermatology and Allergology, "Carol Davila" University of Medicine and Pharmacy, 030167 Bucharest, Romania.
- Department of Dermatology, "Elias" University Emergency Hospital, 011461 Bucharest, Romania.
| | - Mădălina Preda
- Department of Microbiology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 030167 Bucharest, Romania.
- Cantacuzino National Medico-Military Research and Development Institute, 050096 Bucharest, Romania.
| | - Iulia Lungu
- Department of Biomaterials and Medical Devices, Faculty of Medical Engineering, University Politehnica of Bucharest, 060042 București, Romania.
| | - Monica Cartelle Gestal
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, GA 30602, USA.
| | - Mircea Ioan Popa
- Department of Microbiology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 030167 Bucharest, Romania.
- Cantacuzino National Medico-Military Research and Development Institute, 050096 Bucharest, Romania.
| | - Alina Maria Holban
- Department of Microbiology, Faculty of Biology, University of Bucharest, 030018 București, Romania.
- Research Institute of the University of Bucharest (ICUB), 050107 Bucharest, Romania.
| |
Collapse
|
3
|
Kasiewicz LN, Whitehead KA. Recent advances in biomaterials for the treatment of diabetic foot ulcers. Biomater Sci 2017; 5:1962-1975. [PMID: 28829074 DOI: 10.1039/c7bm00264e] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Diabetes mellitus is one of the most challenging epidemics facing the world today, with over 300 million patients affected worldwide. A significant complication associated with diabetes is hyperglycemia, which impairs wound healing. The rise in the diabetic patient population in recent years has precipitated an increase in the incidence and prevalence of chronic diabetic wounds, most commonly the diabetic foot ulcer. Although foot ulcers are difficult to treat due to their complicated pathology, outcomes have improved with the development of increasingly sophisticated biomaterials that accelerate healing. In this review, we describe recently developed biomaterials that elicit healing through cell-material interactions and/or the sustained delivery of drugs. These tunable therapeutic systems increase angiogenesis, collagen deposition, cell proliferation, and growth factors concentrations, while decreasing inflammation and enzymatic degradation of the extracellular matrix. As the field of biomaterials for wound healing continues to mature, we expect to witness a broader range of clinical options that will speed healing times and improve patient quality of life.
Collapse
Affiliation(s)
- Lisa N Kasiewicz
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
4
|
Moreira BR, Batista KA, Castro EG, Lima EM, Fernandes KF. A bioactive film based on cashew gum polysaccharide for wound dressing applications. Carbohydr Polym 2015; 122:69-76. [PMID: 25817644 DOI: 10.1016/j.carbpol.2014.12.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/17/2014] [Accepted: 12/24/2014] [Indexed: 11/16/2022]
Abstract
This work presents the development of a new bioactive material for wound therapeutics which may play a dual role of modulate metallo proteinases activity while prevents infection blocking out pathogenic microorganisms and foreign materials. A CGP/PVA film was activated by covalent immobilization of trypsin. Results from biocompatibility test revealed that PDL fibroblasts grown on the surface of CGP/PVA and the high amount of viable cells proved absence of cytotoxicity. Trypsin immobilized onto CGP/PVA film remained 100% active after 28 days stored dried at room temperature. In addition, CGP/PVA-trypsin film could be used for 9 cycles of storage/use without loss of activity. After immobilization, trypsin retained its collagenolytic activity, indicating this material as a promising material for wound dressing applications.
Collapse
Affiliation(s)
- Bruna R Moreira
- Laboratório de Química de Polímeros, DBBM, ICB, Universidade Federal de Goiás, Goiânia, Brazil
| | - Karla A Batista
- Laboratório de Química de Polímeros, DBBM, ICB, Universidade Federal de Goiás, Goiânia, Brazil.
| | - Elisandra G Castro
- Laboratório de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Eliana M Lima
- Laboratório de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Kátia F Fernandes
- Laboratório de Química de Polímeros, DBBM, ICB, Universidade Federal de Goiás, Goiânia, Brazil.
| |
Collapse
|
5
|
Hikiji H, Tomizuka K, Taguchi T, Koyama H, Chikazu D, Mori Y, Takato T. An in vivo murine model for screening cranial bone regenerative materials: testing of a novel synthetic collagen gel. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1531-1538. [PMID: 24573457 DOI: 10.1007/s10856-014-5185-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
Rapid and efficient animal models are needed for evaluating the effectiveness of many new candidate bone regenerative materials. We developed an in vivo model screening for calvarial bone regeneration in lipopolysaccharide (LPS)-treated mice, in which materials were overlaid on the periosteum of the calvaria in a 20 min surgery and results were detectable in 1 week. Intraperitoneal LPS injection reduced spontaneous bone formation, and local application of basic fibroblast growth factor (bFGF) increased the bone-forming activities of osteoblasts. A novel synthetic collagen gel, alkali-treated collagen (AlCol) cross-linked with trisuccinimidyl citrate (TSC), acted as a reservoir for basic substances such as bFGF. The AlCol-TSC gel in conjunction with bFGF activated osteoblast activity without the delay in osteoid maturation caused by bFGF administration alone. The AlCol-TSC gel may slow the release of bFGF to improve the imbalance between osteoid formation and bone mineralization. These findings suggest that our model is suitable for screening bone regenerative materials and that the AlCOl-TSC gel functions as a candidate reservoir for the slow release of bFGF.
Collapse
Affiliation(s)
- Hisako Hikiji
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan,
| | | | | | | | | | | | | |
Collapse
|
6
|
Yang X, Guo L, Fan Y, Zhang X. Preparation and characterization of macromolecule cross-linked collagen hydrogels for chondrocyte delivery. Int J Biol Macromol 2013; 61:487-93. [PMID: 23916642 DOI: 10.1016/j.ijbiomac.2013.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 11/16/2022]
Abstract
Collagen hydrogels are widely used in cartilage tissue engineering for their mimicked chondrogenic environment. Due to the rapid degradation nature and weak mechanical property, collagen hydrogels are often cross-linked in application. In this work, collagen hydrogels were soaked into oxidized alginate solution which used as macromolecular cross-linker to prepare the cross-linked hydrogels. Soaking method could retain the self-assemble property of collagen and also bring in a cross-linking network. The compressive modulus and degradation properties of collagen hydrogels were ameliorated after cross-linked, and chondrocytes encapsulated in the cross-linked hydrogels proliferated well and maintained the cell phenotype. This study implied that collagen hydrogels cross-linked by oxidized alginate may have a great potential for application in cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiaoqin Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | | | | | | |
Collapse
|
7
|
Torres FG, Commeaux S, Troncoso OP. Starch-based biomaterials for wound-dressing applications. STARCH-STARKE 2013. [DOI: 10.1002/star.201200259] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Current trends in the development of wound dressings, biomaterials and devices. Pharm Pat Anal 2013; 2:341-59. [DOI: 10.4155/ppa.13.18] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wound management covers all aspects of patient care from initial injury, treatment of infection, fluid loss, tissue regeneration, wound closure to final scar formation and remodeling. There are many wound-care products available including simple protective layers, hydrogels, metal ion-impregnated dressings and artificial skin substitutes, which facilitate surface closure. This review examines recent developments in wound dressings, biomaterials and devices. Particular attention is focused on the design and manufacture of hydrogel-based dressings, their polymeric constituents and chemical modification. Finally, topical negative pressure and hyperbaric oxygen therapy are considered. Current wound-management strategies can be expensive, time consuming and labor intensive. Progress in the multidisciplinary arena of wound care will address these issues and be of immense benefit to patients, by improving both clinical outcomes and their quality of life.
Collapse
|