1
|
Hu X, Liu T, Li L, Gan H, Wang T, Pang P, Mao J. Fibulin-2 Facilitates Malignant Progression of Hepatocellular Carcinoma. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:635-644. [PMID: 37162505 PMCID: PMC10441129 DOI: 10.5152/tjg.2023.22134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/12/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Identification of biomarkers to assist in the clinical management of hepatocellular carcinoma represents an urgent requirement. Fibulin-2 is known to contribute to the development and progression of various cancer types. This research investigated the role of fibulin-2 in hepatocellular carcinoma and explored the possible mechanisms. METHODS The expression of fibulin-2 in hepatocellular carcinoma was measured by bioinformatic analysis and confirmed by western blot and immunohistochemical staining in cell lines or patients' samples. The clinicopathologic features of hepatocellular carcinoma patients was analyzed. Cell viability assays were used to explore the role of fibulin-2 on proliferation in hepatocellular carcinoma. Western blot was conducted to uncover changes of protein expression of Ras-MEK-ERK1/2 pathway when Fibulin-2 was overexpressed or silenced. Flow cytometry analyses were used to determine the roles of fibulin-2 in the function of apoptosis and cell cycle. Subcutaneous xenograft mouse models showed the tumor growth pattern after fibulin-2 silence in vivo. RESULTS We reported the upregulation of fibulin-2 in most hepatocellular carcinoma tissues and cells lines. Fibulin-2 promoted the proliferation of hepatocellular carcinoma cells in vitro by regulating Ras-MEK-ERK1/2 signaling pathway, whereas knockdown of fibulin-2 incurred the opposite effect on proliferation. Consistently, knockdown of fibulin-2 resulted in increased apoptosis and induced growth arrest during the G0/G1 phase transition. In vivo xenograft assessment confirmed that knockdown of fibulin-2 inhibited hepatocellular carcinoma tumor growth. CONCLUSIONS Fibulin-2 exhibited tumor promotor activities in malignant progression of hepatocellular carcinoma. The results of the study highlighted the potential of fibulin-2 to be utilized as a promising biomarker and therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xinyan Hu
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Tianze Liu
- The Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Luting Li
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Hairun Gan
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Tiancheng Wang
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Pengfei Pang
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Junjie Mao
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
2
|
Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases. Biomolecules 2021; 11:biom11050685. [PMID: 34063320 PMCID: PMC8147605 DOI: 10.3390/biom11050685] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in the evolution of early metazoans, as it provides structural and biochemical support to the surrounding cells through the cell–cell and cell–matrix interactions. In multi-cellular organisms, ECM plays a pivotal role in the differentiation of tissues and in the development of organs. Fibulins are ECM glycoproteins, found in a variety of tissues associated with basement membranes, elastic fibers, proteoglycan aggregates, and fibronectin microfibrils. The expression profile of fibulins reveals their role in various developmental processes such as elastogenesis, development of organs during the embryonic stage, tissue remodeling, maintenance of the structural integrity of basement membrane, and elastic fibers, as well as other cellular processes. Apart from this, fibulins are also involved in the progression of human diseases such as cancer, cardiac diseases, congenital disorders, and chronic fibrotic disorders. Different isoforms of fibulins show a dual role of tumor-suppressive and tumor-promoting activities, depending on the cell type and cellular microenvironment in the body. Knockout animal models have provided deep insight into their role in development and diseases. The present review covers details of the structural and expression patterns, along with the role of fibulins in embryonic development and disease progression, with more emphasis on their involvement in the modulation of cancer diseases.
Collapse
|
3
|
Zhang X, Duan L, Zhang Y, Zhao H, Yang X, Zhang C. Correlation of Fibulin-2 expression with proliferation, migration and invasion of breast cancer cells. Oncol Lett 2020; 20:1945-1951. [PMID: 32724439 PMCID: PMC7377204 DOI: 10.3892/ol.2020.11747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Expression level of Fibulin-2 gene in breast cancer cells was evaluated to explore the impact of Fibulin-2 gene on the proliferation, migration and invasion of breast cancer cells. MDA-MB-231, BT483, MCF-7 and SK-BR-3 breast cancer cells were cultured in vitro. Then, expression of Fibulin-2 in cells was upregulated and downregulated using ribonucleic acid interference (RNAi) and lentiviral transfection techniques, respectively. Thereafter, expression levels of Fibulin-2 messenger RNA (mRNA) and protein were measured via quantitative real-time reverse transcription-polymerase chain reaction and western blotting, respectively. Cell Counting Kit-8 assay was applied to detect the proliferation ability, and wound healing assay was performed to determine the effect of transfection on the metastatic capacity of cells. The influence of transfection on the invasive ability of breast cancer cells was detected through Transwell chamber assay. MDA-MB-231 and MCF-7 cells did not express Fibulin-2, while BT483 and SK-BR-3 cells expressed Fibulin-2. Expression of Fibulin-2 mRNA and protein in SK-BR-3 Fibulin-2 siRNA group was significantly lower than that in SK-BR-3 NC siRNA group 48 h after transfection (P<0.01), while the expression of Fibulin-2 mRNA and protein in MDA-MB-231 Fibulin-2 lentiviral transfection (LAP) group was significantly higher than that in MDA-MB-231 NC LAP group. Compared with the MDA-MB-231 NC LAP group, the cell proliferation, migration and invasion ability of MDA-MB-231 Fibulin-2 LAP group were weakened. The tumor volume and weight of the MDA-MB-231 Fibulin-2 LAP group were significantly lower than those of the MDA-MB-231 NC LAP group. Low expression of Fibulin-2 is able to promote proliferation, migration and invasion of breast cancer cells, and can reduce the rate of tumor growth in nude mice. Therefore, Fibulin-2 may be a potential therapeutic target and an indicator of prognosis for breast cancer.
Collapse
Affiliation(s)
- Xiliang Zhang
- Department of General Surgery, Navy General Hospital, Beijing 100048, P.R. China
| | - Lian Duan
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Yuxing Zhang
- Department of General Surgery, Navy General Hospital, Beijing 100048, P.R. China
| | - Huibin Zhao
- Department of General Surgery, Navy General Hospital, Beijing 100048, P.R. China
| | - Xiaodong Yang
- Department of General Surgery, Navy General Hospital, Beijing 100048, P.R. China
| | - Chaojun Zhang
- Department of General Surgery, Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
4
|
Zhang H, Hui D, Fu X. Roles of Fibulin-2 in Carcinogenesis. Med Sci Monit 2020; 26:e918099. [PMID: 31915327 PMCID: PMC6977632 DOI: 10.12659/msm.918099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023] Open
Abstract
Fibulin-2, an extracellular matrix (ECM) protein expressed in normal epithelia, is a kind of fibulin which is associated with basement membranes (BM) and elastic ECM fibers. The role of fibulin-2 has been recognized as an oncogene. The upregulation of fibulin-2 correlates with cancer development and progression. Furthermore, the upregulation of fibulin has been detected in ovarian cancer and stomach adenocarcinoma. However, the downregulation of fibulin has been detected in different intestinal and respiratory tumor cells. Additional studies have revealed that the role of fibulin-2 in carcinogenesis is context dependent and is caused by the interaction of fibulin proteins such as cell surface receptors and other ECM proteins, including integrins and syndecans. The present study summarizes the role of fibulin in carcinogenesis and its underlying molecular mechanism.
Collapse
Affiliation(s)
- Huayue Zhang
- Department of Medical Oncology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Dengcheng Hui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiaoling Fu
- Department of Medical Oncology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
5
|
Avsar M, Tambas M, Yalniz Z, Akdeniz D, Tuncer SB, Kilic S, Sukruoglu Erdogan O, Ciftci R, Dagoglu N, Vatansever S, Yazici H. The expression level of fibulin-2 in the circulating RNA (ctRNA) of epithelial tumor cells of peripheral blood and tumor tissue of patients with metastatic lung cancer. Mol Biol Rep 2019; 46:4001-4008. [PMID: 31069614 DOI: 10.1007/s11033-019-04846-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/30/2019] [Indexed: 11/28/2022]
Abstract
The Fibulins are a recently discovered family of extracellular matrix proteins. In this study, expression levels of the fibulin-2 (FBLN2) gene and its role in the formation of different metastatic foci were investigated in lung cancer patients. We analyzed 106 lung cancer patients and eight paraffin-embedded tissues, and 27 ethnical-, age- and sex-matched healthy controls for expression levels of the FBLN2 gene. cDNAs obtained from the enriched epithelial cells of peripheral blood lymphocytes and tumor tissues of patients were amplified with specific primers for the target FBLN2 gene and HPRT1 housekeeping gene using quantitative real-time polymerase chain reaction. FBLN2 gene expression levels of the enriched epithelial cells of peripheral blood lymphocytes were found to be decreased approximately twofold in all subsets of patients compared to healthy controls. Our results indicate a significant difference between patient subgroups and controls [F(4.124) = 14.846, p0.05] among patient subgroups: bone metastases versus non-metastatic groups (p = 0.997), bone versus brain metastases (p = 0994), bone metastases versus two primary tumors (p = 0.999), brain metastases versus two primary tumors (p = 0.999), brain metastases versus non-metastatic (p = 0.755), non-metastatic versus two primary tumors (p = 0.996), non-metastatic versus all other metastatic patients (p = 0.731). Moreover, we found a 50-fold upregulation of FBLN2 gene expression in paraffin-embedded tissues compared with the enriched epithelial cells of peripheral blood lymphocytes of patients. In the study, the enriched epithelial cells of peripheral blood lymphocytes of decreased FBLN2 expression was found to be correlated with metastasis. The fibulin-2 molecules might induce the metastatic potential through interaction with the other molecules in the microenvironment, nevertheless, it is needed further research whether the importance of FBLN2 on lung cancer oncogenesis and as a biomarker for metastatic lung cancer.
Collapse
Affiliation(s)
- Mukaddes Avsar
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Makbule Tambas
- Department of Radiation Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Zubeyde Yalniz
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Demet Akdeniz
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Seref Bugra Tuncer
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Seda Kilic
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey
| | - Rumeysa Ciftci
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Nergiz Dagoglu
- Department of Radiation Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Sezai Vatansever
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Hulya Yazici
- Department of Cancer Genetics, Institute of Oncology, Istanbul University, Capa - Fatih, 34093, Istanbul, Turkey.
| |
Collapse
|
6
|
Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. Int J Mol Sci 2018; 19:ijms19092787. [PMID: 30227601 PMCID: PMC6163299 DOI: 10.3390/ijms19092787] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like modules and a common C-terminal domain. Fibulins not only participate in structural integrity of basement membrane and elastic fibers, but also serve as mediators for cellular processes and tissue remodeling as they are highly upregulated during embryonic development and certain disease processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different role in a context-dependent manner. In this review, regulatory interactions between fibulins and TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may introduce new insights into the pathogenesis of some human diseases.
Collapse
|
7
|
Schaeffer J, Tannahill D, Cioni JM, Rowlands D, Keynes R. Identification of the extracellular matrix protein Fibulin-2 as a regulator of spinal nerve organization. Dev Biol 2018; 442:101-114. [PMID: 29944871 DOI: 10.1016/j.ydbio.2018.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
During amniote peripheral nervous system development, segmentation ensures the correct patterning of the spinal nerves relative to the vertebral column. Along the antero-posterior (rostro-caudal) axis, each somite-derived posterior half-sclerotome expresses repellent molecules to restrict axon growth and neural crest migration to the permissive anterior half-segment. To identify novel regulators of spinal nerve patterning, we investigated the differential gene expression of anterior and posterior half-sclerotomes in the chick embryo by RNA-sequencing. Several genes encoding extracellular matrix proteins were found to be enriched in either anterior (e.g. Tenascin-C, Laminin alpha 4) or posterior (e.g. Fibulin-2, Fibromodulin, Collagen VI alpha 2) half-sclerotomes. Among them, the extracellular matrix protein Fibulin-2 was found specifically restricted to the posterior half-sclerotome. By using in ovo ectopic expression in chick somites, we found that Fibulin-2 modulates spinal axon growth trajectories in vivo. While no intrinsic axon repellent activity of Fibulin-2 was found, we showed that it enhances the growth cone repulsive activity of Semaphorin 3A in vitro. Some molecules regulating axon growth during development are found to be upregulated in the adult central nervous system (CNS) following traumatic injury. Here, we found increased Fibulin-2 protein levels in reactive astrocytes at the lesion site of a mouse model of CNS injury. Together, these results suggest that the developing vertebral column and the adult CNS share molecular features that control axon growth and plasticity, which may open up the possibility for the identification of novel therapeutic targets for brain and spinal cord injury.
Collapse
Affiliation(s)
- Julia Schaeffer
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK.
| | | | - Jean-Michel Cioni
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | | | - Roger Keynes
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| |
Collapse
|
8
|
Sheng J, Yu F, Chen D, Wang H, Lu L. Infection of grass carp reovirus induced the expressional suppression of pro-viral Fibulin-4 in host cells. FISH & SHELLFISH IMMUNOLOGY 2018; 77:294-297. [PMID: 29627476 DOI: 10.1016/j.fsi.2018.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Fibulin-4 is not only involved in connective tissue development and elastic fiber formation, but also plays critical neoplastic roles in tumor growth by activating Wnt/β-Catenin signaling in human. Recently, Fibulin-4 was shown to associate with grass carp reovirus (GCRV) outer capsid proteins and might relate to viral hemorrhagic disease in grass carp Ctenopharyngodon idella. Here, we monitored the expression pattern of Fibulin-4 during the infection course of GCRV at both translational and transcriptional levels, and found that Fibulin-4 was significantly suppressed upon the viral challenge in grass cap GCO cells. Over expression of Fibulin-4 was achieved by transduction of pEGFP-Fibulin-4 plasmids into GCO cells, which was confirmed by both Western blot and Real time RT-PCR analysis. In GCO cells with over-expression of Fibulin-4, significantly increase of viral protein synthesis and progeny virus production was detected. Our study indicated that Fibulin-4 displayed pro-viral function and was inhibited during viral challenge. Thus, repression of Fibulin-4 expression seemed to be involved in anti-viral response in grass carp Ctenopharyngodon idella.
Collapse
Affiliation(s)
- Jialu Sheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Fei Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Dubo Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, PR China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|
9
|
McAllister SC, Hanson RL, Grissom KN, Botto S, Moses AV. An In Vitro Model for Studying Cellular Transformation by Kaposi Sarcoma Herpesvirus. J Vis Exp 2017. [PMID: 28872106 DOI: 10.3791/54828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Kaposi sarcoma (KS) is an unusual tumor composed of proliferating spindle cells that is initiated by infection of endothelial cells (EC) with KSHV, and develops most often in the setting of immunosuppression. Despite decades of research, optimal treatment of KS remains poorly defined and clinical outcomes are especially unfavorable in resource-limited settings. KS lesions are driven by pathological angiogenesis, chronic inflammation, and oncogenesis, and various in vitro cell culture models have been developed to study these processes. KS arises from KSHV-infected cells of endothelial origin, so EC-lineage cells provide the most appropriate in vitro surrogates of the spindle cell precursor. However, because EC have a limited in vitro lifespan, and as the oncogenic mechanisms employed by KSHV are less efficient than those of other tumorigenic viruses, it has been difficult to assess the processes of transformation in primary or telomerase-immortalized EC. Therefore, a novel EC-based culture model was developed that readily supports transformation following infection with KSHV. Ectopic expression of the E6 and E7 genes of human papillomavirus type 16 allows for extended culture of age- and passage-matched mock- and KSHV-infected EC and supports the development of a truly transformed (i.e., tumorigenic) phenotype in infected cell cultures. This tractable and highly reproducible model of KS has facilitated the discovery of several essential signaling pathways with high potential for translation into clinical settings.
Collapse
Affiliation(s)
- Shane C McAllister
- Division of Pediatric Infectious Diseases, University of Minnesota Medical School;
| | - Ryan L Hanson
- Division of Pediatric Infectious Diseases, University of Minnesota Medical School
| | - Kyleen N Grissom
- Division of Pediatric Infectious Diseases, University of Minnesota Medical School
| | - Sara Botto
- Vaccine and Gene Therapy Institute, Oregon Health and Science University
| | - Ashlee V Moses
- Vaccine and Gene Therapy Institute, Oregon Health and Science University;
| |
Collapse
|
10
|
Tan H, Zhang J, Fu D, Zhu Y. Loss of fibulin-2 expression is involved in the inhibition of breast cancer invasion and forms a new barrier in addition to the basement membrane. Oncol Lett 2017; 14:2663-2668. [PMID: 28928811 PMCID: PMC5588154 DOI: 10.3892/ol.2017.6539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 02/13/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies have demonstrated that fibulin-2 may facilitate cancer cell invasion and metastasis during tumor progression. In the present study, immunohistochemical analyses of fibulin-2 and collagen IV expression in 35 patients with breast cancer were performed to define their localization and association with breast cancer tissue. Fibulin-2 was revealed to be expressed in all tissues surrounding the breast ducts and blood vessels in normal breast tissue, while its expression was not integrated in invasive ductal carcinoma or terminal duct-lobular unit. In malignant breast tissue, collagen IV was integrated around the duct, while fibulin-2 was expressed around collagen IV and was incomplete. These results demonstrated that fibulin-2 was associated with breast cancer invasion. Fibulin-2 expression decreased prior to basement membrane (BM) degradation, indicating that fibulin-2 forms an additional barrier around the BM. Therefore, it was proposed that fibulin-2 composes the general BM, which differs from the traditional BM. These results provide insight into extracellular matrix components and the involvement of fibulin-2 in tumor invasion and metastasis. Fibulin-2 was involved in the process of breast cancer development. It performed an important role in prevention of cancer cell penetration and metastasis.
Collapse
Affiliation(s)
- Haosheng Tan
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiaxin Zhang
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Deyuan Fu
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yuxiang Zhu
- Clinical Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
11
|
Gandhi J, Khera L, Gaur N, Paul C, Kaul R. Role of Modulator of Inflammation Cyclooxygenase-2 in Gammaherpesvirus Mediated Tumorigenesis. Front Microbiol 2017; 8:538. [PMID: 28400769 PMCID: PMC5368278 DOI: 10.3389/fmicb.2017.00538] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Chronic inflammation is recognized as a threat factor for cancer progression. Release of inflammatory molecules generates microenvironment which is highly favorable for development of tumor, cancer progression and metastasis. In cases of latent viral infections, generation of such a microenvironment is one of the major predisposing factors related to virus mediated tumorigenesis. Among various inflammatory mediators implicated in pathological process associated with cancer, the cyclooxygenase (COX) and its downstream effector molecules are of greater significance. Though the role of infectious agents in causing inflammation leading to transformation of cells has been more or less well established, however, the mechanism by which inflammation in itself modulates the events in life cycle of infectious agent is not very much clear. This is specifically important for gammaherpesviruses infections where viral life cycle is characterized by prolonged periods of latency when the virus remains hidden, immunologically undetectable and expresses only a very limited set of genes. Therefore, it is important to understand the mechanisms for role of inflammation in virus life cycle and tumorigenesis. This review is an attempt to summarize the latest findings highlighting the significance of COX-2 and its downstream signaling effectors role in life cycle events of gammaherpesviruses leading to progression of cancer.
Collapse
Affiliation(s)
- Jaya Gandhi
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Lohit Khera
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Nivedita Gaur
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Catherine Paul
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus New Delhi, India
| |
Collapse
|
12
|
Guo Y, Li W, Qin J, Lu C, Fan W. Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded microRNAs promote matrix metalloproteinases (MMPs) expression and pro-angiogenic cytokine secretion in endothelial cells. J Med Virol 2017; 89:1274-1280. [PMID: 28165144 DOI: 10.1002/jmv.24773] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/14/2016] [Accepted: 12/28/2016] [Indexed: 12/30/2022]
Abstract
The human oncogenic virus Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to Kaposi's sarcoma (KS), a tumor of endothelial cells characterized by angiogenesis and invasiveness. KSHV genome encodes 25 mature microRNAs (miRNAs), but their roles in KSHV-induced tumor dissemination and angiogenesis are not fully understood. In this study, we constructed the sensor reporters of KSHV miRNAs and used a luciferase reporter assay to demonstrate the function of the mimics of KSHV miRNAs. Then, we examined the expression of matrix metalloproteinases (MMPs) and pro-angiogenic cytokines that are related to cell migration and angiogenesis in the KSHV 25 miRNAs transfected endothelial cells. We found that all KSHV miRNAs increased the expression of the transcripts of MMP1, MMP13, VEGFA, and VEGFR2 in different degrees, as well as the secretion of VEGFA protein in the supernatant of endothelial cells. Our results reveal that KSHV miRNAs contribute to regulating MMPs and expression of pro-angiogenic factors, thus, suggesting that these miRNAs might play a crucial role in KSHV-induced cell motility and angiogenesis.
Collapse
Affiliation(s)
- Yuanyuan Guo
- The College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Jie Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Weifei Fan
- Department of Hematology and Oncology, Jiangsu Province Geriatric Hospital, Nanjing, P. R. China
| |
Collapse
|
13
|
Dai L, Trillo-Tinoco J, Chen Y, Bonstaff K, Del Valle L, Parsons C, Ochoa AC, Zabaleta J, Toole BP, Qin Z. CD147 and downstream ADAMTSs promote the tumorigenicity of Kaposi's sarcoma-associated herpesvirus infected endothelial cells. Oncotarget 2016; 7:3806-18. [PMID: 26675551 PMCID: PMC4826171 DOI: 10.18632/oncotarget.6584] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/25/2015] [Indexed: 01/09/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of several human cancers, including Kaposi's sarcoma (KS), which preferentially arise in immunocompromised patients and lack effective therapeutic options. We have previously shown that KSHV or viral protein LANA up-regulates the glycoprotein CD147, thereby inducing primary endothelial cell invasiveness. In the current study, we identify the global network controlled by CD147 in KSHV-infected endothelial cells using Illumina microarray analysis. Among downstream genes, two specific metalloproteases, ADAMTS1 and 9, are strongly expressed in AIDS-KS tissues and contribute to KSHV-infected endothelial cell invasiveness through up-regulation of IL-6 and VEGF. By using a KS-like nude mouse model, we found that targeting CD147 and downstream ADAMTSs significantly suppressed KSHV-induced tumorigenesis in vivo. Taken together, targeting CD147 and associated proteins may represent a promising therapeutic strategy against these KSHV-related malignancies.
Collapse
Affiliation(s)
- Lu Dai
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Jimena Trillo-Tinoco
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Yihan Chen
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Karlie Bonstaff
- Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Luis Del Valle
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Chris Parsons
- Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Augusto C Ochoa
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Bryan P Toole
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina and Hollings Cancer Center, Charleston, SC 29425, USA
| | - Zhiqiang Qin
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Departments of Microbiology/Immunology/Parasitology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| |
Collapse
|
14
|
Ren T, Lin S, Wang Z, Shang A. Differential proteomics analysis of low- and high-grade of astrocytoma using iTRAQ quantification. Onco Targets Ther 2016; 9:5883-5895. [PMID: 27713642 PMCID: PMC5045242 DOI: 10.2147/ott.s111103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Astrocytoma is one of the most common types of brain tumor, which is histologically and clinically classified into four grades (I–IV): I (pilocytic astrocytoma), II (diffuse astrocytoma), III (anaplastic astrocytoma), and IV (glioblastoma multiforme). A higher grade astrocytoma represents a worse prognosis and is more aggressive. In this study, we compared the differential proteome profile of astrocytoma from grades I to IV. The protein samples from clinical specimens of grades I, II, III, and IV astrocytoma were analyzed by two-dimensional liquid chromatography–tandem mass spectrometry and isobaric tags for relative and absolute quantitation and quantification. A total of 2,190 proteins were identified. Compared to grade I astrocytoma, 173 (12.4%), 304 (14%), and 462 (21.2%) proteins were aberrantly expressed in grades II, III, and IV, respectively. By bioinformatics analysis, the cell proliferation, invasion, and angiogenesis-related pathways increase from low- to high-grade of astrocytoma. Five differentially expressed proteins were validated by Western blot. Within them, matrix metalloproteinase-9 and metalloproteinase inhibitor 1 were upregulated in glioblastoma multiforme group; whereas fibulin-2 and -5 were downregulated in grade II/III/IV astrocytoma, and the negative expression was significantly associated with advanced clinical stage. Functional analysis showed that both fibulin-2 and -5 may exert an antitumor effect by inhibiting cell proliferation, in vitro migration/invasion in glioma cells. New molecular biomarkers are likely to be used for accurate classification of astrocytoma and likely to be the target for drug development.
Collapse
Affiliation(s)
- Tong Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Shide Lin
- Department of Spinal Cord Injury, Institute of Orthopedics and Traumatology of Chinese PLA, General Hospital of Jinan Military Area Command, Jinan
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai
| | - Aijia Shang
- Department of Neurosurgery, General Hospital of Chinese People's Liberation Army of China, Beijing, People's Republic of China
| |
Collapse
|
15
|
Snodgrass R, Gardner A, Jiang L, Fu C, Cesarman E, Erickson D. KS-Detect - Validation of Solar Thermal PCR for the Diagnosis of Kaposi's Sarcoma Using Pseudo-Biopsy Samples. PLoS One 2016; 11:e0147636. [PMID: 26799834 PMCID: PMC4723253 DOI: 10.1371/journal.pone.0147636] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 12/28/2022] Open
Abstract
Resource-limited settings present unique engineering challenges for medical diagnostics. Diagnosis is often needed for those unable to reach central healthcare systems, making portability and independence from traditional energy infrastructure essential device parameters. In 2014, our group presented a microfluidic device that performed a solar-powered variant of the polymerase chain reaction, which we called solar thermal PCR. In this work, we expand on our previous effort by presenting an integrated, portable, solar thermal PCR system targeted towards the diagnosis of Kaposi’s sarcoma. We call this system KS-Detect, and we now report the system’s performance as a diagnostic tool using pseudo-biopsy samples made from varying concentrations of human lymphoma cell lines positive for the KS herpesvirus (KSHV). KS-Detect achieved 83% sensitivity and 70% specificity at high (≥10%) KSHV+ cell concentrations when diagnosing pseudo-biopsy samples by smartphone image. Using histology, we confirm that our prepared pseudo-biopsies contain similar KSHV+ cell concentrations as human biopsies positive for KS. Through our testing of samples derived from human cell lines, we validate KS-Detect as a viable, portable KS diagnostic tool, and we identify critical engineering considerations for future solar-thermal PCR devices.
Collapse
Affiliation(s)
- Ryan Snodgrass
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Andrea Gardner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Li Jiang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Cheng Fu
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (EC); (DE)
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail: (EC); (DE)
| |
Collapse
|
16
|
Alcendor DJ. KSHV Down-regulates Tropoelastin in Both an in-vitro and in-vivo Kaposi's Sarcoma Model. JOURNAL OF ONCOBIOMARKERS 2015; 2:1-7. [PMID: 26191531 PMCID: PMC4505378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Kaposi's sarcoma (KS), a common cancer in individuals with HIV/AIDS, lacks a curative therapy. Few studies have examined changes in extracellular matrix (ECM) protein profiles in the development of KS. Here we used an in vitro (human dermal microvascular endothelial cells, DMVEC) and an in vivo mECK mouse model of Kaposi's to study the impact of infection on tropoelastin. Using DMVEC, Kaposi's sarcoma-associated herpesvirus (KSHV) reduced tropoelastin transcription when examined at 2, 5, 7, and 10 days post addition, a finding that was inversely correlated with a rise in viral latency associated nuclear antigen (LANA) transcription. Immunohistochemical/immunofluorescence data confirmed that DMVEC cells were KSHV-infected (evidenced by LANA production) and that there was a loss of tropoelastin protein compared to controls. Using the mECK36 mouse model of KS we observed a reduced expression of tropoelastin mRNA in 3 of 3 tumor biopsies compared to controls. Immunofluorescence staining showed high levels of viral LANA expression in the tumor core, while immunohistochemical staining showed high levels of LANA expression and spindle cells in tumors. Dual label immunohistochemistry on formalin-fixed paraffin-embedded tumor tissue revealed reduced expression of tropoelastin in LANA positive spindle cell regions quantified by Ariol SL-50 scanning analysis. Together, this suggests that alterations in tropoelastin may play an important role in the development of Kaposi's and could serve as an early marker of this disease. This information will also allow us to explore the potential role of tropoelastin anti angiogenic properties in an in vivo model for KS disease.
Collapse
Affiliation(s)
- Donald J. Alcendor
- Address for Correspondence. Donald J. Alcendor, Center for AIDS Health Disparities Research and the Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA, Tel: (+1) 615- 327-6449; Fax:(+1) 615- 327-6929;
| |
Collapse
|
17
|
Missan DS, Chittur SV, DiPersio CM. Regulation of fibulin-2 gene expression by integrin α3β1 contributes to the invasive phenotype of transformed keratinocytes. J Invest Dermatol 2014; 134:2418-2427. [PMID: 24694902 PMCID: PMC4134363 DOI: 10.1038/jid.2014.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 02/28/2014] [Indexed: 11/09/2022]
Abstract
The laminin-binding integrin α3β1 is highly expressed in epidermal keratinocytes, where it regulates both cell-autonomous and paracrine functions that promote wound healing and skin tumorigenesis. However, the roles for α3β1 in regulating gene expression programs that control the behaviors of immortalized or transformed keratinocytes remain underexplored. In the current study, we used a microarray approach to identify genes that are regulated by α3β1 in immortalized keratinocytes. α3β1-Responsive genes included several genes that are involved in extracellular matrix proteolysis or remodeling, including fibulin-2 and secreted protein acidic and rich in cysteine. However, α3β1-dependent induction of specific target genes was influenced by the genetic lesion that triggered immortalization, as α3β1-dependent fibulin-2 expression occurred in cells immortalized by either SV40 large T antigen or p53-null mutation, whereas α3β1-dependent expression of secreted protein acidic and rich in cysteine occurred only in the former cells. Interestingly, quantitative PCR arrays did not reveal strong patterns of α3β1-dependent gene expression in freshly isolated primary keratinocytes, suggesting that this regulation is acquired during immortalization. p53-null keratinocytes transformed with oncogenic RasV12 retained α3β1-dependent fibulin-2 expression, and RNAi-mediated knockdown of fibulin-2 in these cells reduced invasion, although not their tumorigenic potential. These findings demonstrate a prominent role for α3β1 in immortalized/transformed keratinocytes in regulating fibulin-2 and other genes that promote matrix remodeling and invasion.
Collapse
Affiliation(s)
- Dara S Missan
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany, Rensselaer, New York, USA
| | - C Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
18
|
Site-specific association with host and viral chromatin by Kaposi's sarcoma-associated herpesvirus LANA and its reversal during lytic reactivation. J Virol 2014; 88:6762-77. [PMID: 24696474 DOI: 10.1128/jvi.00268-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Latency-associated nuclear antigen (LANA), a multifunctional protein expressed by the Kaposi sarcoma-associated herpesvirus (KSHV) in latently infected cells, is required for stable maintenance of the viral episome. This is mediated by two interactions: LANA binds to specific sequences (LBS1 and LBS2) on viral DNA and also engages host histones, tethering the viral genome to host chromosomes in mitosis. LANA has also been suggested to affect host gene expression, but both the mechanism(s) and role of this dysregulation in KSHV biology remain unclear. Here, we have examined LANA interactions with host chromatin on a genome-wide scale using chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) and show that LANA predominantly targets human genes near their transcriptional start sites (TSSs). These host LANA-binding sites are generally found within transcriptionally active promoters and display striking overrepresentation of a consensus DNA sequence virtually identical to the LANA-binding site 1 (LBS1) motif in KSHV DNA. Comparison of the ChIP-seq profile with whole-transcriptome (high-throughput sequencing of RNA transcripts [RNA-seq]) data reveals that few of the genes that are differentially regulated in latent infection are occupied by LANA at their promoters. This suggests that direct LANA binding to promoters is not the prime determinant of altered host transcription in KSHV-infected cells. Most surprisingly, the association of LANA to both host and viral DNA is strongly disrupted during the lytic cycle of KSHV. This disruption can be prevented by the inhibition of viral DNA synthesis, suggesting the existence of novel and potent regulatory mechanisms linked to either viral DNA replication or late gene expression. IMPORTANCE Here, we employ complementary genome-wide analyses to evaluate the distribution of the highly abundant latency-associated nuclear antigen, LANA, on the host genome and its impact on host gene expression during KSHV latent infection. Combined, ChIP-seq and RNA-seq reveal that LANA accumulates at active gene promoters that harbor specific short DNA sequences that are highly reminiscent of its cognate binding sites in the virus genome. Unexpectedly, we found that such association does not lead to remodeling of global host transcription during latency. We also report for the first time that LANA's ability to bind host and viral chromatin is highly dynamic and is disrupted in cells undergoing an extensive lytic reactivation. This therefore suggests that the association of LANA to chromatin during a productive infection cycle is controlled by a new regulatory mechanism.
Collapse
|
19
|
Kanan Y, Brobst D, Han Z, Naash MI, Al-Ubaidi MR. Fibulin 2, a tyrosine O-sulfated protein, is up-regulated following retinal detachment. J Biol Chem 2014; 289:13419-33. [PMID: 24692557 DOI: 10.1074/jbc.m114.562157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retinal detachment is the physical separation of the retina from the retinal pigment epithelium. It occurs during aging, trauma, or during a variety of retinal disorders such as age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, or as a complication following cataract surgery. This report investigates the role of fibulin 2, an extracellular component, in retinal detachment. A major mechanism for detachment resolution is enhancement of cellular adhesion between the retina and the retinal pigment epithelium and prevention of its cellular migration. This report shows that fibulin 2 is mainly present in the retinal pigment epithelium, Bruch membrane, choriocapillary, and to a lesser degree in the retina. In vitro studies revealed the presence of two isoforms for fibulin 2. The small isoform is located inside the cell, and the large isoform is present inside and outside the cells. Furthermore, fibulin 2 is post-translationally modified by tyrosine sulfation, and the sulfated isoform is present outside the cell, whereas the unsulfated pool is internally located. Interestingly, sulfated fibulin 2 significantly reduced the rate of cellular growth and migration. Finally, levels of fibulin 2 dramatically increased in the retinal pigment epithelium following retinal detachment, suggesting a direct role for fibulin 2 in the re-attachment of the retina to the retinal pigment epithelium. Understanding the role of fibulin 2 in enhancing retinal attachment is likely to help improve the current therapies or allow the development of new strategies for the treatment of this sight-threatening condition.
Collapse
Affiliation(s)
- Yogita Kanan
- From the Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | | | | | | | | |
Collapse
|
20
|
Baird BN, Schliekelman MJ, Ahn YH, Chen Y, Roybal JD, Gill BJ, Mishra DK, Erez B, O’Reilly M, Yang Y, Patel M, Liu X, Thilaganathan N, Larina IV, Dickinson ME, West JL, Gibbons DL, Liu DD, Kim MP, Hicks JM, Wistuba II, Hanash SM, Kurie JM. Fibulin-2 is a driver of malignant progression in lung adenocarcinoma. PLoS One 2013; 8:e67054. [PMID: 23785517 PMCID: PMC3677922 DOI: 10.1371/journal.pone.0067054] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/13/2013] [Indexed: 11/23/2022] Open
Abstract
The extracellular matrix of epithelial tumors undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How matrix integrity is maintained in the face of dynamic biophysical forces is largely undefined. Here we investigated the role of fibulin-2, a matrix glycoprotein that functions biomechanically as an inter-molecular clasp and thereby facilitates supra-molecular assembly. Fibulin-2 was abundant in the extracellular matrix of human lung adenocarcinomas and was highly expressed in tumor cell lines derived from mice that develop metastatic lung adenocarcinoma from co-expression of mutant K-ras and p53. Loss-of-function experiments in tumor cells revealed that fibulin-2 was required for tumor cells to grow and metastasize in syngeneic mice, a surprising finding given that other intra-tumoral cell types are known to secrete fibulin-2. However, tumor cells grew and metastasized equally well in Fbln2-null and -wild-type littermates, implying that malignant progression was dependent specifically upon tumor cell-derived fibulin-2, which could not be offset by other cellular sources of fibulin-2. Fibulin-2 deficiency impaired the ability of tumor cells to migrate and invade in Boyden chambers, to create a stiff extracellular matrix in mice, to cross-link secreted collagen, and to adhere to collagen. We conclude that fibulin-2 is a driver of malignant progression in lung adenocarcinoma and plays an unexpected role in collagen cross-linking and tumor cell adherence to collagen.
Collapse
Affiliation(s)
- Brandi N. Baird
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Mark J. Schliekelman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Young-Ho Ahn
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Yulong Chen
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Jonathon D. Roybal
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Bartley J. Gill
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Dhruva K. Mishra
- Department of Surgery, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Baruch Erez
- Department of Radiation Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael O’Reilly
- Department of Radiation Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Yanan Yang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Mayuri Patel
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Nishan Thilaganathan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. West
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Diane D. Liu
- Department of Biostatistics, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Min P. Kim
- Department of Surgery, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - John M. Hicks
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ignacio I. Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Samir M. Hanash
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Obaya AJ, Rua S, Moncada-Pazos A, Cal S. The dual role of fibulins in tumorigenesis. Cancer Lett 2012; 325:132-8. [PMID: 22781395 DOI: 10.1016/j.canlet.2012.06.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/26/2012] [Accepted: 06/30/2012] [Indexed: 11/24/2022]
Abstract
The human fibulin family consists of seven complex extracellular glycoproteins originally characterized as components of elastic fibers in connective tissue. However, beyond its structural role, fibulins are involved in complex biological processes such as cell adhesion, migration or proliferation. Indeed, they have proved to be essential elements in normal physiology, as shown by mouse models lacking these proteins, that evidence several developmental abnormalities and pathological features. Their relevance is also apparent in tumorigenesis, an aspect that has started to be intensely studied. Distinct fibulins are expressed in both tumor and stromal cells and are subjected to multiple expression regulations with either anti or pro-tumor effects. The mechanistic insights that underlie these observations are now commencing to emerge, portraying these proteins as very versatile and active constituents of connective tissue. The aim of this review is to highlight the most relevant connections between fibulins and cancer.
Collapse
Affiliation(s)
- Alvaro J Obaya
- Departamento de Biología Funcional, Area de Fisiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|