1
|
Qian Y, Xiong S, Li L, Sun Z, Zhang L, Yuan W, Cai H, Feng G, Wang X, Yao H, Gao Y, Guo L, Wang Z. Spatial multiomics atlas reveals smooth muscle phenotypic transformation and metabolic reprogramming in diabetic macroangiopathy. Cardiovasc Diabetol 2024; 23:358. [PMID: 39395983 PMCID: PMC11471023 DOI: 10.1186/s12933-024-02458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Diabetic macroangiopathy has been the main cause of death and disability in diabetic patients. The mechanisms underlying smooth muscle cell transformation and metabolic reprogramming other than abnormal glucose and lipid metabolism remain to be further explored. METHOD Single-cell transcriptome, spatial transcriptome and spatial metabolome sequencing were performed on anterior tibial artery from 11 diabetic patients with amputation. Multi-omics integration, cell communication analysis, time series analysis, network analysis, enrichment analysis, and gene expression analysis were performed to elucidate the potential molecular features. RESULT We constructed a spatial multiomics map of diabetic blood vessels based on multiomics integration, indicating single-cell and spatial landscape of transcriptome and spatial landscape of metabolome. At the same time, the characteristics of cell composition and biological function of calcified regions were obtained by integrating spatial omics and single cell omics. On this basis, our study provides favorable evidence for the cellular fate of smooth muscle cells, which can be transformed into pro-inflammatory chemotactic smooth muscle cells, macrophage-like smooth muscle cells/foam-like smooth muscle cells, and fibroblast/chondroblast smooth muscle cells in the anterior tibial artery of diabetic patients. The smooth muscle cell phenotypic transformation is driven by transcription factors net including KDM5B, DDIT3, etc. In addition, in order to focus on metabolic reprogramming apart from abnormal glucose and lipid metabolism, we constructed a metabolic network of diabetic vascular activation, and found that HNMT and CYP27A1 participate in diabetic vascular metabolic reprogramming by combining public data. CONCLUSION This study constructs the spatial gene-metabolism map of the whole anterior tibial artery for the first time and reveals the characteristics of vascular calcification, the phenotypic transformation trend of SMCs, and the transcriptional driving network of SMCs phenotypic transformation of diabetic macrovascular disease. In the perspective of combining the transcriptome and metabolome, the study demonstrates the activated metabolic pathways in diabetic blood vessels and the key genes involved in diabetic metabolic reprogramming.
Collapse
Affiliation(s)
- Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Honghua Cai
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiaoguang Wang
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Haipeng Yao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Yun Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
2
|
Abedsaeidi M, Hojjati F, Tavassoli A, Sahebkar A. Biology of Tenascin C and its Role in Physiology and Pathology. Curr Med Chem 2024; 31:2706-2731. [PMID: 37021423 DOI: 10.2174/0929867330666230404124229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/07/2023]
Abstract
Tenascin-C (TNC) is a multimodular extracellular matrix (ECM) protein hexameric with several molecular forms (180-250 kDa) produced by alternative splicing at the pre-mRNA level and protein modifications. The molecular phylogeny indicates that the amino acid sequence of TNC is a well-conserved protein among vertebrates. TNC has binding partners, including fibronectin, collagen, fibrillin-2, periostin, proteoglycans, and pathogens. Various transcription factors and intracellular regulators tightly regulate TNC expression. TNC plays an essential role in cell proliferation and migration. Unlike embryonic tissues, TNC protein is distributed over a few tissues in adults. However, higher TNC expression is observed in inflammation, wound healing, cancer, and other pathological conditions. It is widely expressed in a variety of human malignancies and is recognized as a pivotal factor in cancer progression and metastasis. Moreover, TNC increases both pro-and anti-inflammatory signaling pathways. It has been identified as an essential factor in tissue injuries such as damaged skeletal muscle, heart disease, and kidney fibrosis. This multimodular hexameric glycoprotein modulates both innate and adaptive immune responses regulating the expression of numerous cytokines. Moreover, TNC is an important regulatory molecule that affects the onset and progression of neuronal disorders through many signaling pathways. We provide a comprehensive overview of the structural and expression properties of TNC and its potential functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Malihehsadat Abedsaeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzaneh Hojjati
- Division of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Shi X, Zhu S, Liu M, Stone SS, Rong Y, Mao K, Xu X, Ma C, Jiang Z, Zha Y, Yan C, Yu X, Wu D, Liu G, Mi J, Zhao J, Li Y, Ding Y, Wang X, Zhang YB, Ji X. Single-Cell RNA-Seq Reveals a Population of Smooth Muscle Cells Responsible for Atherogenesis. Aging Dis 2022; 13:1939-1953. [PMID: 36465170 PMCID: PMC9662277 DOI: 10.14336/ad.2022.0313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/13/2022] [Indexed: 01/30/2024] Open
Abstract
Understanding the regional propensity differences of atherosclerosis (AS) development is hindered by the lack of animal models suitable for the study of the disease process. In this paper, we used 3S-ASCVD dogs, an ideal large animal human-like models for AS, to interrogate the heterogeneity of AS-prone and AS-resistant arteries; and at the single-cell level, identify the dominant cells involved in AS development. Here we present data from 3S-ASCVD dogs which reliably mimic human AS pathophysiology, predilection for lesion sites, and endpoint events. Our analysis combined bulk RNA-seq with single-cell RNA-seq to depict the transcriptomic profiles and cellular atlas of AS-prone and AS-resistant arteries in 3S-ASCVD dogs. Our results revealed the integral role of smooth muscle cells (SMCs) in regional propensity for AS. Notably, TNC+ SMCs were major contributors to AS development in 3S-ASCVD dogs, indicating enhanced extracellular matrix remodeling and transition to myofibroblasts during the AS process. Moreover, TNC+ SMCs were also present in human AS-prone carotid plaques, suggesting a potential origin of myofibroblasts and supporting the relevance of our findings. Our study provides a promising large animal model for pre-clinical studies of ASCVD and add novel insights surrounding the regional propensity of AS development in humans, which may lead to interventions that delay or prevent lesion progression and adverse clinical events.
Collapse
Affiliation(s)
- Xiaofeng Shi
- School of Engineering Medicine, Beihang University, Beijing, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| | - Shangming Zhu
- School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Meijing Liu
- School of Engineering Medicine, Beihang University, Beijing, China.
| | - Sara Saymuah Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yao Rong
- School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Ke Mao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Xiaopeng Xu
- School of Engineering Medicine, Beihang University, Beijing, China.
| | - Chao Ma
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Zhuoyuan Jiang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yan Zha
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Chun Yan
- School of Engineering Medicine, Beihang University, Beijing, China.
| | - Xiaofan Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Guiyou Liu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| | - Jidong Mi
- Beijing SINOGENE Biotechnology Co., Ltd, Beijing, China.
| | - Jianping Zhao
- Beijing SINOGENE Biotechnology Co., Ltd, Beijing, China.
| | - Yuan Li
- Beijing SINOGENE Biotechnology Co., Ltd, Beijing, China.
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Xiaogang Wang
- School of Engineering Medicine, Beihang University, Beijing, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University) Ministry of Industry and Information Technology, Beijing, China.
| | - Yong-Biao Zhang
- School of Engineering Medicine, Beihang University, Beijing, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University) Ministry of Industry and Information Technology, Beijing, China.
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Lu Y, Liu H, Dong B, Yang J, Kou L, Qin Q. Correlation between platelet-derived growth factor-B gene polymorphism and coronary heart disease. J Clin Lab Anal 2022; 36:e24683. [PMID: 36059119 PMCID: PMC9550974 DOI: 10.1002/jcla.24683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/26/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECT The aim of the present work was to investigate the correlation of plasma platelet-derived growth factor (PDGF)-BB level and single nucleotide polymorphism (SNP, rs1800817 and rs2285094) of PDGF-B gene with the onset and stability condition of coronary heart disease (CHD). METHODS Totally, 335 subjects were included in and divided into CHD (n = 247) and control group (n = 88) according to coronary angiography. Besides, the patients in the CHD group were divided into acute coronary syndrome (ACS) group (n = 165) and stable angina pectoria (SAP) group (n = 82), based on CHD stability condition. The plasma PDGF-BB level was measured by ELISA, and the genotype of PDGF-B was examined through qPCR assay. RESULTS The PDGF-BB level was positively correlated with hsCRP level (r = 0.149, p < 0.05). The genotype frequencies of SNP rs1800817 and rs2285094 match Hardy-Weinberg equilibrium. There was weak linkage disequilibrium between SNP rs1800817 and rs2285094: D' = 0.419, r2 = 0.04, which has no correlation with CHD. There was no statistical difference in plasma PDGF-BB level among different genotypes in rs1800817 and rs2285094. There were no differences in the plasma PDGF-BB level among patients with any genotype of SNP rs1800817 and rs2285094, no matter how it was grouped. Logistic regression results indicated that the plasma PDGF-BB level was the independent risk factor of CHD onset (OR = 1.003, 95% CI 1.001-1.006, p = 0.014). CONCLUSIONS High plasma PDGF-BB level is the risk factor of CHD and has correlation with instability of CHD. The plasma PDGF-BB level change may be related to inflammatory response. PDGF-B gene rs1800817 and rs2285094 polymorphisms are not correlated with CHD.
Collapse
Affiliation(s)
- Yaru Lu
- Department of Cardiology, Tianjin Chest Hospital, Chest Hospital Tianjin University, Tianjin, China
| | - Hui Liu
- Department of Hematology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Bo Dong
- Department of Cardiology, Tianjin Chest Hospital, Chest Hospital Tianjin University, Tianjin, China
| | - Jingyu Yang
- Department of Cardiology, Tianjin Chest Hospital, Chest Hospital Tianjin University, Tianjin, China
| | - Lu Kou
- Department of Cardiology, Tianjin Chest Hospital, Chest Hospital Tianjin University, Tianjin, China
| | - Qin Qin
- Department of Cardiology, Tianjin Chest Hospital, Chest Hospital Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Surface engineering of 3D-printed scaffolds with minerals and a pro-angiogenic factor for vascularized bone regeneration. Acta Biomater 2022; 140:730-744. [PMID: 34896633 DOI: 10.1016/j.actbio.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Scaffolds functionalized with biomolecules have been developed for bone regeneration but inducing the regeneration of complex structured bone with neovessels remains a challenge. For this study, we developed three-dimensional printed scaffolds with bioactive surfaces coated with minerals and platelet-derived growth factor. The minerals were homogeneously deposited on the surface of the scaffold using 0.01 M NaHCO3 with epigallocatechin gallate in simulated body fluid solution (M2). The M2 scaffold demonstrated enhanced mineral coating amount per scaffold with a greater compressive modulus than the others which used different concentration of NaHCO3. Then, we immobilized PDGF on the mineralized scaffold (M2/P), which enhanced the osteogenic differentiation of human adipose derived stem cells in vitro and promoted the secretion of pro-angiogenic factors. Cells cultured in M2/P showed remarkable ratio of osteocalcin- and osteopontin-positive nuclei, and M2/P-derived medium induced endothelial cells to form tubule structures. Finally, the implanted M2/P scaffolds onto mouse calvarial defects had regenerated bone in 80.8 ± 9.8% of the defect area with the arterioles were formed, after 8 weeks. In summary, our scaffold, which composed of minerals and pro-angiogenic growth factor, could be used therapeutically to improve the regeneration of bone with a highly vascularized structure. STATEMENT OF SIGNIFICANCE: Surface engineered scaffolds have been developed for bone regeneration but inducing the volumetric regeneration of bone with neovessels remains a challenge. In here, we developed 3D printed scaffolds with bioactive surfaces coated with bio-minerals and platelet-derived growth factors. We proved that the 0.01 M NaHCO3 with polyphenol in simulated body fluid solution enhanced the deposition of bio-minerals and even distribution on the surface of scaffold. The in vitro studies demonstrated that the attached cells on the bioactive surface showed the enhanced osteogenic differentiation and secretion of pro-angiogenic factors. Finally, the scaffold with bioactive surface not only improved the regenerated volume of bone tissues but also increased neovessel formation after in vivo implantation onto mouse calvarial defect.
Collapse
|
6
|
Masoud AG, Lin J, Azad AK, Farhan MA, Fischer C, Zhu LF, Zhang H, Sis B, Kassiri Z, Moore RB, Kim D, Anderson CC, Vederas JC, Adam BA, Oudit GY, Murray AG. Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury. J Clin Invest 2020; 130:94-107. [PMID: 31738185 DOI: 10.1172/jci128469] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/18/2019] [Indexed: 01/06/2023] Open
Abstract
Sustained, indolent immune injury of the vasculature of a heart transplant limits long-term graft and recipient survival. This injury is mitigated by a poorly characterized, maladaptive repair response. Vascular endothelial cells respond to proangiogenic cues in the embryo by differentiation to specialized phenotypes, associated with expression of apelin. In the adult, the role of developmental proangiogenic cues in repair of the established vasculature is largely unknown. We found that human and minor histocompatibility-mismatched donor mouse heart allografts with alloimmune-mediated vasculopathy upregulated expression of apelin in arteries and myocardial microvessels. In vivo, loss of donor heart expression of apelin facilitated graft immune cell infiltration, blunted vascular repair, and worsened occlusive vasculopathy in mice. In vitro, an apelin receptor agonist analog elicited endothelial nitric oxide synthase activation to promote endothelial monolayer wound repair and reduce immune cell adhesion. Thus, apelin acted as an autocrine growth cue to sustain vascular repair and mitigate the effects of immune injury. Treatment with an apelin receptor agonist after vasculopathy was established markedly reduced progression of arterial occlusion in mice. Together, these initial data identify proangiogenic apelin as a key mediator of coronary vascular repair and a pharmacotherapeutic target for immune-mediated injury of the coronary vasculature.
Collapse
Affiliation(s)
| | - Jiaxin Lin
- Department of Surgery.,Department of Medical Microbiology and Immunology, and
| | | | | | - Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hao Zhang
- Department of Medicine.,Mazankowski Heart Institute, Edmonton, Alberta, Canada
| | - Banu Sis
- Department of Laboratory Medicine and Pathology and
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Colin C Anderson
- Department of Surgery.,Department of Medical Microbiology and Immunology, and
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Gavin Y Oudit
- Department of Medicine.,Mazankowski Heart Institute, Edmonton, Alberta, Canada
| | | |
Collapse
|
7
|
Xue CD, Chen Y, Ren JL, Zhang LS, Liu X, Yu YR, Tang CS, Qi YF. Endogenous intermedin protects against intimal hyperplasia by inhibiting endoplasmic reticulum stress. Peptides 2019; 121:170131. [PMID: 31408662 DOI: 10.1016/j.peptides.2019.170131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022]
Abstract
Extensive proliferation of vascular smooth muscle cell (VSMC) contributes to intimal hyperplasia following vascular injury, in which endoplasmic reticulum stress (ERS) plays a critical role. Intermedin (IMD) is a vascular paracrine/autocrine peptide exerting numerous beneficial effects in cardiovascular diseases. IMD overexpression could alleviate intimal hyperplasia. Here, we investigated whether endogenous IMD protects against intimal hyperplasia by inhibiting endoplasmic reticulum stress. The mouse left common carotid-artery ligation-injury model was established to induce intimal hyperplasia using IMD-/-mice and C57BL/6 J wild-type (WT) mice. Platelet-derived growth factor-BB (PDGF-BB) was used to stimulate the proliferation of VSMC. IMD-/- mice displayed exacerbated intimal hyperplasia induced by complete ligation of the left carotid artery at 14 d and 28 d compared to WT mice. However, IMD-deficiency had no effect on blood pressure, plasma triglyceride, and fasting blood glucose levels in mice. Furthermore, VSMCs derived from IMD-/- mice showed increased cell proliferation and dramatically elevated levels of glucose regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), ATF6 mRNA under PDGF-BB treatment compared to WT mice-derived VSMCs. In addition, exogenous administration of IMD significantly attenuated PDGF-BB-induced cell proliferation and GRP78, phosphorylase-inositol requiring enzyme 1α, ATF4, and ATF6 protein levels. Thus, endogenous IMD may counteract ERS to exert protective role in response to vascular injury and IMD is expected to be a therapeutic target for the prevention and treatment of restenosis.
Collapse
MESH Headings
- Activating Transcription Factor 4
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Animals
- Becaplermin/pharmacology
- Carotid Arteries/surgery
- Cell Proliferation/drug effects
- Disease Models, Animal
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/genetics
- Gene Expression Regulation
- Heat-Shock Proteins
- Hyperplasia/genetics
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Hyperplasia/prevention & control
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neuropeptides/deficiency
- Neuropeptides/genetics
- Primary Cell Culture
- Signal Transduction
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Chang-Ding Xue
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Xin Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Chao-Shu Tang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China.
| |
Collapse
|
8
|
Xie X, Urabe G, Marcho L, Stratton M, Guo LW, Kent CK. ALDH1A3 Regulations of Matricellular Proteins Promote Vascular Smooth Muscle Cell Proliferation. iScience 2019; 19:872-882. [PMID: 31513972 PMCID: PMC6739626 DOI: 10.1016/j.isci.2019.08.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/09/2019] [Accepted: 08/21/2019] [Indexed: 01/24/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation promotes intimal hyperplasia (IH) in occluding vascular diseases. Here we identified a positive role of ALDH1A3 (an aldehyde dehydrogenase) in this pro-IH process. The expression of ALDH1A3, but not that of 18 other isoforms of the ALDH family, was substantially increased in cytokine-stimulated VSMCs. PDGF(BB) stimulated VSMC total ALDH activity and proliferation, whereas ALDH1A3 silencing abolished this effect. ALDH1A3 silencing also diminished the expression of two matricellular proteins (TNC1 and ESM1), revealing a previously unrecognized ALDH1A3 function. Loss-of-function experiments demonstrated that TNC1 and ESM1 mediated ALDH1A3's pro-proliferative function via activation of AKT/mTOR and/or MEK/ERK pathways. Furthermore, ALDH inhibition with disulfiram blocked VSMC proliferation/migration in vitro and decreased TNC1 and ESM1 and IH in angioplasty-injured rat carotid arteries. Thus, ALDH1A3 promotes VSMC proliferation at least partially through TNC1/ESM1 upregulation; dampening excessive ALDH1A3 activity represents a potential approach to IH mitigation. The ALDH1A3 isoform promotes vascular smooth muscle cell proliferation ALDH1A3's function is mediated by its upregulation of TNC1 and ESM1 The pan-ALDH inhibitor drug disulfiram mitigates intimal hyperplasia
Collapse
Affiliation(s)
- Xiujie Xie
- Department of Surgery, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Go Urabe
- Department of Surgery, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lynn Marcho
- Department of Surgery, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Stratton
- Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lian-Wang Guo
- Department of Surgery, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Craig K Kent
- Department of Surgery, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Alhendi AMN, Patrikakis M, Daub CO, Kawaji H, Itoh M, de Hoon M, Carninci P, Hayashizaki Y, Arner E, Khachigian LM. Promoter Usage and Dynamics in Vascular Smooth Muscle Cells Exposed to Fibroblast Growth Factor-2 or Interleukin-1β. Sci Rep 2018; 8:13164. [PMID: 30177712 PMCID: PMC6120868 DOI: 10.1038/s41598-018-30702-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/03/2018] [Indexed: 01/22/2023] Open
Abstract
Smooth muscle cells (SMC) in blood vessels are normally growth quiescent and transcriptionally inactive. Our objective was to understand promoter usage and dynamics in SMC acutely exposed to a prototypic growth factor or pro-inflammatory cytokine. Using cap analysis gene expression (FANTOM5 project) we report differences in promoter dynamics for immediate-early genes (IEG) and other genes when SMC are exposed to fibroblast growth factor-2 or interleukin-1β. Of the 1871 promoters responding to FGF2 or IL-1β considerably more responded to FGF2 (68.4%) than IL-1β (18.5%) and 13.2% responded to both. Expression clustering reveals sets of genes induced, repressed or unchanged. Among IEG responding rapidly to FGF2 or IL-1β were FOS, FOSB and EGR-1, which mediates human SMC migration. Motif activity response analysis (MARA) indicates most transcription factor binding motifs in response to FGF2 were associated with a sharp induction at 1 h, whereas in response to IL-1β, most motifs were associated with a biphasic change peaking generally later. MARA revealed motifs for FOS_FOS{B,L1}_JUN{B,D} and EGR-1..3 in the cluster peaking 1 h after FGF2 exposure whereas these motifs were in clusters peaking 1 h or later in response to IL-1β. Our findings interrogating CAGE data demonstrate important differences in promoter usage and dynamics in SMC exposed to FGF2 or IL-1β.
Collapse
Affiliation(s)
- Ahmad M N Alhendi
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Margaret Patrikakis
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Carsten O Daub
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biosciences and Nutrition and Science for Life Laboratory, Karolinska Institutet, SE-141 86, Stockholm, Sweden
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masayoshi Itoh
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Michiel de Hoon
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- Laboratory for Applied Computational Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Erik Arner
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST DGT), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, 230-0045, Japan
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
10
|
Liu J, Amar F, Corona C, So RWL, Andrews SJ, Nagy PL, Shelanski ML, Greene LA. Brain-Derived Neurotrophic Factor Elevates Activating Transcription Factor 4 (ATF4) in Neurons and Promotes ATF4-Dependent Induction of Sesn2. Front Mol Neurosci 2018; 11:62. [PMID: 29599707 PMCID: PMC5863619 DOI: 10.3389/fnmol.2018.00062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
Activating transcription factor 4 (ATF4) plays important physiologic roles in the brain including regulation of learning and memory as well as neuronal survival and death. Yet, outside of translational regulation by the eIF2α-dependent stress response pathway, there is little information about how its levels are controlled in neurons. Here, we show that brain-derived neurotrophic factor (BDNF) promotes a rapid and sustained increase in neuronal ATF4 transcripts and protein levels. This increase is dependent on tropomyosin receptor kinase (TrkB) signaling, but independent of levels of phosphorylated eIF2α. The elevation in ATF4 protein occurs both in nuclei and processes. Transcriptome analysis revealed that ATF4 mediates BDNF-promoted induction of Sesn2 which encodes Sestrin2, a protector against oxidative and genotoxic stresses and a mTor complex 1 inhibitor. In contrast, BDNF-elevated ATF4 did not affect expression of a number of other known ATF4 targets including several with pro-apoptotic activity. The capacity of BDNF to elevate neuronal ATF4 may thus represent a means to maintain this transcription factor at levels that provide neuroprotection and optimal brain function without risk of triggering neurodegeneration.
Collapse
Affiliation(s)
- Jin Liu
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Fatou Amar
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Carlo Corona
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Raphaella W L So
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Stuart J Andrews
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Peter L Nagy
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Michael L Shelanski
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
11
|
Perdu S, Castellana B, Kim Y, Chan K, DeLuca L, Beristain AG. Maternal obesity drives functional alterations in uterine NK cells. JCI Insight 2016; 1:e85560. [PMID: 27699222 DOI: 10.1172/jci.insight.85560] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over one-fifth of North American women of childbearing age are obese, putting these women at risk for a variety of detrimental chronic diseases. In addition, obesity increases the risk for developing major complications during pregnancy. The mechanisms by which obesity contributes to pregnancy complications and loss remain unknown. Increasing evidence indicates that obesity results in major changes to adipose tissue immune cell composition and function; whether or not obesity also affects immune function in the uterus has not been explored. Here we investigated the effect of obesity on uterine natural killer (uNK) cells, which are essential for uterine artery remodeling and placental development. Using a cohort of obese or lean women, we found that obesity led to a significant reduction in uNK cell numbers accompanied with impaired uterine artery remodeling. uNK cells isolated from obese women had altered expression of genes and pathways associated with extracellular matrix remodeling and growth factor signaling. Specifically, uNK cells were hyper-responsive to PDGF, resulting in overexpression of decorin. Functionally, decorin strongly inhibited placental development by limiting trophoblast survival. Together, these findings establish a potentially new link between obesity and poor pregnancy outcomes, and indicate that obesity-driven changes to uterine-resident immune cells critically impair placental development.
Collapse
Affiliation(s)
- Sofie Perdu
- The Child and Family Research Institute, Vancouver, Canada
| | - Barbara Castellana
- The Child and Family Research Institute, Vancouver, Canada.,Department of Obstetrics and Gynecology and the
| | - Yoona Kim
- The Child and Family Research Institute, Vancouver, Canada
| | - Kathy Chan
- The Child and Family Research Institute, Vancouver, Canada
| | - Lauren DeLuca
- The Child and Family Research Institute, Vancouver, Canada.,Experimental Medicine Graduate Program, The University of British Columbia, Vancouver, Canada
| | - Alexander G Beristain
- The Child and Family Research Institute, Vancouver, Canada.,Department of Obstetrics and Gynecology and the.,Experimental Medicine Graduate Program, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Li A, Xia X, Yeh J, Kua H, Liu H, Mishina Y, Hao A, Li B. PDGF-AA promotes osteogenic differentiation and migration of mesenchymal stem cell by down-regulating PDGFRα and derepressing BMP-Smad1/5/8 signaling. PLoS One 2014; 9:e113785. [PMID: 25470749 PMCID: PMC4254917 DOI: 10.1371/journal.pone.0113785] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/29/2014] [Indexed: 12/21/2022] Open
Abstract
Platelet-derived growth factors (PDGFs) play important roles in skeletal development and bone fracture healing, yet how PDGFs execute their functions remains incompletely understood. Here we show that PDGF-AA, but not -AB or -BB, could activate the BMP-Smad1/5/8 pathway in mesenchymal stem cells (MSCs), which requires BMPRIA as well as PDGFRα. PDGF-AA promotes MSC osteogenic differentiation through the BMP-Smad1/5/8-Runx2/Osx axis and MSC migration via the BMP-Smad1/5/8-Twist1/Atf4 axis. Mechanistic studies show that PDGF-AA activates BMP-Smad1/5/8 signaling by feedback down-regulating PDGFRα, which frees BMPRI and allows for BMPRI-BMPRII complex formation to activate smad1/5/8, using BMP molecules in the microenvironment. This study unravels a physical and functional interaction between PDGFRα and BMPRI, which plays an important role in MSC differentiation and migration, and establishes a link between PDGF-AA and BMPs pathways, two essential regulators of embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Anna Li
- Department of Histology and Embryology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuechun Xia
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - James Yeh
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huiyi Kua
- The Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138632, Singapore
| | - Huijuan Liu
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aijun Hao
- Department of Histology and Embryology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
- * E-mail: (BL); (AH)
| | - Baojie Li
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- * E-mail: (BL); (AH)
| |
Collapse
|
13
|
Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells. Cell Commun Signal 2014; 12:44. [PMID: 25080971 PMCID: PMC4422302 DOI: 10.1186/s12964-014-0044-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022] Open
Abstract
Background Platelet-derived growth factor-BB (PDGF-BB) has been implicated in the proliferation, migration and synthetic activities of smooth muscle cells that characterize physiologic and pathologic tissue remodeling in hollow organs. However, neither the molecular basis of PDGFR-regulated signaling webs, nor the extent to which specific components within these networks could be exploited for therapeutic benefit has been fully elucidated. Results Expression profiling and quantitative proteomics analysis of PDGF-treated primary human bladder smooth muscle cells identified 1,695 genes and 241 proteins as differentially expressed versus non-treated cells. Analysis of gene expression data revealed MYC, JUN, EGR1, MYB, RUNX1, as the transcription factors most significantly networked with up-regulated genes. Forty targets were significantly altered at both the mRNA and protein levels. Proliferation, migration and angiogenesis were the biological processes most significantly associated with this signature, and MYC was the most highly networked master regulator. Alterations in master regulators and gene targets were validated in PDGF-stimulated smooth muscle cells in vitro and in a model of bladder injury in vivo. Pharmacologic inhibition of MYC and JUN confirmed their role in SMC proliferation and migration. Network analysis identified the diaphanous-related formin 3 as a novel PDGF target regulated by MYC and JUN, which was necessary for PDGF-stimulated lamellipodium formation. Conclusions These findings provide the first systems-level analysis of the PDGF-regulated transcriptome and proteome in normal smooth muscle cells. The analyses revealed an extensive cohort of PDGF-dependent biological processes and connected key transcriptional effectors to their regulation, significantly expanding current knowledge of PDGF-stimulated signaling cascades. These observations also implicate MYC as a novel target for pharmacological intervention in fibroproliferative expansion of smooth muscle, and potentially in cancers in which PDGFR-dependent signaling or MYC activation promote tumor progression.
Collapse
|
14
|
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) encompasses a rare potentially lethal group of diseases characterized by vasoconstriction, in situ thrombosis and vascular remodeling. Most of the existing therapies including endothelin receptor antagonists, prostacyclin and derivatives, or phsophodiesterase-5 inhibitors tackle mainly the endothelial dysfunction, leaving the remodeling suboptimally inhibited. This explains the disease progression that occurs even with combined therapies and the need for other therapies able to adequately inhibit the vascular remodeling. AREAS COVERED Platelet-derived growth factor (PDGF) signaling pathway was demonstrated to be involved in the vascular remodeling in PAH, and therefore, it might be a desirable therapeutic target in this setting. This review discusses the pathogenic role of this pathway in PAH and its potential inhibitory approaches, focusing on imatinib as well as on the existing preclinical data on this compound. EXPERT OPINION Preclinical studies demonstrated that PDGF inhibition with receptor antagonists such as imatinib reduces vascular remodeling. Therefore, PDGF might represent a plausible therapeutic target in this disease. However, compounds able to block this pathway via different mechanisms might also become potential PAH therapies.
Collapse
Affiliation(s)
- Sabina Antonela Antoniu
- Grigore T Popa, University of Medicine and Pharmacy Iaşi, Department of Medicine II -Pulmonary Disease, Pulmonary Disease University Hospital, 30 Dr I Cihac Str, 700115 Iasi, Romania.
| |
Collapse
|