1
|
Wu Y, Zhang K, Zheng Y, Jin H. A review of potential mechanisms and treatments of gastric intestinal metaplasia. Eur J Gastroenterol Hepatol 2024:00042737-990000000-00454. [PMID: 39975991 DOI: 10.1097/meg.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Gastric intestinal metaplasia (GIM) is a pathological process where gastric mucosal epithelial cells are replaced by intestinal-type cells, serving as a precursor lesion for gastric cancer. This transformation involves various genetic and environmental factors, affecting key genes and signaling pathways. Recent research has revealed complex mechanisms, including changes in gene expression, abnormal signaling pathway activation, and altered cell behavior. This review summarizes the latest research on GIM, discussing its pathogenesis, current treatment strategies, and potential efficacy of emerging approaches like gene editing, microbiome interventions, and integrative medicine. By exploring these strategies, we aim to provide more effective treatments for GIM and reduce gastric cancer incidence. The review also highlights the importance of interdisciplinary studies in understanding GIM mechanisms and improving treatment strategies.
Collapse
Affiliation(s)
- Yueyao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | | | | | | |
Collapse
|
2
|
裴 蓓, 张 艺, 魏 思, 梅 语, 宋 标, 董 港, 温 子, 李 学. [Identification of potential pathogenic genes of intestinal metaplasia based on transcriptomic sequencing and bioinformatics analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:941-949. [PMID: 38862452 PMCID: PMC11166712 DOI: 10.12122/j.issn.1673-4254.2024.05.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To explore the potential pathogenic genes of intestinal metaplasia. METHODS Twenty-one patients with intestinal metaplasia admitted to the Department of Gastroenterology at the Second Affiliated Hospital of Anhui University of Chinese Medicine from January, 2022 to June, 2022, and 21 healthy subjects undergoing gastroscopic examination during the same period were enrolled in this study. All the participants underwent gastroscopy and pathological examination, and gastric tissue samples were collected for transcriptome sequencing to screen for differentially expressed genes (DEGs). The biological functions of the DEGs were analyzed using bioinformatics analysis, and qRT-PCR was used to validate the results. RESULTS Transcriptomic sequencing identified a total of 1373 DEGs, including 827 upregulated and 546 downregulated ones. The top 6 upregulated genes (AGMAT, CCL25, FABP1, CDX1, SPINK4, and MUC2), ranked based on their significance and average expression level, were selected for validation, and qRT-PCR showed significant upregulation of their mRNAs in the gastric tissues of patients with intestinal metaplasia (P < 0.05). CONCLUSION AGMAT, CCL25, FABP1, CDX1, SPINK4, and MUC2 participate in the occurrence and development of intestinal metaplasia, and may serve as potential biomarkers for diagnosing intestinal metaplasia.
Collapse
|
3
|
Abstract
Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.
Collapse
|
4
|
Xie D, Sun MY. Mechanism of action of NF-κB related cell signaling pathways in progression of gastritis to carcinoma. Shijie Huaren Xiaohua Zazhi 2022; 30:255-259. [DOI: 10.11569/wcjd.v30.i6.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a major global public health problem. The evolvement pattern of "superficial gastritis-chronic atrophic gastritis-intestinal metaplasia-dysplasia-gastric carcinoma" is common in related gastric diseases. As a key factor involved in systemic stress response, inflammatory response, and apoptosis, the regulation of NF-κB related to inflammation and apoptosis is a necessary link between inflammation and cancer progression. NF-κB is activated in most solid tumors and lymphomas. In the critical mechanism of gastric cancer induced by gastritis with various etiologies, the upstream and downstream molecules in the NF-κB signaling pathway are changed, and the cells are exposed to the microenvironment of inflammatory response for a long time, which ultimately leads to the development of their carcinogenic potential. This article discusses the mechanism of NF-κB in the key risk factors for the progression of gastric disease.
Collapse
Affiliation(s)
- Dong Xie
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Chinese Medicine, Shanghai 201203, China
| | - Ming-Yu Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
5
|
Yang H, Yang WJ, Hu B. Gastric epithelial histology and precancerous conditions. World J Gastrointest Oncol 2022; 14:396-412. [PMID: 35317321 PMCID: PMC8919001 DOI: 10.4251/wjgo.v14.i2.396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The most common histological type of gastric cancer (GC) is gastric adenocarcinoma arising from the gastric epithelium. Less common variants include mesenchymal, lymphoproliferative and neuroendocrine neoplasms. The Lauren scheme classifies GC into intestinal type, diffuse type and mixed type. The WHO classification includes papillary, tubular, mucinous, poorly cohesive and mixed GC. Chronic atrophic gastritis (CAG) and intestinal metaplasia are recommended as common precancerous conditions. No definite precancerous condition of diffuse/poorly/undifferentiated type is recommended. Chronic superficial inflammation and hyperplasia of foveolar cells may be the focus. Presently, the management of early GC and precancerous conditions mainly relies on endoscopy including diagnosis, treatment and surveillance. Management of precancerous conditions promotes the early detection and treatment of early GC, and even prevent the occurrence of GC. In the review, precancerous conditions including CAG, metaplasia, foveolar hyperplasia and gastric hyperplastic polyps derived from the gastric epithelium have been concluded, based on the overview of gastric epithelial histological organization and its renewal.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
6
|
Chen HY, Hu Y, Lu NH, Zhu Y. Caudal type homeoboxes as a driving force in Helicobacter pylori infection-induced gastric intestinal metaplasia. Gut Microbes 2020; 12:1-12. [PMID: 33031021 PMCID: PMC7553748 DOI: 10.1080/19490976.2020.1809331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
(H. pylori), a common pathogenic bacterium in the stomach, has been demonstrated to be a major cause of gastric cancer (GC). The typical pathological evolution of H. pylori infection-induced GC involves development from gastric atrophy, via intestinal metaplasia (IM) and dysplasia, to intestinal-type GC. During this process, IM is considered to be an "irreversible point" that significantly increases the risk for GC. Therefore, the elucidation of the mechanism underlying IM is of great significance for the prevention and treatment of gastric mucosal carcinogenesis associated with H. pylori infection. Caudal type homeoboxes (CDXs) are transcription factors involved in intestinal differentiation establishment and the maintenance of normal intestinal mucosa and IM. H. pylori infection increases the expression of CDXs through epigenetic regulation, the nuclear factor-kappaB signaling pathway and its downstream proinflammatory factors, and the transforming growth factor-beta signaling pathway, leading to the progression from normal gastric mucosa to IM. However, the precise mechanisms of gastric intestinal metaplasia have not yet been fully elucidated. In this review, we focus on research progress revealing the functions of CDXs in H. pylori infection-induced IM, as well as the regulators modulating this process.
Collapse
Affiliation(s)
- Hong-Yan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,CONTACT Yin Zhu Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi Province, China
| |
Collapse
|
7
|
Can neopterin be a useful immune biomarker for differentiating gastric intestinal metaplasia and gastric atrophy from non-atrophic non-metaplastic chronic gastritis? GASTROENTEROLOGIA Y HEPATOLOGIA 2019; 42:289-295. [DOI: 10.1016/j.gastrohep.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 01/10/2023]
|
8
|
Chen BJ, Zeng S, Xie R, Hu CJ, Wang SM, Wu YY, Xiao YF, Yang SM. hTERT promotes gastric intestinal metaplasia by upregulating CDX2 via NF-κB signaling pathway. Oncotarget 2018; 8:26969-26978. [PMID: 28460480 PMCID: PMC5432311 DOI: 10.18632/oncotarget.15926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Background hTERT has been reported involved in the proliferation and metastasis of gastric cancer, but the role of hTERT in gastric intestinal metaplasia, a premalignant lesion of the gastric mucosa was unknown. The aim of the present study was to investigate the role of hTERT in GIM and the effect of hTERT on CDX2 expression in gastric cells. Results Experiments showed that expression of hTERT was significantly higher in GIM than in normal gastric mucosa. Moreover, hTERT increased the KLF4 level via NF-κB during GIM. Furthermore, KLF4 is involved in the up-regulation of CDX2 induced by hTERT, and hTERT can interact with p50, thereby increasing the level of CDX2. Materials and Methods Immunohistochemistry was used to detect the expression of hTERT in gastric intestinal metaplasia tissue. Then, effect of hTERT on the expression of CDX2 was detected by qRT-PCR, WB and dual luciferase experiment. The role of p65 and p50 in the regulation of CDX2 were further detected by WB, CO-IP and ChIP. Conclusions We may conclude that hTERT promotes GIM by up-regulating CDX2 via NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bai-Jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China.,Department of Gastroenterology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, PR China
| | - Shuo Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Su-Ming Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Yu-Yun Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
9
|
Yun J, Park MH, Son DJ, Nam KT, Moon DB, Ju JH, Hwang OK, Choi JS, Kim TH, Jung YS, Hwang DY, Han SB, Yoon DY, Hong JT. IL-32 gamma reduces lung tumor development through upregulation of TIMP-3 overexpression and hypomethylation. Cell Death Dis 2018; 9:306. [PMID: 29467412 PMCID: PMC5833366 DOI: 10.1038/s41419-018-0375-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
Abstract
The low expression of tissue inhibitor of metalloproteinase 3 (TIMP-3) is important in inflammatory responses. Therefore, inhibition of TIMP-3 may promote tumor development. Our study showed that expression of TIMP-3 was elevated in lL-32γ mice lung tissues. In this study, we investigated whether IL-32γ mice inhibited lung tumor development through overexpression of TIMP-3 and its methylation. To explore the possible underlying mechanism, lung cancer cells were transfected with IL-32γ cDNA plasmid. A marked increase in TIMP-3 expression was caused by promoter methylation. Mechanistic studies indicated that TIMP-3 overexpression reduced NF-κB activity, which led to cell growth inhibition in IL-32γ transfected lung cancer cells. We also showed that IL-32γ inhibits expression of DNA (cytosine-5-)-methyltransferase 1 (DNMT1). Moreover, IL-32γ inhibits the binding of DNMT1 to TIMP-3 promoter, but this effect was reversed by the treatment of DNA methyltransferase inhibitor (5-Aza-CdR) and NF-κB inhibitor (PS1145), suggesting that a marked increase in TIMP-3 expression was caused by inhibition of promoter hypermethylation via decreased DNMT1 expression through the NF-κB pathway. In an in vivo carcinogen induced lung tumor model, tumor growth was inhibited in IL-32γ overexpressed mice with elevated TIMP-3 expression and hypomethylation accompanied with reduced NF-κB activity. Moreover, in the lung cancer patient tissue, the expression of IL-32 and TIMP-3 was dramatically decreased at a grade-dependent manner compared to normal lung tissue. In summary, IL-32γ may increase TIMP-3 expression via hypomethylation through inactivation of NF-κB activity, and thereby reduce lung tumor growth.
Collapse
Affiliation(s)
- Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea.,Department of Pharmacy, Wonkwang University, #460 Iksan-daero, Iksan-si, Jeonbuk, 54538, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Kyung Tak Nam
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dae Bong Moon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jung Heun Ju
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Ok Kyung Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jeong Soon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Tae Hoon Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Young Suk Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dae Yeon Hwang
- Department of Biomaterial Science, Pusan National University, Miryang, Kyungnam, 50463, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong1-ro 194-21, Heungduk-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
10
|
Yang J, Fang P, Yu D, Zhang L, Zhang D, Jiang X, Yang WY, Bottiglieri T, Kunapuli SP, Yu J, Choi ET, Ji Y, Yang X, Wang H. Chronic Kidney Disease Induces Inflammatory CD40+ Monocyte Differentiation via Homocysteine Elevation and DNA Hypomethylation. Circ Res 2017; 119:1226-1241. [PMID: 27992360 DOI: 10.1161/circresaha.116.308750] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/26/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE Patients with chronic kidney disease (CKD) develop hyperhomocysteinemia and have a higher cardiovascular mortality than those without hyperhomocysteinemia by 10-fold. OBJECTIVE We investigated monocyte differentiation in human CKD and cardiovascular disease (CVD). METHODS AND RESULTS We identified CD40 as a CKD-related monocyte activation gene using CKD-monocyte -mRNA array analysis and classified CD40 monocyte (CD40+CD14+) as a stronger inflammatory subset than the intermediate monocyte (CD14++CD16+) subset. We recruited 27 patients with CVD/CKD and 14 healthy subjects and found that CD40/CD40 classical/CD40 intermediate monocyte (CD40+CD14+/CD40+CD14++CD16-/CD40+CD14++CD16+), plasma homocysteine, S-adenosylhomocysteine, and S-adenosylmethionine levels were higher in CVD and further elevated in CVD+CKD. CD40 and CD40 intermediate subsets were positively correlated with plasma/cellular homocysteine levels, S-adenosylhomocysteine and S-adenosylmethionine but negatively correlated with estimated glomerular filtration rate. Hyperhomocysteinemia was established as a likely mediator for CKD-induced CD40 intermediate monocyte, and reduced S-adenosylhomocysteine/S-adenosylmethionine was established for CKD-induced CD40/CD40 intermediate monocyte. Soluble CD40 ligand, tumor necrosis factor (TNF)-α/interleukin (IL)-6/interferon (IFN)-γ levels were elevated in CVD/CKD. CKD serum/homocysteine/CD40L/increased TNF-α/IL-6/IFN-γ-induced CD40/CD40 intermediate monocyte in peripheral blood monocyte. Homocysteine and CKD serum-induced CD40 monocyte were prevented by neutralizing antibodies against CD40L/TNF-α/IL-6. DNA hypomethylation was found on nuclear factor-κB consensus element in CD40 promoter in white blood cells from patients with CKD with lower S-adenosylmethionine / S-adenosylhomocysteine ratios. Finally, homocysteine inhibited DNA methyltransferase-1 activity and promoted CD40 intermediate monocyte differentiation, which was reversed by folic acid in peripheral blood monocyte. CONCLUSIONS CD40 monocyte is a novel inflammatory monocyte subset that appears to be a biomarker for CKD severity. Hyperhomocysteinemia mediates CD40 monocyte differentiation via soluble CD40 ligand induction and CD40 DNA hypomethylation in CKD.
Collapse
Affiliation(s)
- Jiyeon Yang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Pu Fang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Daohai Yu
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Lixiao Zhang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Daqing Zhang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Xiaohua Jiang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - William Y Yang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Teodoro Bottiglieri
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Satya P Kunapuli
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Jun Yu
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Eric T Choi
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Yong Ji
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.).
| | - Xiaofeng Yang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Hong Wang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.).
| |
Collapse
|
11
|
Rau T. [Pathogenetic aspects in precursor lesions of gastrointestinal tumors]. DER PATHOLOGE 2016; 37:186-190. [PMID: 27638535 DOI: 10.1007/s00292-016-0220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pathogenesis of precursor lesions of gastrointestinal tumors is manifested in many ways. In the esophagus an aberrant genetic expression of intestinal transcription factors, such as CDX2 is initiated by local environment factors. During the subsequent dysplasia to carcinoma sequence, chromosomal gain and loss of genes occurs. A 4-color fluorescence in situ hybridization (FISH) assay can be applied in dysplasia as well as in Barrett's adenocarcinoma to define prognostic marker combinations. In the gastric carcinogenesis sequence the gene expression of CDX1 is regulatively dependent on an interplay between inflammation and promotor methylation. In the colon sessile serrated adenomas show a sequence with initial BRAF mutation and late onset of MLH1 promotor hypermethylation with consecutive potential cancer progression. This event is accompanied by an increase of intraepithelial lymphocytes, which is an easy to use tool for routine diagnostics using H&E sections. Next generation sequencing (NGS) investigations of germline mutations in colorectal cancer revealed a spectrum of mutations with low penetration in the field of mismatch repair proteins as well as the APC gene. An individual risk stratification for penetration of these germline mutations is necessary. In conclusion, genetics, phenotypes and terminology of gastrointestinal precursor lesions are unified to a mutually influencing concept within medicine.
Collapse
Affiliation(s)
- T Rau
- Pathologisches Institut, Universitätsklinikum Erlangen, Erlangen, Deutschland. .,Institut für Pathologie, Universität Bern, Murtenstr. 31, 3010, Bern, Schweiz.
| |
Collapse
|
12
|
Karpathakis A, Dibra H, Pipinikas C, Feber A, Morris T, Francis J, Oukrif D, Mandair D, Pericleous M, Mohmaduvesh M, Serra S, Ogunbiyi O, Novelli M, Luong T, Asa SL, Kulke M, Toumpanakis C, Meyer T, Caplin M, Meyerson M, Beck S, Thirlwell C. Prognostic Impact of Novel Molecular Subtypes of Small Intestinal Neuroendocrine Tumor. Clin Cancer Res 2016; 22:250-8. [PMID: 26169971 DOI: 10.1158/1078-0432.ccr-15-0373] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Small intestinal neuroendocrine tumors (SINET) are the commonest malignancy of the small intestine; however, underlying pathogenic mechanisms remain poorly characterized. Whole-genome and -exome sequencing has demonstrated that SINETs are mutationally quiet, with the most frequent known mutation in the cyclin-dependent kinase inhibitor 1B gene (CDKN1B) occurring in only ∼8% of tumors, suggesting that alternative mechanisms may drive tumorigenesis. The aim of this study is to perform genome-wide molecular profiling of SINETs in order to identify pathogenic drivers based on molecular profiling. This study represents the largest unbiased integrated genomic, epigenomic, and transcriptomic analysis undertaken in this tumor type. EXPERIMENTAL DESIGN Here, we present data from integrated molecular analysis of SINETs (n = 97), including whole-exome or targeted CDKN1B sequencing (n = 29), HumanMethylation450 BeadChip (Illumina) array profiling (n = 69), methylated DNA immunoprecipitation sequencing (n = 16), copy-number variance analysis (n = 47), and Whole-Genome DASL (Illumina) expression array profiling (n = 43). RESULTS Based on molecular profiling, SINETs can be classified into three groups, which demonstrate significantly different progression-free survival after resection of primary tumor (not reached at 10 years vs. 56 months vs. 21 months, P = 0.04). Epimutations were found at a recurrence rate of up to 85%, and 21 epigenetically dysregulated genes were identified, including CDX1 (86%), CELSR3 (84%), FBP1 (84%), and GIPR (74%). CONCLUSIONS This is the first comprehensive integrated molecular analysis of SINETs. We have demonstrated that these tumors are highly epigenetically dysregulated. Furthermore, we have identified novel molecular subtypes with significant impact on progression-free survival.
Collapse
Affiliation(s)
- Anna Karpathakis
- University College London, London, United Kingdom. The Royal Free Hospital, London, United Kingdom
| | | | | | - Andrew Feber
- University College London, London, United Kingdom
| | | | - Joshua Francis
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Dalvinder Mandair
- University College London, London, United Kingdom. The Royal Free Hospital, London, United Kingdom
| | | | | | - Stefano Serra
- UHN Princess Margaret Cancer Centre, Toronto, Canada
| | | | | | | | - Sylvia L Asa
- UHN Princess Margaret Cancer Centre, Toronto, Canada
| | - Matthew Kulke
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Tim Meyer
- University College London, London, United Kingdom. The Royal Free Hospital, London, United Kingdom
| | | | - Matthew Meyerson
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Stephan Beck
- University College London, London, United Kingdom
| | - Christina Thirlwell
- University College London, London, United Kingdom. The Royal Free Hospital, London, United Kingdom.
| |
Collapse
|
13
|
Kaakoush NO, Castaño-Rodríguez N, Man SM, Mitchell HM. Is Campylobacter to esophageal adenocarcinoma as Helicobacter is to gastric adenocarcinoma? Trends Microbiol 2015; 23:455-62. [PMID: 25937501 DOI: 10.1016/j.tim.2015.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
Abstract
Esophageal adenocarcinoma develops through a cascade of cellular changes that shares similarities to the etiology of Helicobacter pylori-associated intestinal-type gastric adenocarcinoma. While host genetics and immune response have been implicated in the progression to esophageal adenocarcinoma, studies investigating esophageal microbial communities suggest that bacteria may also play an important role in driving the inflammation that leads to disease. Of these, emerging Campylobacter species have been found to be more prevalent and abundant in patients progressing through the esophageal adenocarcinoma cascade compared to controls. Given that these bacteria possess several virulence mechanisms such as toxin production, cellular invasion, and intracellular survival, emerging Campylobacter species should be investigated as etiological agents of the chronic esophageal inflammation that leads to cancer.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia.
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Si Ming Man
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia; Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| |
Collapse
|
14
|
Epigenetic modifications and NF-κB pathway activity in Cu,Zn-SOD-deficient mice. Mol Cell Biochem 2014; 397:187-94. [PMID: 25138704 PMCID: PMC4212152 DOI: 10.1007/s11010-014-2186-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/08/2014] [Indexed: 01/26/2023]
Abstract
The aim of this study was to examine the possible impact of Cu,Zn-SOD deficiency on the level of epigenetic modifications in different mouse tissues, and the relationship between these modifications and the NF-κB transcription factor activity. Cu,Zn-SOD deficiency did not influence the level of 5mdC or 5hmdC in the analyzed tissues. Statistically significant organ-/tissue-specific differences between the levels of 5mdC and 5hmdC were demonstrated within each genotype. Also correlations between analyzed parameters pointed to wide tissue/genotype variety; we observed a positive correlation between 5mdC and NF-кB proteins, p50 and RelA, in the liver of wild mice, as well as an inverse correlation between 5mdC and p65 in the brain of Cu,Zn-SOD-deficient animals. Moreover, a positive correlation was revealed between 5mdC and 5hmdC in the liver and brain of knockout mice. As the highest levels of both 5mdC and 5hmdC were observed in the brains of analyzed animals regardless of their genotype, and lower, comparable to each other, levels of these modifications were shown in the kidney and liver, active demethylation process seems to be tissue-/organ-specific and does not necessarily rely solely on the redox/oxidation state of cells. According to the most likely scenario, various tissues may differ in terms of their metabolic rates, which has potential influence on cofactors, and consequently on the activity of TET enzymes or activation of TET-independent mechanisms.
Collapse
|
15
|
Jia RZ, Rui C, Li JY, Cui XW, Wang X. CDX1 restricts the invasion of HTR-8/SVneo trophoblast cells by inhibiting MMP-9 expression. Placenta 2014; 35:450-4. [DOI: 10.1016/j.placenta.2014.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/10/2014] [Accepted: 04/21/2014] [Indexed: 12/19/2022]
|
16
|
Wang K, Yuen ST, Xu J, Lee SP, Yan HHN, Shi ST, Siu HC, Deng S, Chu KM, Law S, Chan KH, Chan ASY, Tsui WY, Ho SL, Chan AKW, Man JLK, Foglizzo V, Ng MK, Chan AS, Ching YP, Cheng GHW, Xie T, Fernandez J, Li VSW, Clevers H, Rejto PA, Mao M, Leung SY. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet 2014; 46:573-82. [PMID: 24816253 DOI: 10.1038/ng.2983] [Citation(s) in RCA: 812] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
Gastric cancer is a heterogeneous disease with diverse molecular and histological subtypes. We performed whole-genome sequencing in 100 tumor-normal pairs, along with DNA copy number, gene expression and methylation profiling, for integrative genomic analysis. We found subtype-specific genetic and epigenetic perturbations and unique mutational signatures. We identified previously known (TP53, ARID1A and CDH1) and new (MUC6, CTNNA2, GLI3, RNF43 and others) significantly mutated driver genes. Specifically, we found RHOA mutations in 14.3% of diffuse-type tumors but not in intestinal-type tumors (P < 0.001). The mutations clustered in recurrent hotspots affecting functional domains and caused defective RHOA signaling, promoting escape from anoikis in organoid cultures. The top perturbed pathways in gastric cancer included adherens junction and focal adhesion, in which RHOA and other mutated genes we identified participate as key players. These findings illustrate a multidimensional and comprehensive genomic landscape that highlights the molecular complexity of gastric cancer and provides a road map to facilitate genome-guided personalized therapy.
Collapse
Affiliation(s)
- Kai Wang
- 1] Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA. [2]
| | - Siu Tsan Yuen
- 1] Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong. [2]
| | - Jiangchun Xu
- 1] Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA. [2] [3]
| | - Siu Po Lee
- 1] Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong. [2]
| | - Helen H N Yan
- 1] Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong. [2]
| | - Stephanie T Shi
- External Research Solutions, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Hoi Cheong Siu
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Shibing Deng
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Kent Man Chu
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Simon Law
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kok Hoe Chan
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Annie S Y Chan
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Wai Yin Tsui
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Siu Lun Ho
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Anthony K W Chan
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Jonathan L K Man
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Valentina Foglizzo
- Division of Stem Cell Biology and Developmental Genetics, Medical Research Council (MRC) National Institute for Medical Research, London, UK
| | - Man Kin Ng
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - April S Chan
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Yick Pang Ching
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
| | - Grace H W Cheng
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Tao Xie
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Julio Fernandez
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Vivian S W Li
- Division of Stem Cell Biology and Developmental Genetics, Medical Research Council (MRC) National Institute for Medical Research, London, UK
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Paul A Rejto
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Mao Mao
- 1] Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA. [2]
| | - Suet Yi Leung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
17
|
Wang DQ, Ding XP, Yin S. Roles of proinflammatory cytokines in precancerous lesions of gastric cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:39-45. [DOI: 10.11569/wcjd.v22.i1.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precancerous lesions of gastric cancer, including intestinal metaplasia and dysplasia, are important stages in the evolution from normal gastric tissue to gastric cancer. Gastric cancer has a very high mortality rate, mainly due to post-metastasis diagnosis. Therefore, diagnosis of precancerous lesions of gastric cancer is of great clinical significance. In recent years, it has been reported that some proinflammatory cytokines such as interleukin 1β (IL-1β), IL-8, IL-11, tumor necrosis factor α (TNF-α) and interferon-gamma (IFN-γ) play important roles in the development of precancerous lesions of gastric cancer. A more detailed understanding of the roles of proinflammatory cytokines may provide new therapeutic targets for precancerous lesions of gastric cancer. Here, we summarize the roles of some proinflammatory cytokines in the progression of precancerous lesions of gastric cancer.
Collapse
|
18
|
Strauss JS, Khare T, De Luca V, Jeremian R, Kennedy JL, Vincent JB, Petronis A. Quantitative leukocyte BDNF promoter methylation analysis in bipolar disorder. Int J Bipolar Disord 2013; 1:28. [PMID: 25505691 PMCID: PMC4215812 DOI: 10.1186/2194-7511-1-28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/09/2013] [Indexed: 01/26/2023] Open
Abstract
Background Bipolar disorder (BD) is a complex psychiatric phenotype with a high heritability and a multifactorial etiology. Multisite collaborative efforts using genome-wide association studies (GWAS) have identified only a portion of DNA sequence-based risk factors in BD. In addition to predisposing DNA sequence variants, epigenetic misregulation may play an etiological role in BD and account for monozygotic twin discordance, parental origin effects, and fluctuating course of BD. In this study, we investigated DNA methylation of the brain-derived neurotrophic factor (BDNF) gene in BD. Methods Fifty participants with BD were compared to the same number of age- and sex-matched controls for DNA methylation differences at BDNF promoters 3 and 5. DNA methylation reads were obtained using a mass spectrophotometer for 64 cytosine-guanine (CpG) sites in 36 CpG ‘units’ across three amplicons of BDNF promoters 3 and 5. Results and Discussion Methylation fractions differed between BD participants and controls for 11 of 36 CpG units. Five CpG units, mostly in promoter 5, remained significant after false discovery rate correction (FDR) (p values ≤ 0.004) with medium to large effect sizes (Cohen's d ≥ 0.61). Several of the significant CpGs overlapped with or were immediately adjacent to transcription factor binding sites (TFBSs) - including two of the FDR-significant CpG units in promoter 5. For the CpGs in promoter 3, there was a positive and significant correlation between age at sample collection and DNA methylation fraction (rho = 0.56, p = 2.8 ×10−5) in BD cases, but not in controls. Statistically significant differences in mean methylation fraction at 5/36 CpG units (after FDR), some at or immediately adjacent to TFBSs, suggest possible relevance for the current findings to BD etiopathogenesis. The positive correlation between age and methylation seen in promoter 3 is consistent with age-related decline in BDNF expression previously reported. Future studies should provide more exhaustive epigenetic study of the BDNF locus to better characterize the relationship between BDNF methylation differences and BD. Electronic supplementary material The online version of this article (doi:10.1186/2194-7511-1-28) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John S Strauss
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M6J1H4 Canada
| | - Tarang Khare
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M6J1H4 Canada
| | - Vincenzo De Luca
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M6J1H4 Canada
| | - Richie Jeremian
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M6J1H4 Canada
| | - James L Kennedy
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M6J1H4 Canada
| | - John B Vincent
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M6J1H4 Canada
| | - Arturas Petronis
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON M6J1H4 Canada
| |
Collapse
|
19
|
Kong X, Qian J, Chen LS, Wang YC, Wang JL, Chen H, Weng YR, Zhao SL, Hong J, Chen YX, Zou W, Xu J, Fang JY. Synbindin in extracellular signal-regulated protein kinase spatial regulation and gastric cancer aggressiveness. J Natl Cancer Inst 2013; 105:1738-49. [PMID: 24104608 DOI: 10.1093/jnci/djt271] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The molecular mechanisms that control the aggressiveness of gastric cancer (GC) remain poorly defined. Here we show that synbindin contributes to the aggressiveness of GC by activating extracellular signal-regulated protein kinase (ERK) signaling on the Golgi apparatus. METHODS Expression of synbindin was examined in normal gastric mucosa (n = 44), intestinal metaplastic gastric mucosa (n = 66), and GC tissues (n=52), and the biological effects of synbindin on tumor growth and ERK signaling were detected in cultured cells, nude mice, and human tissue samples. The interaction between synbindin and mitogen-activated protein kinase kinase (MEK1)/ERK was determined by immunofluorescence and fluorescence resonance energy transfer assays. The transactivation of synbindin by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was detected using luciferase reporter assay and chromatin immunoprecipitation. RESULTS High expression of synbindin was associated with larger tumor size (120.8 vs 44.8 cm(3); P = .01), advanced tumor node metastasis (TNM) stage (P = .003), and shorter patient survival (hazard ratio = 1.51; 95% confidence interval [CI] = 1.01 to 2.27; P = .046). Synbindin promotes cell proliferation and invasion by activating ERK2 on the Golgi apparatus, and synbindin is directly transactivated by NF-κB. Synbindin expression level was statistically significantly higher in human GCs with activated ERK2 than those with low ERK2 activity (intensity score of 11.5, 95% CI = 10.4 to 12.4 vs intensity score of 4.6, 95% CI 3.9 to 5.3; P < .001). Targeting synbindin in xenograft tumors decreased ERK2 phosphorylation and statistically significantly reduced tumor volume (451.2mm(3), 95% CI = 328.3 to 574.1 vs 726.1mm(3), 95% CI = 544.2 to 908.2; P = .01). CONCLUSIONS Synbindin contributes to malignant phenotypes of GC by activating ERK on the Golgi, and synbindin is a potential biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Xuan Kong
- Affiliations of authors: State Key Laboratory for Oncogenes and Related Genes, Shanghai, China (XK, JQ, L-SC, Y-CW, J-LW, HC, Y-RW, S-LZ, JH, Y-XC, JX, J-YF); Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (XK, JQ, L-SC, Y-CW, J-LW, HC, Y-RW, S-LZ, JH, Y-XC, JX, J-YF); Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai, China (XK, JQ, L-SC, Y-CW, J-LW, HC, Y-RW, S-LZ, JH, Y-XC, JX, J-YF); Department of Surgery, University of Michigan, Ann Arbor, MI (WZ)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chakilam S, Gandesiri M, Rau TT, Agaimy A, Vijayalakshmi M, Ivanovska J, Wirtz RM, Schulze-Luehrmann J, Benderska N, Wittkopf N, Chellappan A, Ruemmele P, Vieth M, Rave-Fränk M, Christiansen H, Hartmann A, Neufert C, Atreya R, Becker C, Steinberg P, Schneider-Stock R. Death-associated protein kinase controls STAT3 activity in intestinal epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1005-20. [PMID: 23438478 DOI: 10.1016/j.ajpath.2012.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/30/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022]
Abstract
The TNF-IL-6-STAT3 pathway plays a crucial role in promoting ulcerative colitis-associated carcinoma (UCC). To date, the negative regulation of STAT3 is poorly understood. Interestingly, intestinal epithelial cells of UCC in comparison to ulcerative colitis show high expression levels of anti-inflammatory death-associated protein kinase (DAPK) and low levels of pSTAT3. Accordingly, epithelial DAPK expression was enhanced in STAT3(IEC-KO) mice. To unravel a possible regulatory mechanism, we used an in vitro TNF-treated intestinal epithelial cell model. We identified a new function of DAPK in suppressing TNF-induced STAT3 activation as DAPK siRNA knockdown and treatment with a DAPK inhibitor potentiated STAT3 activation, IL-6 mRNA expression, and secretion. DAPK attenuated STAT3 activity directly by physical interaction shown in three-dimensional structural modeling. This model suggests that DAPK-induced conformational changes in the STAT3 dimer masked its nuclear localization signal. Alternatively, pharmacological inactivation of STAT3 led to an increase in DAPK mRNA and protein levels. Chromatin immunoprecipitation showed that STAT3 restricted DAPK expression by promoter binding, thereby reinforcing its own activation by inducing IL-6. This novel negative regulation principle might balance TNF-induced inflammation and seems to play an important role in the inflammation-associated transformation process as confirmed in an AOM+DSS colon carcinogenesis mouse model. DAPK as a negative regulator of STAT3 emerges as therapeutic option in the treatment of ulcerative colitis and UCC.
Collapse
Affiliation(s)
- Saritha Chakilam
- Experimental Tumor Pathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vincent M, Collet C, Verloes A, Lambert L, Herlin C, Blanchet C, Sanchez E, Drunat S, Vigneron J, Laplanche JL, Puechberty J, Sarda P, Geneviève D. Large deletions encompassing the TCOF1 and CAMK2A genes are responsible for Treacher Collins syndrome with intellectual disability. Eur J Hum Genet 2013; 22:52-6. [PMID: 23695276 DOI: 10.1038/ejhg.2013.98] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 02/07/2023] Open
Abstract
Mandibulofacial dysostosis is part of a clinically and genetically heterogeneous group of disorders of craniofacial development, which lead to malar and mandibular hypoplasia. Treacher Collins syndrome is the major cause of mandibulofacial dysostosis and is due to mutations in the TCOF1 gene. Usually patients with Treacher Collins syndrome do not present with intellectual disability. Recently, the EFTUD2 gene was identified in patients with mandibulofacial dysostosis associated with microcephaly, intellectual disability and esophageal atresia. We report on two patients presenting with mandibulofacial dysostosis characteristic of Treacher Collins syndrome, but associated with unexpected intellectual disability, due to a large deletion encompassing several genes including the TCOF1 gene. We discuss the involvement of the other deleted genes such as CAMK2A or SLC6A7 in the cognitive development delay of the patients reported, and we propose the systematic investigation for 5q32 deletion when intellectual disability is associated with Treacher Collins syndrome.
Collapse
Affiliation(s)
- Marie Vincent
- Département de Génétique Médicale, CHRU Montpellier, Faculté de Médecine de Montpellier-Mimes, Université Montpellier 1, Montpellier, France
| | - Corinne Collet
- Service de Biologie Moléculaire, Hôpital Lariboisière, Paris, France
| | - Alain Verloes
- Département de Génétique Médicale, Hôpital Robert Debré, Paris, France, Université Denis Diderot Sorbonne-Paris, INSERM U676, Département de Génétique, Sart Tilman University Hospital, Liège, Belgium
| | - Laetitia Lambert
- Service de Génétique Médicale, CHRU de Nancy-Brabois, Nancy, France
| | - Christian Herlin
- Service de Chirurgie Plastique Infantile, CHRU Montpellier, Montpellier, France
| | | | - Elodie Sanchez
- Département de Génétique Médicale, CHRU Montpellier, Faculté de Médecine de Montpellier-Mimes, Université Montpellier 1, Montpellier, France
| | - Séverine Drunat
- Département de Génétique Médicale, Hôpital Robert Debré, Paris, France, Université Denis Diderot Sorbonne-Paris, INSERM U676, Département de Génétique, Sart Tilman University Hospital, Liège, Belgium
| | | | | | - Jacques Puechberty
- Département de Génétique Médicale, CHRU Montpellier, Faculté de Médecine de Montpellier-Mimes, Université Montpellier 1, Montpellier, France
| | - Pierre Sarda
- Département de Génétique Médicale, CHRU Montpellier, Faculté de Médecine de Montpellier-Mimes, Université Montpellier 1, Montpellier, France
| | - David Geneviève
- Département de Génétique Médicale, CHRU Montpellier, Faculté de Médecine de Montpellier-Mimes, Université Montpellier 1, Montpellier, France
| |
Collapse
|
22
|
The Completed Self: An Immunological View of the Human-Microbiome Superorganism and Risk of Chronic Diseases. ENTROPY 2012. [DOI: 10.3390/e14112036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|