1
|
So RWL, Amano G, Stuart E, Ebrahim Amini A, Aguzzi A, Collingridge GL, Watts JC. α-Synuclein strain propagation is independent of cellular prion protein expression in a transgenic synucleinopathy mouse model. PLoS Pathog 2024; 20:e1012517. [PMID: 39264912 PMCID: PMC11392418 DOI: 10.1371/journal.ppat.1012517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
The cellular prion protein, PrPC, has been postulated to function as a receptor for α-synuclein, potentially facilitating cell-to-cell spreading and/or toxicity of α-synuclein aggregates in neurodegenerative disorders such as Parkinson's disease. Previously, we generated the "Salt (S)" and "No Salt (NS)" strains of α-synuclein aggregates that cause distinct pathological phenotypes in M83 transgenic mice overexpressing A53T-mutant human α-synuclein. To test the hypothesis that PrPC facilitates the propagation of α-synuclein aggregates, we produced M83 mice that either express or do not express PrPC. Following intracerebral inoculation with the S or NS strain, the absence of PrPC in M83 mice did not prevent disease development and had minimal influence on α-synuclein strain-specified attributes such as the extent of cerebral α-synuclein deposition, selective targeting of specific brain regions and cell types, the morphology of induced α-synuclein deposits, and the structural fingerprints of protease-resistant α-synuclein aggregates. Likewise, there were no appreciable differences in disease manifestation between PrPC-expressing and PrPC-lacking M83 mice following intraperitoneal inoculation of the S strain. Interestingly, intraperitoneal inoculation with the NS strain resulted in two distinct disease phenotypes, indicative of α-synuclein strain evolution, but this was also independent of PrPC expression. Overall, these results suggest that PrPC plays at most a minor role in the propagation, neuroinvasion, and evolution of α-synuclein strains in mice that express A53T-mutant human α-synuclein. Thus, other putative receptors or cell-to-cell propagation mechanisms may have a larger effect on the spread of α-synuclein aggregates during disease.
Collapse
Affiliation(s)
- Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Genki Amano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Aeen Ebrahim Amini
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Graham L Collingridge
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Acevedo S, Stewart AJ. Eco-evolutionary trade-offs in the dynamics of prion strain competition. Proc Biol Sci 2023; 290:20230905. [PMID: 37403499 PMCID: PMC10320356 DOI: 10.1098/rspb.2023.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Prion and prion-like molecules are a type of self-replicating aggregate protein that have been implicated in a variety of neurodegenerative diseases. Over recent decades, the molecular dynamics of prions have been characterized both empirically and through mathematical models, providing insights into the epidemiology of prion diseases and the impact of prions on the evolution of cellular processes. At the same time, a variety of evidence indicates that prions are themselves capable of a form of evolution, in which changes to their structure that impact their rate of growth or fragmentation are replicated, making such changes subject to natural selection. Here we study the role of such selection in shaping the characteristics of prions under the nucleated polymerization model (NPM). We show that fragmentation rates evolve to an evolutionary stable value which balances rapid reproduction of PrPSc aggregates with the need to produce stable polymers. We further show that this evolved fragmentation rate differs in general from the rate that optimizes transmission between cells. We find that under the NPM, prions that are both evolutionary stable and optimized for transmission have a characteristic length of three times the critical length below which they become unstable. Finally, we study the dynamics of inter-cellular competition between strains, and show that the eco-evolutionary trade-off between intra- and inter-cellular competition favours coexistence.
Collapse
Affiliation(s)
- Saul Acevedo
- Department of Biology, University of Houston, Houston, TX, USA
| | - Alexander J. Stewart
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK
| |
Collapse
|
3
|
Block AJ, Bartz JC. Prion strains: shining new light on old concepts. Cell Tissue Res 2023; 392:113-133. [PMID: 35796874 PMCID: PMC11318079 DOI: 10.1007/s00441-022-03665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
Prion diseases are a group of inevitably fatal neurodegenerative disorders affecting numerous mammalian species, including humans. The existence of heritable phenotypes of disease in the natural host suggested that prions exist as distinct strains. Transmission of sheep scrapie to rodent models accelerated prion research, resulting in the isolation and characterization of numerous strains with distinct characteristics. These strains are grouped into categories based on the incubation period of disease in different strains of mice and also by how stable the strain properties were upon serial passage. These classical studies defined the host and agent parameters that affected strain properties, and, prior to the advent of the prion hypothesis, strain properties were hypothesized to be the result of mutations in a nucleic acid genome of a conventional pathogen. The development of the prion hypothesis challenged the paradigm of infectious agents, and, initially, the existence of strains was difficult to reconcile with a protein-only agent. In the decades since, much evidence has revealed how a protein-only infectious agent can perform complex biological functions. The prevailing hypothesis is that strain-specific conformations of PrPSc encode prion strain diversity. This hypothesis can provide a mechanism to explain the observed strain-specific differences in incubation period of disease, biochemical properties of PrPSc, tissue tropism, and subcellular patterns of pathology. This hypothesis also explains how prion strains mutate, evolve, and adapt to new species. These concepts are applicable to prion-like diseases such as Parkinson's and Alzheimer's disease, where evidence of strain diversity is beginning to emerge.
Collapse
Affiliation(s)
- Alyssa J Block
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
4
|
Serpa JJ, Popov KI, Petrotchenko EV, Dokholyan NV, Borchers CH. Structure of prion β-oligomers as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. Proteomics 2021; 21:e2000298. [PMID: 34482645 PMCID: PMC9285417 DOI: 10.1002/pmic.202000298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/08/2022]
Abstract
The conversion of the native monomeric cellular prion protein (PrPC ) into an aggregated pathological β-oligomeric form (PrPβ ) and an infectious form (PrPSc ) is the central element in the development of prion diseases. The structure of the aggregates and the molecular mechanisms of the conformational changes involved in the conversion are still unknown. We applied mass spectrometry combined with chemical crosslinking, hydrogen/deuterium exchange, limited proteolysis, and surface modification for the differential characterization of the native and the urea+acid-converted prion β-oligomer structures to obtain insights into the mechanisms of conversion and aggregation. For the determination of the structure of the monomer and the dimer unit of the β-oligomer, we applied a recently-developed approach for de novo protein structure determination which is based on the incorporation of zero-length and short-distance crosslinking data as intra- and inter-protein constraints in discrete molecular dynamics simulations (CL-DMD). Based on all of the structural-proteomics experimental data and the computationally predicted structures of the monomer units, we propose the potential mode of assembly of the β-oligomer. The proposed β-oligomer assembly provides a clue on the β-sheet nucleation site, and how template-based conversion of the native prion molecule occurs, growth of the prion aggregates, and maturation into fibrils may occur.
Collapse
Affiliation(s)
- Jason J Serpa
- University of Victoria -Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Evgeniy V Petrotchenko
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Areškeviciute A, Melchior LC, Broholm H, Krarup LH, Lindquist SG, Johansen P, McKenzie N, Green A, Nielsen JE, Laursen H, Lund EL. Sporadic Creutzfeldt-Jakob Disease in a Woman Married Into a Gerstmann-Sträussler-Scheinker Family: An Investigation of Prions Transmission via Microchimerism. J Neuropathol Exp Neurol 2019; 77:673-684. [PMID: 29889261 DOI: 10.1093/jnen/nly043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This is the first report of presumed sporadic Creutzfeldt-Jakob disease (sCJD) and Gerstmann-Sträussler-Scheinker disease (GSS) with the prion protein gene c.305C>T mutation (p.P102L) occurring in one family. The father and son were affected with GSS and the mother had a rapidly progressive form of CJD. Diagnosis of genetic, variant, and iatrogenic CJD was ruled out based on the mother's clinical history, genetic tests, and biochemical investigations, all of which supported the diagnosis of sCJD. However, given the low incidence of sCJD and GSS, their co-occurrence in one family is extraordinary and challenging. Thus, a hypothesis for the transmission of infectious prion proteins (PrPSc) via microchimerism was proposed and investigated. DNA from 15 different brain regions and plasma samples of the CJD patient was subjected to PCR and shallow sequencing for detection of a male sex-determining chromosome Y (chr. Y). However, no trace of chr. Y was found. A long CJD incubation period or presumed small concentrations of chr. Y may explain the obtained results. Further studies of CJD and GSS animal models with controlled genetic and proteomic features are needed to determine whether maternal CJD triggered via microchimerism by a GSS fetus might present a new PrPSc transmission route.
Collapse
Affiliation(s)
- Aušrine Areškeviciute
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Linea Cecilie Melchior
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Helle Broholm
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lars-Henrik Krarup
- Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Suzanne Granhøj Lindquist
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Peter Johansen
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Neil McKenzie
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, the University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Green
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, the University of Edinburgh, Edinburgh, United Kingdom
| | - Jørgen Erik Nielsen
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Henning Laursen
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Eva Løbner Lund
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
6
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
7
|
Igel-Egalon A, Béringue V, Rezaei H, Sibille P. Prion Strains and Transmission Barrier Phenomena. Pathogens 2018; 7:E5. [PMID: 29301257 PMCID: PMC5874731 DOI: 10.3390/pathogens7010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing.
Collapse
Affiliation(s)
- Angélique Igel-Egalon
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Pierre Sibille
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| |
Collapse
|
8
|
Diack AB, Bartz JC. Experimental models of human prion diseases and prion strains. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:69-84. [PMID: 29887156 DOI: 10.1016/b978-0-444-63945-5.00004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prion strains occur in natural prion diseases, including prion diseases of humans. Prion strains can correspond with differences in the clinical signs and symptoms of disease and the distribution of prion infectivity in the host and are hypothesized to be encoded by strain-specific differences in the conformation of the disease-specific isoform of the host-encoded prion protein, PrPTSE. Prion strains can differ in biochemical properties of PrPTSE that can include the relative sensitivity to digestion with proteinase K and conformational stability in denaturants. These strain-specific biochemical properties of field isolates are maintained upon transmission to experimental animal models of prion disease. Experimental human models of prion disease include traditional and gene-targeted mice that express endogenous PrPC. Transgenic mice that express different polymorphs of human PrPC or mutations in human PrPC that correspond with familial forms of human prion disease have been generated that can recapitulate the clinical, pathologic, and biochemical features of disease. These models aid in understanding disease pathogenesis, evaluating zoonotic potential of animal prion diseases, and assessing human-to-human transmission of disease. Models of sporadic or familial forms of disease offer an opportunity to define mechanisms of disease, identify key neurodegenerative pathways, and assess therapeutic interventions.
Collapse
Affiliation(s)
- Abigail B Diack
- Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom.
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
9
|
Charco JM, Eraña H, Venegas V, García-Martínez S, López-Moreno R, González-Miranda E, Pérez-Castro MÁ, Castilla J. Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies. Pathogens 2017; 6:E67. [PMID: 29240682 PMCID: PMC5750591 DOI: 10.3390/pathogens6040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023] Open
Abstract
The misfolding of the cellular prion protein (PrPC) into the disease-associated isoform (PrPSc) and its accumulation as amyloid fibrils in the central nervous system is one of the central events in transmissible spongiform encephalopathies (TSEs). Due to the proteinaceous nature of the causal agent the molecular mechanisms of misfolding, interspecies transmission, neurotoxicity and strain phenomenon remain mostly ill-defined or unknown. Significant advances were made using in vivo and in cellula models, but the limitations of these, primarily due to their inherent complexity and the small amounts of PrPSc that can be obtained, gave rise to the necessity of new model systems. The production of recombinant PrP using E. coli and subsequent induction of misfolding to the aberrant isoform using different techniques paved the way for the development of cell-free systems that complement the previous models. The generation of the first infectious recombinant prion proteins with identical properties of brain-derived PrPSc increased the value of cell-free systems for research on TSEs. The versatility and ease of implementation of these models have made them invaluable for the study of the molecular mechanisms of prion formation and propagation, and have enabled improvements in diagnosis, high-throughput screening of putative anti-prion compounds and the design of novel therapeutic strategies. Here, we provide an overview of the resultant advances in the prion field due to the development of recombinant PrP and its use in cell-free systems.
Collapse
Affiliation(s)
- Jorge M. Charco
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Vanessa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Sandra García-Martínez
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Rafael López-Moreno
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Ezequiel González-Miranda
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Miguel Ángel Pérez-Castro
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
10
|
PrP P102L and Nearby Lysine Mutations Promote Spontaneous In Vitro Formation of Transmissible Prions. J Virol 2017; 91:JVI.01276-17. [PMID: 28835493 DOI: 10.1128/jvi.01276-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022] Open
Abstract
Accumulation of fibrillar protein aggregates is a hallmark of many diseases. While numerous proteins form fibrils by prion-like seeded polymerization in vitro, only some are transmissible and pathogenic in vivo To probe the structural features that confer transmissibility to prion protein (PrP) fibrils, we have analyzed synthetic PrP amyloids with or without the human prion disease-associated P102L mutation. The formation of infectious prions from PrP molecules in vitro has required cofactors and/or unphysiological denaturing conditions. Here, we demonstrate that, under physiologically compatible conditions without cofactors, the P102L mutation in recombinant hamster PrP promoted prion formation when seeded by minute amounts of scrapie prions in vitro Surprisingly, combination of the P102L mutation with charge-neutralizing substitutions of four nearby lysines promoted spontaneous prion formation. When inoculated into hamsters, both of these types of synthetic prions initiated substantial accumulation of prion seeding activity and protease-resistant PrP without transmissible spongiform encephalopathy (TSE) clinical signs or notable glial activation. Our evidence suggests that PrP's centrally located proline and lysine residues act as conformational switches in the in vitro formation of transmissible PrP amyloids.IMPORTANCE Many diseases involve the damaging accumulation of specific misfolded proteins in thread-like aggregates. These threads (fibrils) are capable of growing on the ends by seeding the refolding and incorporation of the normal form of the given protein. In many cases such aggregates can be infectious and propagate like prions when transmitted from one individual host to another. Some transmitted aggregates can cause fatal disease, as with human iatrogenic prion diseases, while other aggregates appear to be relatively innocuous. The factors that distinguish infectious and pathogenic protein aggregates from more innocuous ones are poorly understood. Here we have compared the combined effects of prion seeding and mutations of prion protein (PrP) on the structure and transmission properties of synthetic PrP aggregates. Our results highlight the influence of specific sequence features in the normally unstructured region of PrP that influence the infectious and neuropathogenic properties of PrP-derived aggregates.
Collapse
|
11
|
Abstract
Prion diseases are a group of fatal neurodegenerative disorders caused by the misfolding of the cellular prion protein (PrPC) into a pathogenic conformation (PrPSc). PrPSc is capable of folding into multiple self-replicating prion strains that produce phenotypically distinct neurological disorders. Evidence suggests that the structural heterogeneity of PrPSc is the molecular basis of strain-specific prion properties. The self-templating of PrPSc typically ensures that prion strains breed true upon passage. However, prion strains also have the capacity to conformationally transform to maximize their rate of replication in a given environment. Here, we provide an overview of the prion-strain phenomenon and describe the role of strain adaptation in drug resistance. We also describe recent evidence that shows the presence of distinct conformational strains in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, New York 14627
| |
Collapse
|
12
|
Abstract
Prion diseases are characterized by the deposition of amyloids, misfolded conformers of the prion protein. The misfolded conformation is self-replicating, by a mechanism solely enciphered in the conformation of the protein. Because of low solubility and heterogeneous aggregate sizes, the detailed atomic structure of the infectious isoform is still unknown. Progress has, however, been made, and has allowed insights into the structural and disease-related mechanisms of prions. Many structural models have been proposed, and a number of them support a consensus trimeric β-helical model, significantly more complex than simple amyloid models. There is evidence that such complexity may be a necessary property of prion structure. Knowledge of the structure of prions will provide a greater understanding of the protein isoform conversion mechanism, and could eventually lead to rationally designed intervention strategies.
Collapse
Affiliation(s)
- Gerald Stubbs
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 53723
| | - Jan Stöhr
- Institute for Neurodegenerative Diseases, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
13
|
Abstract
Prion diseases affect a wide range of mammal species and are caused by a misfolded self-propagating isoform (PrPSc) of the normal prion protein (PrPC). Distinct strains of prions exist and are operationally defined by differences in a heritable phenotype under controlled experimental transmission conditions. Prion strains can differ in incubation period, clinical signs of disease, tissue tropism, and host range. The mechanism by which a protein-only pathogen can encode strain diversity is only beginning to be understood. The prevailing hypothesis is that prion strain diversity is encoded by strain-specific conformations of PrPSc; however, strain-specific cellular cofactors have been identified in vitro that may also contribute to prion strain diversity. Although much progress has been made on understanding the etiological agent of prion disease, the relationship between the strain-specific properties of PrPSc and the resulting phenotype of disease in animals is poorly understood.
Collapse
Affiliation(s)
- Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska 68178
| |
Collapse
|
14
|
Breydo L, Redington JM, Uversky VN. Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:145-185. [PMID: 28109327 DOI: 10.1016/bs.ircmb.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Misfolding and aggregation of proteins and peptides play an important role in a number of diseases as well as in many physiological processes. Many of the proteins that misfold and aggregate in vivo are intrinsically disordered. Protein aggregation is a complex multistep process, and aggregates can significantly differ in morphology, structure, stability, cytotoxicity, and self-propagation ability. The aggregation process is influenced by both intrinsic (e.g., mutations and expression levels) and extrinsic (e.g., polypeptide chain truncation, macromolecular crowding, posttranslational modifications, as well as interaction with metal ions, other small molecules, lipid membranes, and chaperons) factors. This review examines the effect of a variety of these factors on aggregation of physiologically important intrinsically disordered proteins.
Collapse
Affiliation(s)
- L Breydo
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - J M Redington
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - V N Uversky
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
15
|
Makarava N, Savtchenko R, Alexeeva I, Rohwer RG, Baskakov IV. New Molecular Insight into Mechanism of Evolution of Mammalian Synthetic Prions. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1006-14. [PMID: 26873446 DOI: 10.1016/j.ajpath.2015.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/29/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022]
Abstract
Previous studies established that transmissible prion diseases could be induced by in vitro-produced recombinant prion protein (PrP) fibrils with structures that are fundamentally different from that of authentic PrP scrapie isoform (PrP(Sc)). To explain evolution of synthetic prions, a new mechanism referred to as deformed templating was introduced. Here, we asked whether an increase in expression level of the cellular form of PrP (PrP(C)) speeds up the evolution of synthetic strains in vivo. We found that in transgenic mice that overexpress hamster PrP(C), PrP(C) overexpression accelerated recombinant PrP fibril-induced conversion of PrP(C) to the abnormal proteinase K-resistant state, referred to as atypical PrPres, which was the first product of PrP(C) misfolding in vivo. However, overexpression of PrP(C) did not facilitate the second step of synthetic strain evolution-transition from atypical PrPres to PrP(Sc), which is attributed to the stochastic nature of rare deformed templating events. In addition, the potential of atypical PrPres to interfere with replication of a short-incubation time prion strain was investigated. Atypical PrPres was found to interfere strongly with replication of 263K in vitro; however, it did not delay prion disease in animals. The rate of deformed templating does not depend on the concentration of substrate and is hence more likely to be controlled by the intrinsic rate of conformational errors in templating alternative self-propagating states.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Regina Savtchenko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Irina Alexeeva
- Medical Research Service, Veterans Affairs Medical Center, University of Maryland, Baltimore, Maryland
| | - Robert G Rohwer
- Medical Research Service, Veterans Affairs Medical Center, University of Maryland, Baltimore, Maryland; Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
16
|
Makarava N, Savtchenko R, Baskakov IV. Two alternative pathways for generating transmissible prion disease de novo. Acta Neuropathol Commun 2015; 3:69. [PMID: 26556038 PMCID: PMC4641408 DOI: 10.1186/s40478-015-0248-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
Introduction Previous studies established that prion disease with unique strain-specific phenotypes could be induced by in vitro-formed recombinant PrP (rPrP) fibrils with structures different from that of authentic prions, or PrPSc. To explain the etiology of prion diseases, new mechanism proposed that in animals the transition from rPrP fibrils to PrPSc consists of two main steps: the first involves fibril-induced formation of atypical PrPres, a self-replicating but clinically silent state, and the second consists of atypical PrPres-dependent formation of PrPSc via rare deformed templating events. Results In the current study, atypical PrPres with characteristics similar to those of brain-derived atypical PrPres was generated in vitro. Upon inoculation into animals, in vitro-generated atypical PrPres gave rise to PrPSc and prion disease with a phenotype similar to those induced by rPrP fibrils. Significant differences in the sialylation pattern between atypical PrPres and PrPSc suggested that only a small sub-fraction of the PrPC that is acceptable as a substrate for PrPSc could be also recruited by atypical PrPres. This can explain why atypical PrPres replicates slower than PrPSc and why PrPSc outcompetes atypical PrPres. Conclusions This study illustrates that transmissible prion diseases with very similar disease phenotypes could be produced via two alternative procedures: direct inoculation of recombinant PrP amyloid fibrils or in vitro-produced atypical PrPres. Moreover, this work showed that preparations of atypical PrPres free of PrPSc can give rise to transmissible diseases in wild type animals and that atypical PrPres generated in vitro is an adequate model for brain-derived atypical PrPres. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0248-5) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Maury CPJ. Origin of life. Primordial genetics: Information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers. J Theor Biol 2015. [DOI: 10.1016/j.jtbi.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Wan W, Stöhr J, Kendall A, Stubbs G. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure. Prion 2015; 9:333-8. [PMID: 26325658 DOI: 10.1080/19336896.2015.1084464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Self-propagation of aberrant protein folds is the defining characteristic of prions. Knowing the structural basis of self-propagation is essential to understanding prions and their related diseases. Prion rods are amyloid fibrils, but not all amyloids are prions. Prions have been remarkably intractable to structural studies, so many investigators have preferred to work with peptide fragments, particularly in the case of the mammalian prion protein PrP. We compared the structures of a number of fragments of PrP by X-ray fiber diffraction, and found that although all of the peptides adopted amyloid conformations, only the larger fragments adopted conformations that modeled the complexity of self-propagating prions, and even these fragments did not always adopt the PrP structure. It appears that the relatively complex structure of the prion form of PrP is not accessible to short model peptides, and that self-propagation may be tied to a level of structural complexity unobtainable in simple model systems. The larger fragments of PrP, however, are useful to illustrate the phenomenon of deformed templating (heterogeneous seeding), which has important biological consequences.
Collapse
Affiliation(s)
- William Wan
- a Department of Biological Sciences and Center for Structural Biology ; Vanderbilt University ; Nashville , TN USA
| | - Jan Stöhr
- b Institute for Neurodegenerative Diseases and Department of Neurology ; University of California, San Francisco ; San Francisco , CA USA
| | - Amy Kendall
- a Department of Biological Sciences and Center for Structural Biology ; Vanderbilt University ; Nashville , TN USA
| | - Gerald Stubbs
- a Department of Biological Sciences and Center for Structural Biology ; Vanderbilt University ; Nashville , TN USA
| |
Collapse
|
19
|
Sneideris T, Milto K, Smirnovas V. Polymorphism of amyloid-like fibrils can be defined by the concentration of seeds. PeerJ 2015; 3:e1207. [PMID: 26355941 PMCID: PMC4563235 DOI: 10.7717/peerj.1207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/01/2015] [Indexed: 12/11/2022] Open
Abstract
Prions are infectious proteins where the same protein may express distinct strains. The strains are enciphered by different misfolded conformations. Strain-like phenomena have also been reported in a number of other amyloid-forming proteins. One of the features of amyloid strains is the ability to self-propagate, maintaining a constant set of physical properties despite being propagated under conditions different from those that allowed initial formation of the strain. Here we report a cross-seeding experiment using strains formed under different conditions. Using high concentrations of seeds results in rapid elongation and new fibrils preserve the properties of the seeding fibrils. At low seed concentrations, secondary nucleation plays the major role and new fibrils gain properties predicted by the environment rather than the structure of the seeds. Our findings could explain conformational switching between amyloid strains observed in a wide variety of in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Tomas Sneideris
- Department of Biothermodynamics and Drug Design, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| | - Katažyna Milto
- Department of Biothermodynamics and Drug Design, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Department of Biothermodynamics and Drug Design, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| |
Collapse
|
20
|
Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions. Sci Rep 2015; 5:10101. [PMID: 25960067 PMCID: PMC4650755 DOI: 10.1038/srep10101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
Abstract
Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aβ1-40, Aβ1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers.
Collapse
|
21
|
Le NTT, Narkiewicz J, Aulić S, Salzano G, Tran HT, Scaini D, Moda F, Giachin G, Legname G. Synthetic prions and other human neurodegenerative proteinopathies. Virus Res 2014; 207:25-37. [PMID: 25449570 DOI: 10.1016/j.virusres.2014.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/02/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022]
Abstract
Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau.
Collapse
Affiliation(s)
- Nhat Tran Thanh Le
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Joanna Narkiewicz
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Suzana Aulić
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giulia Salzano
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Hoa Thanh Tran
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Denis Scaini
- Life Science Department, University of Trieste, Trieste, Italy
| | - Fabio Moda
- Carlo Besta Neurological Institute, Department of Neuropathology and Neurology 5, Milan, Italy
| | - Gabriele Giachin
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy; Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, Basovizza, Trieste, Italy.
| |
Collapse
|
22
|
Abstract
Prions are proteins that acquire alternative conformations that become self-propagating. Transformation of proteins into prions is generally accompanied by an increase in β-sheet structure and a propensity to aggregate into oligomers. Some prions are beneficial and perform cellular functions, whereas others cause neurodegeneration. In mammals, more than a dozen proteins that become prions have been identified, and a similar number has been found in fungi. In both mammals and fungi, variations in the prion conformation encipher the biological properties of distinct prion strains. Increasing evidence argues that prions cause many neurodegenerative diseases (NDs), including Alzheimer's, Parkinson's, Creutzfeldt-Jakob, and Lou Gehrig's diseases, as well as the tauopathies. The majority of NDs are sporadic, and 10% to 20% are inherited. The late onset of heritable NDs, like their sporadic counterparts, may reflect the stochastic nature of prion formation; the pathogenesis of such illnesses seems to require prion accumulation to exceed some critical threshold before neurological dysfunction manifests.
Collapse
Affiliation(s)
- Stanley B Prusiner
- Institute for Neurodegenerative Diseases and Department of Neurology, University of California, San Francisco, California 94143;
| |
Collapse
|
23
|
Abstract
In several recent studies transmissible prion disease was induced in animals by inoculation with recombinant prion protein amyloid fibrils produced in vitro. Serial transmission of amyloid fibrils gave rise to a new class of prion strains of synthetic origin. Gradual transformation of disease phenotypes and PrP(Sc) properties was observed during serial transmission of synthetic prions, a process that resembled the phenomenon of prion strain adaptation. The current article discusses the remarkable parallels between phenomena of prion strain adaptation that accompanies cross-species transmission and the evolution of synthetic prions occurring within the same host. Two alternative mechanisms underlying prion strain adaptation and synthetic strain evolution are discussed. The current article highlights the complexity of the prion transmission barrier and strain adaptation and proposes that the phenomenon of prion adaptation is more common than previously thought.
Collapse
Affiliation(s)
- Ilia V Baskakov
- Center for Biomedical Engineering and Technology; Department of Anatomy and Neurobiology; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
24
|
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
There is not a single pharmaceutical that halts or even slows any neurodegenerative disease. Mounting evidence shows that prions cause many neurodegenerative diseases, and arguably, scrapie and Creutzfeldt-Jakob disease prions represent the best therapeutic targets. We report here that the previously identified 2-aminothiazoles IND24 and IND81 doubled the survival times of scrapie-infected, wild-type mice. However, mice infected with Rocky Mountain Laboratory (RML) prions, a scrapie-derived strain, and treated with IND24 eventually exhibited neurological dysfunction and died. We serially passaged their brain homogenates in mice and cultured cells. We found that the prion strain isolated from IND24-treated mice, designated RML[IND24], emerged during a single passage in treated mice. Although RML prions infect both the N2a and CAD5 cell lines, RML[IND24] prions could only infect CAD5 cells. When passaged in CAD5 cells, the prions remained resistant to high concentrations of IND24. However, one passage of RML[IND24] prions in untreated mice restored susceptibility to IND24 in CAD5 cells. Although IND24 treatment extended the lives of mice propagating different prion strains, including RML, another scrapie-derived prion strain ME7, and chronic wasting disease, it was ineffective in slowing propagation of Creutzfeldt-Jakob disease prions in transgenic mice. Our studies demonstrate that prion strains can acquire resistance upon exposure to IND24 that is lost upon passage in mice in the absence of IND24. These data suggest that monotherapy can select for resistance, thus intermittent therapy with mixtures of antiprion compounds may be required to slow or stop neurodegeneration.
Collapse
|
26
|
Atypical and classical forms of the disease-associated state of the prion protein exhibit distinct neuronal tropism, deposition patterns, and lesion profiles. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1539-1547. [PMID: 24012784 DOI: 10.1016/j.ajpath.2013.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/13/2013] [Accepted: 07/09/2013] [Indexed: 11/22/2022]
Abstract
A number of disease-associated PrP forms characterized by abnormally short proteinase K-resistant fragments (atypical PrPres) were recently described in prion diseases. The relationship between atypical PrPres and PrP(Sc), and their role in etiology of prion diseases, remains unknown. We examined the relationship between PrP(Sc) and atypical PrPres, a form characterized by short C-terminal proteinase K-resistant fragments, in a prion strain of synthetic origin. We found that the two forms exhibit distinct neuronal tropism, deposition patterns, and degree of pathological lesions. Immunostaining of brain regions demonstrated a partial overlap in anatomic involvement of the two forms and revealed the sites of their selective deposition. The experiments on amplification in vitro suggested that distinct neuronal tropism is attributed to differences in replication requirements, such as preferences for different cellular cofactors and PrP(C) glycoforms. Remarkably, deposition of atypical PrPres alone was not associated with notable pathological lesions, suggesting that it was not neurotoxic, but yet transmissible. Unlike PrP(Sc), atypical PrPres did not show significant perineuronal, vascular, or perivascular immunoreactivity. However, both forms showed substantial synaptic immunoreactivity. Considering that atypical PrPres is not associated with substantial lesions, this result suggests that not all synaptic disease-related PrP states are neurotoxic. The current work provides important new insight into our understanding of the structure-pathogenicity relationships of transmissible PrP states.
Collapse
|
27
|
Haldiman T, Kim C, Cohen Y, Chen W, Blevins J, Qing L, Cohen ML, Langeveld J, Telling GC, Kong Q, Safar JG. Co-existence of distinct prion types enables conformational evolution of human PrPSc by competitive selection. J Biol Chem 2013; 288:29846-61. [PMID: 23974118 DOI: 10.1074/jbc.m113.500108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unique phenotypic characteristics of mammalian prions are thought to be encoded in the conformation of pathogenic prion proteins (PrP(Sc)). The molecular mechanism responsible for the adaptation, mutation, and evolution of prions observed in cloned cells and upon crossing the species barrier remains unsolved. Using biophysical techniques and conformation-dependent immunoassays in tandem, we isolated two distinct populations of PrP(Sc) particles with different conformational stabilities and aggregate sizes, which frequently co-exist in the most common human prion disease, sporadic Creutzfeldt-Jakob disease. The protein misfolding cyclic amplification replicates each of the PrP(Sc) particle types independently and leads to the competitive selection of those with lower initial conformational stability. In serial propagation with a nonglycosylated mutant PrP(C) substrate, the dominant PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to its lowest stability. Cumulatively, the data show that sporadic Creutzfeldt-Jakob disease PrP(Sc) is not a single conformational entity but a dynamic collection of two distinct populations of particles. This implies the co-existence of different prions, whose adaptation and evolution are governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers.
Collapse
|
28
|
Gonzalez-Montalban N, Lee YJ, Makarava N, Savtchenko R, Baskakov IV. Changes in prion replication environment cause prion strain mutation. FASEB J 2013; 27:3702-10. [PMID: 23729586 DOI: 10.1096/fj.13-230466] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interspecies prion transmission often leads to stable changes in physical and biological features of prion strains, a phenomenon referred to as a strain mutation. It remains unknown whether changes in the replication environment in the absence of changes in PrP primary structure can be a source of strain mutations. To approach this question, RNA content was altered in the course of amplification of hamster strains in serial protein misfolding cyclic amplification (sPMCAb). On adaptation to an RNA-depleted environment and then readaptation to an environment containing RNA, strain 263K gave rise to a novel PrP(Sc) conformation referred to as 263K(R+), which is characterized by very low conformational stability, high sensitivity to proteolytic digestion, and a replication rate of 10(6)-fold/PMCAb round, which exceeded that of 263K by almost 10(4)-fold. A series of PMCAb experiments revealed that 263K(R+) was lacking in brain-derived 263K material, but emerged de novo as a result of changes in RNA content. A similar transformation was also observed for strain Hyper, suggesting that this phenomenon was not limited to 263K. The current work demonstrates that dramatic PrP(Sc) transformations can be induced by changes in the prion replication environment and without changes in PrP primary structure.
Collapse
Affiliation(s)
- Nuria Gonzalez-Montalban
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
29
|
Creationism and evolutionism in prions. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:623-7. [PMID: 23380581 DOI: 10.1016/j.ajpath.2012.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/06/2012] [Indexed: 01/14/2023]
|