1
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Ranhotra HS. Estrogen-related receptor alpha in select host functions and cancer: new frontiers. Mol Cell Biochem 2022; 477:1349-1359. [PMID: 35138514 DOI: 10.1007/s11010-022-04380-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 01/03/2023]
Abstract
Eukaryotic gene expression is under the tight control of transcription factors, which includes the estrogen-related receptor alpha (ERRα). The endogenous ligand(s) acting as ERRα agonist has not been identified and confirmed. ERRα is a prominent member of the nuclear receptors super-family with major roles in energy metabolism, including immunity, cell growth, proliferation and differentiation and a host of other functions in animals. The actions exerted by ERRα towards gene expression regulation are often in association with other transcriptional factors, receptors and signal mediators. Metabolic regulation by ERRα is known for some time that has tremendous impact on host biology like autophagy, angiogenesis, mitochondrial activity, including lipid metabolism. Cellular metabolism and cancer has intricate relationship. On account of the participation of ERRα in metabolism, it has been implicated in various types of cancer onset and progression. In a number of findings, ERRα has been demonstrated to influence several types of cancers, exhibiting as a negative prognostic marker for many. Such diverse role associated with ERRα is due to its interaction with numerous transcriptional factors and other signalling pathways that culminate in providing optimal gene regulation. These observations points to the crucial regulatory roles of ERRα in health and disease. In this article, some of the new findings on the influence of ERRα in host metabolism and biology including cancer, shall be reviewed that will provide a concise understanding of this receptor.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
3
|
Amilca-Seba K, Sabbah M, Larsen AK, Denis JA. Osteopontin as a Regulator of Colorectal Cancer Progression and Its Clinical Applications. Cancers (Basel) 2021; 13:cancers13153793. [PMID: 34359694 PMCID: PMC8345080 DOI: 10.3390/cancers13153793] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary The mortality of colorectal cancer is principally related to metastatic disease at the time of diagnosis or to the growth of initially undetectable micro-metastasis. Current therapeutic strategies are efficient in patients with locally advanced cancer, but are rarely able to cure patients with metastatic disease. Therapeutic failure is mainly associated with drug resistance and an aggressive phenotype. The identification of new biomarkers for micro-metastasis and tumor progression remains an unmet clinical need that should allow for improved patient stratification for optimal treatment and may lead to the identification of novel therapeutic targets. Osteopontin (OPN), a multifunctional protein, has emerged as a potentially valuable biomarker in several cancer types. This review principally describes the molecular mechanisms of OPN that are associated with colorectal cancer (CRC) progression and metastasis, as well as the use of OPN as a clinical biomarker. This review identifies a role for OPN as a biomarker ready for extended clinical application and discusses its use as a therapeutic target. Abstract A high expression of the phosphoprotein osteopontin (OPN) has been associated with cancer progression in several tumor types, including breast cancer, hepatocarcinoma, ovarian cancer, and colorectal cancer (CRC). Interestingly, OPN is overexpressed in CRC and is associated with a poor prognosis linked to invasion and metastasis. Here, we review the regulation and functions of OPN with an emphasis on CRC. We examine how epigenetic and genetic regulators interact with the key signaling pathways involved in this disease. Then, we describe the role of OPN in cancer progression, including proliferation, survival, migration, invasion, and angiogenesis. Furthermore, we outline the interest of using OPN as a clinical biomarker, and discuss if and how osteopontin can be implemented as a routine assay in clinical laboratories for monitoring CRC patients. Finally, we discuss the use of OPN an attractive, but challenging, therapeutic target.
Collapse
Affiliation(s)
- Katyana Amilca-Seba
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
| | - Michèle Sabbah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Annette K. Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Jérôme A. Denis
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Department of Endocrinology and Oncology Biochemistry, Pitié-Salpetrière Hospital, 75013 Paris, France
- Correspondence: ; Tel.: +33-(0)1-42-16-20-39
| |
Collapse
|
4
|
Huang X, Ruan G, Sun P. Estrogen-related receptor alpha copy number variation is associated with ovarian cancer histological grade. J Obstet Gynaecol Res 2021; 47:1878-1883. [PMID: 33751740 DOI: 10.1111/jog.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 11/27/2022]
Abstract
AIM Copy number variations (CNVs) are related to the genetic and phenotypic diversity of cancers and identifying genetic alterations could improve treatment strategies. Here, we used The Cancer Genome Atlas (TCGA) to explore associations between estrogen-related receptor alpha (ESRRA) CNVs and histological grade in patients with ovarian cancer (OC). METHODS Gene expression data and clinical information of 620 OC patients were obtained from The Cancer Genome Atlas)TCGA and associations between ESRRA CNVs and clinical characteristics were evaluated. Multivariate logistic regression analyses to obtain odds ratios (ORs) using a 95% confidence interval (CI) were performed, adjusting for race, age, histological grade, and tumor size. RESULTS ESRRA CNVs were associated with histological grade (OR 0.6235 [95% CI, 0.3593-0.8877]; p < 0.05) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) CNVs (OR -0.6298 [95% CI, -0.9011 to -0.3585]; p < 0.05). In multivariate analyses, ESRRA CNVs remained significantly associated with histological grade (OR 0.6492 [95% CI, 0.3549-0.9435]; p < 0.05) and PPARGC1A CNVs (OR -0.6236 [95% CI, -0.9269 to 0.3203]; p < 0.05). CONCLUSION There was a significant association between ESRRA CNVs in patients with OC and histological grade of the cancer.
Collapse
Affiliation(s)
- Xiqi Huang
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guanyu Ruan
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Key Laboratory of Women and Children's Critical Diseases Research, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Key Laboratory of Women and Children's Critical Diseases Research, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Chang S, Huang J, Niu H, Wang J, Si Y, Bai Z, Cheng S, Ding W. Epigenetic regulation of osteopontin splicing isoform c defines its role as a microenvironmental factor to promote the survival of colon cancer cells from 5-FU treatment. Cancer Cell Int 2020; 20:452. [PMID: 32944000 PMCID: PMC7491101 DOI: 10.1186/s12935-020-01541-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/05/2020] [Indexed: 01/04/2023] Open
Abstract
Background Drug resistance to 5-fluorouracil (5-FU) and recurrence after chemotherapy in colorectal cancer remain a challenge to be resolved for the improvement of patient outcomes. It is recognized that a variety of secretory proteins released from the tumor cells exposed to chemo-drugs into the tumor microenvironment (TME) contributed to the cell-to-cell communication, and altered the drug sensitivity. One of these important factors is osteopontin (OPN), which exists in several functional forms from alternative splicing and post-translational processing. In colon cancer cells, increased total OPN expression was observed during the progression of tumors, however, the exact role and regulation of the OPN splicing isoforms was not well understood. Methods We assayed precisely the abundance of major OPN splicing isoforms under 5-FU treatments in colon cancer cell lines with different sensitivities to 5-FU, and also evaluated the effects of the condition medium from OPN splicing isoforms overexpressed cells on cell functions. The methods of nuclear calcium reporter assays and ChIP (chromatin immunoprecipitation) assays were used to investigate the molecular mechanism underlining the production of OPN isoforms. Results We discovered that OPNc was a most increased splicing isoform to a significant abundance following 5-FU treatment of colon cancer cells. OPNc as a secretory protein in the conditioned medium exerted a more potent effect to promote cell survival in 5-FU than other OPN isoforms. The kinetic response of nuclear calcium signals could be used to indicate an immediate effect of the conditioned medium containing OPNc and other isoforms. Methyl-CpG binding protein 2 (MeCP2) was identified to regulate the splicing of opn gene, where the phosphorylation of MeCP2 at S421 site, possibly by calmodulin dependent protein kinase II (CaMKII) was required. Conclusions The results demonstrated that the production of OPNc was highly controlled under epigenetic regulations, where MeCP2 and the activation of nuclear calcium signaling were involved. It was also suggested that OPNc could transmit the stress signal of cells upon chemotherapy in TME and promoted the survival of adjacent colon cancer cells.
Collapse
Affiliation(s)
- Siyuan Chang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Jing Huang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Huan Niu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Jing Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Yang Si
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050 People's Republic of China
| | - Shan Cheng
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Wei Ding
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
6
|
Zhou Y, Jia Q, Meng X, Chen D, Zhu B. ERRα Regulates OTUB1 Expression to Promote Colorectal Cancer Cell Migration. J Cancer 2019; 10:5812-5819. [PMID: 31737118 PMCID: PMC6843886 DOI: 10.7150/jca.30720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian tumor domain-containing ubiquitin aldehyde binding protein 1 (OTUB1) is overexpressed in many cancers and plays an important role in tumor progression and metastasis. However, the molecular mechanisms underlying OTUB1 overexpression are not clear. In this study, we found that estrogen-related receptor alpha (ERRα, also called NR3B1) binds to OTUB1 promoter and regulates its expression in colorectal cancer. Furthermore, ERRα promoted the migration of CRC cells by inducing vimentin expression via OTUB1. Our data show that OTUB1 is a novel target of ERRα and indicate that ERRα-OTUB1 signaling may play a significant role in CRC metastasis.
Collapse
Affiliation(s)
- Yi Zhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoqing Meng
- Department of Hematology, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Diangang Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Yoriki K, Mori T, Kokabu T, Matsushima H, Umemura S, Tarumi Y, Kitawaki J. Estrogen-related receptor alpha induces epithelial-mesenchymal transition through cancer-stromal interactions in endometrial cancer. Sci Rep 2019; 9:6697. [PMID: 31040369 PMCID: PMC6491648 DOI: 10.1038/s41598-019-43261-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023] Open
Abstract
Estrogen-related receptor alpha (ERRα), which shares structural similarities with estrogen receptors, is associated with tumor progression in endometrial cancer, but little is known about the detailed underlying mechanism. We investigated whether ERRα, in cooperation with peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), could participate in epithelial-mesenchymal transition (EMT) in endometrial cancer through cancer-stromal interactions. Two endometrial cancer cell lines, Ishikawa and HEC-1A, transfected with ERRα/PGC-1α expression plasmids or silenced for ERRα expression, were co-cultured with telomerase-transformed human endometrial stromal cells (T-HESCs). We found that EMT-associated factors including vimentin, Snail, and zinc finger E-box binding homeobox 1 were upregulated in cancer cells overexpressing ERRα/PGC-1α and that transforming growth factor-beta (TGF-β) was induced in T-HESCs in the same conditions. In contrast, ERRα knockdown suppressed EMT-associated factors in cancer cells and TGF-β in T-HESCs. ERRα/PGC-1α overexpression increased the expression of EMT-associated factors after TGF-β exposure; however, it decreased E-cadherin at protein level. ERRα knockdown suppressed EMT-associated factors in the presence of TGF-β, whereas E-cadherin remained unchanged. Matrigel invasion assays revealed that ERRα knockdown attenuated the stimulation of migration and invasion by TGF-β. These findings suggest that ERRα is a potential target for inhibiting TGF-β-induced EMT through cancer-stromal interactions in endometrial cancer.
Collapse
Affiliation(s)
- Kaori Yoriki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Tetsuya Kokabu
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroshi Matsushima
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shiori Umemura
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yosuke Tarumi
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
8
|
The microRNA miR-181c enhances chemosensitivity and reduces chemoresistance in breast cancer cells via down-regulating osteopontin. Int J Biol Macromol 2019; 125:544-556. [DOI: 10.1016/j.ijbiomac.2018.12.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/10/2023]
|
9
|
Abstract
The eukaryotic nuclear receptors (NRs) super-family of transcriptional factors include the estrogen-related receptors (ERRs) that have diverse roles in control of cellular energy balance, general metabolism, growth and development, immunity etc. Mouse knock-out models of specific ERR isoforms (ERRα, ERRβ and ERRγ) exhibit defects in several phenotypic traits. Newer findings indicate important roles of ERRs in the regulation of brown adipocyte tissue mitochondrial oxidative functions as well as metabolic control in association with hypoxia-inducible factors during cellular hypoxic state. Genes involved in cardiac metabolism is also influenced by ERRα and ERRγ in association with the co-activators PGC-1α and PGC-1β. On the other hand, ERRs have crucial involvement at the interface of metabolism and diseases such as cancer. Recent findings have implicated ERRα in the progression of tumor and malignancy of the breast, prostate, colon, endometrium etc. In this article, new insights into the regulatory role of ERRs in metabolism and cancer shall be reviewed.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- a Department of Biochemistry , St. Edmund's College , Shillong , India
| |
Collapse
|
10
|
Placet M, Arguin G, Molle CM, Babeu JP, Jones C, Carrier JC, Robaye B, Geha S, Boudreau F, Gendron FP. The G protein-coupled P2Y₆ receptor promotes colorectal cancer tumorigenesis by inhibiting apoptosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1539-1551. [PMID: 29454075 DOI: 10.1016/j.bbadis.2018.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Colorectal tumors are immersed in an array of tumor-promoting factors including extracellular nucleotides such as uridine 5'‑diphosphate (UDP). UDP is the endogenous agonist of the G protein-coupled P2Y6 receptor (P2Y6R), which may contribute to the formation of a tumor-promoting microenvironment by coordinating resistance to apoptosis. Colorectal cancer (CRC) was chemically induced in P2ry6 knockout (P2ry6-/-) mice using azoxymethane and dextran sulfate sodium challenges. Mice were euthanatized and their tumor load determined. Fixed tissues were stained for histological and immunohistochemistry analysis. Tumoroids were also prepared from CRC tumors resected from P2ry6+/+ mice to determine the role of P2Y6R in resistance to apoptosis, whereas HT29 carcinoma cells were used to elucidate the signaling mechanism involved in P2Y6R anti-apoptotic effect. P2ry6-/- mice developed a reduced number of colorectal tumors with apparent tumors having smaller volumes. Overall dysplastic score was significantly lower in P2ry6-/- animals. Stimulation of P2Y6R with the selective agonist MRS2693 protected HT-29 cells from TNFα-induced apoptosis. This protective effect was mediated by the stabilizing phosphorylation of the X-linked inhibitor of apoptosis protein (XIAP) by AKT. Using CRC-derived tumoroids, P2Y6R activation was found to contribute to chemoresistance since addition of the P2Y6R agonist MRS2693 significantly prevented the cytotoxic effect of 5-fluorouracil. The present study shows that sustained activation of P2Y6R may contribute to intestinal tumorigenesis by blocking the apoptotic process and by contributing to chemoresistance, a substantial concern in the treatment of patients with CRC. These results suggest that P2Y6R may represent a prime target for reducing colorectal carcinogenesis.
Collapse
Affiliation(s)
- Morgane Placet
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guillaume Arguin
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Caroline M Molle
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Philippe Babeu
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christine Jones
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Julie C Carrier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Bernand Robaye
- Institute of Interdisciplinary Research, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Francois Boudreau
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Fernand-Pierre Gendron
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
11
|
Liang R, Lin Y, Yuan CL, Liu ZH, Li YQ, Luo XL, Ye JZ, Ye HH. High expression of estrogen-related receptor α is significantly associated with poor prognosis in patients with colorectal cancer. Oncol Lett 2018; 15:5933-5939. [PMID: 29552224 DOI: 10.3892/ol.2018.8011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of malignancy with high morbidity and mortality rates worldwide. This biologically heterogeneous disease results in diverse therapeutic responses, thus, novel prognostic biomarkers are required to improve CRC treatment. Estrogen-related receptor α (ERRα) is a nuclear orphan receptor, which is associated with estrogen receptor α. The present study aimed to investigate the expression of ERRα in patients with CRC, and explore the association between ERRα expression and clinicopathological factors, local recurrence and prognosis. In the present study, ERRα expression was detected in 15 fresh CRC tissues using quantitative real-time polymerase chain reaction (RT-qPCR) and in 128 paraffin-embedded CRC tissues using immunohistochemistry. The associations between ERRα expression and prognosis of CRC patients were evaluated by univariate, and multivariate (Cox proportional hazards model) analysis. RT-qPCR demonstrated that the mRNA expression of ERRα in CRC tissues was significantly higher compared with that in matched normal tissues. Immunohistochemistry revealed that ERRα high expression was detected in the nuclei of cancer cells from 39.1% (50/128) of CRC tissues. ERRα expression based on immunohistochemical staining was significantly associated with tumor differentiation, tumor invasion, lymph node status and Dukes stage (all P<0.05). Furthermore, patients with high ERRα expression were significantly associated with an increased risk of recurrence and poor prognosis, compared with patients with low ERRα expression. ERRα expression was identified as an independent prognostic factor for patients with CRC. In conclusion, ERRα serves important roles in the progression of CRC and is a potential prognostic factor for patients with CRC.
Collapse
Affiliation(s)
- Rong Liang
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yan Lin
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chun-Ling Yuan
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Hui Liu
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong-Qiang Li
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Ling Luo
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Zhou Ye
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Hong Ye
- Department of Hepatobilliary Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530001, P.R. China
| |
Collapse
|
12
|
Ding S, Tang Z, Jiang Y, Huang H, Luo P, Qing B, Zhang S, Tang R. IL-8 Is Involved in Estrogen-Related Receptor α-Regulated Proliferation and Migration of Colorectal Cancer Cells. Dig Dis Sci 2017; 62:3438-3446. [PMID: 28993941 DOI: 10.1007/s10620-017-4779-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/21/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Studies revealed that estrogenic signals were involved in the development of colorectal cancer (CRC), while the roles of estrogen related receptor (ERR) on the progression of CRC have not been well illustrated. Its roles on the development of CRC were investigated. METHODS The expression of ERRα/β/γ in CRC cells were measured. The effects of ERRα on cell proliferation, migration and expression of cytokines were investigated accordingly. RESULTS Our data revealed that the expression of ERRα, while not ERRβ or ERRγ, was significantly increased in CRC cells and clinical CRC tissues. Both the inverse agonist of ERRα (XCT-790) and si-ERRα can inhibit the proliferation of CRC cells. XCT-790 treatment can also suppress the wound healing and in vitro migration of CRC cells. Cytokine assays showed that XCT-790 can significantly decrease the expression of interleukin-8 (IL-8), while not IL-4, IL-6, IL-8, IL-9, IL-10, IL-18, IFN-γ, or TGF-β, in CRC cells. Over expression of ERRα increased the expression of IL-8. Luciferase assay showed XCT-790 decreased the promoter activity of IL-8. XCT-790 can increase the decay of IL-8 mRNA in SW480 cells. The recombinant IL-8 (rIL-8) can rescue XCT-790 induced suppression of proliferation and migration of CRC cells. XCT-790 can decrease the phosphorylation of ERK1/2 and STAT3, two downstream signal molecules of IL-8, in CRC cells. While rIL-8 can markedly attenuate XCT-790 induced dephosphorylation of ERK1/2 and STAT3. CONCLUSION Our data showed that ERRα can trigger the proliferation and migration of CRC cells via up regulation of IL-8. Therefor targeted inhibition of ERRα/IL-8 might be a potential approach for CRC treatment and drug development.
Collapse
Affiliation(s)
- Sijuan Ding
- Department of Oncology, The Central Hospital of Yongzhou, No. 396, Yiyun Road, Lengshuitan District, Yongzhou City, 425000, China
| | - Zhaohui Tang
- Department of Oncology, The Central Hospital of Yongzhou, No. 396, Yiyun Road, Lengshuitan District, Yongzhou City, 425000, China.
| | - Yongjun Jiang
- Department of Oncology, The Central Hospital of Yongzhou, No. 396, Yiyun Road, Lengshuitan District, Yongzhou City, 425000, China
| | - Honglin Huang
- Department of Oncology, The Central Hospital of Yongzhou, No. 396, Yiyun Road, Lengshuitan District, Yongzhou City, 425000, China
| | - Pengfei Luo
- Department of Oncology, The Central Hospital of Yongzhou, No. 396, Yiyun Road, Lengshuitan District, Yongzhou City, 425000, China
| | - Bohua Qing
- Department of Oncology, The Central Hospital of Yongzhou, No. 396, Yiyun Road, Lengshuitan District, Yongzhou City, 425000, China
| | - Siyuan Zhang
- Department of Oncology, The Central Hospital of Yongzhou, No. 396, Yiyun Road, Lengshuitan District, Yongzhou City, 425000, China
| | - Ruoting Tang
- Department of Oncology, The Central Hospital of Yongzhou, No. 396, Yiyun Road, Lengshuitan District, Yongzhou City, 425000, China
| |
Collapse
|
13
|
Sanchez-Gonzalez C, Moreno L, Lopez-Chaves C, Nebot E, Pietschmann P, Rodriguez-Nogales A, Galvez J, Montes-Bayon M, Sanz-Medel A, Llopis J. Effect of vanadium on calcium homeostasis, osteopontin mRNA expression, and bone microarchitecture in diabetic rats. Metallomics 2017; 9:258-267. [PMID: 28194470 DOI: 10.1039/c6mt00272b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to examine whether alterations caused by diabetes in calcium homeostasis, expression of osteopontin and the microarchitecture of bone are corrected by exposure to vanadium. Four study groups were examined over a period of five weeks: control (C), diabetic (DM), diabetic treated with 1 mg V per d (DMV), and diabetic treated with 3 mg V per d (DMVH). Vanadium was supplied in drinking water as bis(maltolato)oxovanadium(iv). Calcium was measured in the food, faeces, urine, serum, kidneys, liver, muscles, and femur. Osteopontin gene expression was determined in the liver, and the bone microarchitecture was studied with the aid of micro-computed tomography. In the DM group, food intake as well as calcium absorbed and retained and liver osteopontin mRNA increased, while Ca in the serum and femur decreased, and the bone microarchitecture worsened, in comparison with the control. In the DMV group, the amount of Ca absorbed and retained was similar to DM rats. Although the Ca content in the femur increased and osteopontin mRNA decreased, there were no significant changes in the bone microarchitecture, in comparison to the DM rats. In the DMVH group, the amount of Ca absorbed and retained, and the serum and femur content were equivalent to the control. The levels of osteopontin mRNA decreased and bone mineralization improved, compared to the DM group. We conclude that treatment with 3 mg V per d of the glucose lowering agent bis(maltolato)oxovanadium(iv) causes a decrease in osteopontin mRNA, which could favour the normalization of changes in Ca homeostasis and bone microarchitecture, both at the cortical and trabecular levels, caused by diabetes.
Collapse
Affiliation(s)
- Cristina Sanchez-Gonzalez
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Laura Moreno
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Carlos Lopez-Chaves
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Elena Nebot
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain. and Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | | | - Julio Galvez
- CIBERehd, Department of Pharmacology, University of Granada, 18071 Granada, Spain
| | - María Montes-Bayon
- Department of Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain.
| | - Alfredo Sanz-Medel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain.
| | - Juan Llopis
- CIBM, IMUDS, Department of Physiology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| |
Collapse
|
14
|
Nghiem PP, Kornegay JN, Uaesoontrachoon K, Bello L, Yin Y, Kesari A, Mittal P, Schatzberg SJ, Many GM, Lee NH, Hoffman EP. Osteopontin is linked with AKT, FoxO1, and myostatin in skeletal muscle cells. Muscle Nerve 2017; 56:1119-1127. [PMID: 28745831 PMCID: PMC5690863 DOI: 10.1002/mus.25752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/10/2017] [Accepted: 07/23/2017] [Indexed: 01/17/2023]
Abstract
Introduction: Osteopontin (OPN) polymorphisms are associated with muscle size and modify disease progression in Duchenne muscular dystrophy (DMD). We hypothesized that OPN may share a molecular network with myostatin (MSTN). Methods: Studies were conducted in the golden retriever (GRMD) and mdx mouse models of DMD. Follow‐up in‐vitro studies were employed in myogenic cells and the mdx mouse treated with recombinant mouse (rm) or human (Hu) OPN protein. Results: OPN was increased and MSTN was decreased and levels correlated inversely in GRMD hypertrophied muscle. RM‐OPN treatment led to induced AKT1 and FoxO1 phosphorylation, microRNA‐486 modulation, and decreased MSTN. An AKT1 inhibitor blocked these effects, whereas an RGD‐mutant OPN protein and an RGDS blocking peptide showed similar effects to the AKT inhibitor. RMOPN induced myotube hypertrophy and minimal Feret diameter in mdx muscle. Discussion: OPN may interact with AKT1/MSTN/FoxO1 to modify normal and dystrophic muscle. Muscle Nerve56: 1119–1127, 2017
Collapse
Affiliation(s)
- Peter P Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, 4458 TAMU, Texas A&M University, College Station, Texas, 77843-4458, USA
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, 4458 TAMU, Texas A&M University, College Station, Texas, 77843-4458, USA
| | | | - Luca Bello
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Ying Yin
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Akanchha Kesari
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Priya Mittal
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Gina M Many
- Department of Health Sciences, Central Washington University, Ellensburg, Washington, USA
| | - Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Eric P Hoffman
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Binghamton, New York, USA
| |
Collapse
|
15
|
Fateh A, Feizi MAH, Safaralizadeh R, Azarbarzin S. Importance of miR-299-5p in colorectal cancer. Ann Gastroenterol 2017; 30:322-326. [PMID: 28469363 PMCID: PMC5411383 DOI: 10.20524/aog.2017.0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRNAs) are effective regulators of gene expression that play a pivotal role in the pathogenesis of colorectal cancer (CRC) and various other cancers. The high prevalence of aberrant miRNA expression in CRC suggests that they can be used as biomarkers and anticancer molecules for therapeutic purposes. There is evidence that microRNA-299-5p (miR-299-5p) is associated with vital cell processes (e.g. epithelial-mesenchymal transition, proliferation, and tumorigenicity) and its improper expression with tumorigenesis in many types of human cancer. This prospective study investigated the contribution of miR-299-5p to CRC tumorigenesis. Methods The real-time reverse transcription-polymerase chain reaction was used to examine miR-299-5p expression levels prospectively in 40 sample pairs of CRC tissue and adjacent noncancerous tissue (>2 cm from cancer tissue). The ability of miR-299-5p to function as a tumor marker was also examined. Results The expression levels of miR-299-5p were significantly downregulated in the group of CRC samples compared with matched noncancerous tissue samples. No significant relationship was found between miR-299-5p expression levels and clinicopathological features. Receiver operating characteristic analysis gave an area under the curve of 71% for miR-299-5p with 68% sensitivity and 78% specificity (P=0.001). Conclusion The miRNA miR-299-5p may be considered as a tumor marker in CRC and could be of assistance as a potential predictive biomarker in the diagnosis of this cancer.
Collapse
Affiliation(s)
- Alavieh Fateh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
16
|
Zhang L, Wong J, Vanacker JM. The estrogen-related receptors (ERRs): potential targets against bone loss. Cell Mol Life Sci 2016; 73:3781-7. [PMID: 27514376 PMCID: PMC11108346 DOI: 10.1007/s00018-016-2328-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 01/20/2023]
Abstract
Bone loss and the resulting skeletal fragility is induced by several pathological or natural conditions, the most prominent of which being aging as well as the decreased levels of circulating estrogens in post-menopause females. To date, most treatments against bone loss aim at preventing excess bone resorption. We here summarize data indicating that the estrogen-related receptors (ERRs) α and γ prevent bone formation. Inhibiting these receptors may thus constitute an anabolic approach by increasing bone formation.
Collapse
Affiliation(s)
- Ling Zhang
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Université de Lyon, Université Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Université de Lyon, Université Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
17
|
Carnesecchi J, Vanacker JM. Estrogen-Related Receptors and the control of bone cell fate. Mol Cell Endocrinol 2016; 432:37-43. [PMID: 26206717 DOI: 10.1016/j.mce.2015.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 11/17/2022]
Abstract
Bone loss is naturally occurring in aging males and females and exacerbated in the latter after menopause, altogether leading to cumulative skeleton fragility and increased fracture risk. Two types of therapeutic strategies can be envisioned to counteract age- or menopause-associated bone loss, aiming at either reducing bone resorption exerted by osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote bone formation and compensate for bone loss induced by ageing or estrogen-deficiency.
Collapse
Affiliation(s)
- Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
18
|
Shi L, Wang X. Role of osteopontin in lung cancer evolution and heterogeneity. Semin Cell Dev Biol 2016; 64:40-47. [PMID: 27578008 DOI: 10.1016/j.semcdb.2016.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Patients with lung cancer still have high mortality, recurrence rate after adjuvant treatment, and poor five-year survival rates, despite of advances in multidisciplinary anti-cancer therapies, e.g. chemotherapy, radiotherapy and targeted therapies, It depends upon the presence of intratumoral heterogeneity and complexity of lung cancer. There is growing evidence to suggest that osteopontin (OPN) may play a critical role in tumor progression and metastasis. The present review briefly describes the structure and molecular biology of OPN, highlights the role of OPN in the development and metastasis of lung cancer, and summarizes potential mechanisms of OPN heterogeneity in tumor to underline some of these inconsistencies. The article will emphasize the importance to understand the role of OPN in cancer evolution and heterogeneity and explore the potential of OPN as a therapeutic target.
Collapse
Affiliation(s)
- Lin Shi
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
19
|
Li Q, Wang Y, Zhang L, Chen L, Du Y, Ye T, Shi X. Naringenin exerts anti-angiogenic effects in human endothelial cells: Involvement of ERRα/VEGF/KDR signaling pathway. Fitoterapia 2016; 111:78-86. [PMID: 27105956 DOI: 10.1016/j.fitote.2016.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Naringenin (Nar), most abundant in oranges and tomatoes, are known for the hypocholesterolemic, anti-estrogenic, hypolipidemic, anti-hypertensive, and anti-inflammatory activities. Here, the present study was designed to investigate the in vitro and in vivo anti-angiogenesis of Nar. Inhibition of angiogenesis was determined in vitro by using proliferation, apoptosis, migration, and tube-formation assays in Nar-treated human endothelial cell. Finally, CAM assays were used to assess inhibitory effect of Nar on physiological angiogenesis in vivo. The data suggest that Nar should be a direct ERRα inhibitor capable of inhibiting angiogenesis in vitro and in vivo, including endothelial cell proliferation, survival, migration and capillary-like structures formation of HUVECs, as well as reduced neovascularization of the CAM. Furthermore, the effects exerted by Nar are cell cycle related and mediated by VEGF/KDR signaling pathway along with downregulation of certain proangiogenic inflammatory cytokines. Our data thus provide potential molecular mechanisms through which Nar manifests it as a promising anti-angiogenic and anti-cancer agent.
Collapse
Affiliation(s)
- Qunyi Li
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai 200040, China; Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai 201907, China.
| | - Yi Wang
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Liudi Zhang
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Lu Chen
- Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Yongli Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Ting Ye
- General Surgery Unit, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi M Road, Shanghai 200040, China.
| | - Xiaojin Shi
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai 200040, China; Clinical Pharmacy Laboratory, Huashan Hospital North, Fudan University, Shanghai 201907, China
| |
Collapse
|
20
|
Sénicourt B, Boudjadi S, Carrier JC, Beaulieu JF. Neoexpression of a functional primary cilium in colorectal cancer cells. Heliyon 2016; 2:e00109. [PMID: 27441280 PMCID: PMC4946219 DOI: 10.1016/j.heliyon.2016.e00109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/24/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
The Hedgehog (HH) signaling pathway is involved in the maintenance of numerous cell types both during development and in the adult. Often deregulated in cancers, its involvement in colorectal cancer has come into view during the last few years, although its role remains poorly defined. In most tissues, the HH pathway is highly connected to the primary cilium (PC), an organelle that recruits functional components and regulates the HH pathway. However, normal epithelial cells of the colon display an inactive HH pathway and lack a PC. In this study, we report the presence of the PC in adenocarcinoma cells of primary colorectal tumors at all stages. Using human colorectal cancer cell lines we found a clear correlation between the presence of the PC and the expression of the final HH effector, GLI1, and provide evidence of a functional link between the two by demonstrating the recruitment of the SMO receptor to the membrane of the primary cilium. We conclude that the primary cilium directly participates in the HH pathway in colorectal cancer cells.
Collapse
Affiliation(s)
- Blanche Sénicourt
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Salah Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; Department of Medicine, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Julie C Carrier
- Department of Medicine, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
21
|
Xu Z, Liu J, Gu L, Ma X, Huang B, Pan X. Research progress on the reproductive and non-reproductive endocrine tumors by estrogen-related receptors. J Steroid Biochem Mol Biol 2016; 158:22-30. [PMID: 26802897 DOI: 10.1016/j.jsbmb.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/03/2016] [Accepted: 01/18/2016] [Indexed: 12/20/2022]
Abstract
Oncologists have traditionally considered that tumorigenesis are closely related to classical nuclear estrogen receptors (ERs), such as estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), through the ligands binding and target gene transcription induction. Estrogen-related receptors (ERRs) have similar structures with ERs, which are also gradually thought to be relevant to reproductive endocrine tumor diseases, even non-reproductive endocrine tumors. In this review, different subtypes of ERRs and their structures firstly will be introduced, then the expression patterns in gynecological oncology (i.e., breast cancer, endometrial cancer, and ovarian cancer), male genitourinary system malignancy especially prostatic cancer along with other non-reproductive endocrine tumors (i.e., lung cancer, colorectal cancer, and liver cancer) will be described, and simultaneously the role of tumorigenesis related to ERRs will be discussed. Therefore, the review is benefit to explore the way of tumor prevention and treatment.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jun Liu
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lipeng Gu
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xiaodong Ma
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Bin Huang
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xuejun Pan
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
22
|
Abstract
Cancer is perhaps the fastest growing non-communicable disease in the human population worldwide. Although the molecular mechanism of cancer initiation and progression is known to some extent, however, the majority of pathways responsible for its onset, development and progression are largely unknown. Many members of the nuclear receptors (NRs) superfamily of transcriptional factors have key roles in cancer. Estrogen-related receptor alpha (ERRα) is one of the members of the NR superfamily and studies have linked it with a wide variety of cancers. In endocrine-related cancers such as breast cancer, ERRα regulates a number of target genes directing cell proliferation and growth independent of estrogen receptor alpha (ERα). Knockdown of ERRα in a number of cancer tissues and cell lines significantly reduced tumor growth and malignancy indicating dependence on ERRα activity. The pro-angiogenesis factor vascular endothelial growth factor expression has been shown to be regulated by ERRα and has implications in several types of cancer. The effect of ERRα on cancers seems to be multipronged via regulation of cell cycle regulators, osteopontin, hypoxia inducible factor-1 as well as several energy metabolism genes that are part of glycolysis, TCA cycle, lipogenesis, etc., providing a metabolic twist to cancer. In this article, the action of ERRα on various types of cancers including new developments in this field shall be reviewed.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- a Orphan Nuclear Receptors Laboratory, Department of Biochemistry, St. Edmund's College , Shillong , India
| |
Collapse
|
23
|
Boudjadi S, Carrier JC, Groulx JF, Beaulieu JF. Integrin α1β1 expression is controlled by c-MYC in colorectal cancer cells. Oncogene 2015; 35:1671-8. [PMID: 26096932 PMCID: PMC4820680 DOI: 10.1038/onc.2015.231] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/15/2015] [Accepted: 05/10/2015] [Indexed: 12/13/2022]
Abstract
The α1β1 collagen receptor is only present in a few epithelial cell types. In the intestine, it is specifically expressed in proliferating crypt cells. This integrin has been reported to be involved in various cancers where it mediates the downstream activation of the Ras/ERK proliferative pathway. We have recently shown that integrin α1β1 is present in two-thirds of colon adenocarcinomas, but the mechanism by which ITGA1 expression is regulated is not known. DNA methylation, involved in ITGA1 repression during megakaryocyte differentiation, is not the mechanism of ITGA1 regulation in colorectal cancer cells. Our in silico analysis of the ITGA1 promoter revealed two response elements for MYC, an oncogenic factor known to regulate cancer cell proliferation, invasion and migration. In situ, the expressions of both MYC and ITGA1 are localized in the lower crypt of the normal colon and correlate in 72% of the 65 analyzed colorectal cancers. MYC pharmacological inhibition or downregulation of expression with short hairpin RNA in HT29, T84 and SW480 cells resulted in reduced ITGA1 expression at both the transcript and protein levels. Chromatin immunoprecipitation assays revealed that MYC was bound to the chromatin region of the ITGA1 proximal promoter, whereas MYC overexpression enhanced ITGA1 promoter activity that was reduced with MAD co-transfection or by the disruption of the response elements. We concluded that MYC is a key regulating factor for the control of ITGA1 expression.
Collapse
Affiliation(s)
- S Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J C Carrier
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J-F Groulx
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J-F Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
24
|
Basu A, Seth S, Arora K, Verma M. Evaluating estradiol levels in male patients with colorectal carcinoma. J Clin Diagn Res 2015; 9:BC08-10. [PMID: 25737973 PMCID: PMC4347064 DOI: 10.7860/jcdr/2015/10508.5397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/13/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Globally more than 1 million people suffer from colorectal cancer (CRC) per annum, resulting in about 0.5 million deaths. The role of estrogen in CRC is being researched with great interest; expression of estrogen receptors (alfa and beta) is being explored. AIMS AND OBJECTIVE Our objective was to compare the serum estradiol levels in diagnosed male patients of CRC, with age-matched controls; and to study the estradiol levels across the different stages of CRC. SETTING AND DESIGN A cross-sectional study was conducted from January, 2012 to March, 2013 at a tertiary care hospital in north India. MATERIALS AND METHODS Fifty one male preoperative CRC patients were enrolled along with 50 age-matched male controls. Ethical approval and informed written consent from each participant were duly obtained. CRC patients were staged as per TNM (T- Tumour, N- Node, M- Metastasis; I, II, III and IV) criteria. Serum estradiol level was measured by Chemiimmunofluroscence method (normal = 11.6 - 41.2 pg/ml). STATISTICAL ANALYSIS USED We used student's t test and ANOVA (analysis of variance) to analyse the data (SPSS version 17.0, SPSS, Inc., Chicago, Illinois) Result: The mean serum estradiol level among CRC patients (43.4, sd=27.1) was significantly more than that among controls (mean=24.7, sd=17.5), (p<0.0001). Across the four TNM stages of CRC patients, mean estradiol level was highest in Stage II (55.9, sd=15.5); followed by Stages III (44.1, sd=24.9), IV (36.3, sd=30.0) and I (26.4, sd=38.8). However, significant difference was obtained only between Stages I and II. CONCLUSION Our study revealed increased levels of serum estradiol in Indian male CRC patients. Further research is warranted to corroborate this finding, and to understand the role of estradiol across different TNM stages of CRC.
Collapse
Affiliation(s)
- Atreyee Basu
- Senior Resident, Department of Biochemistry, Post Graduate Institute of Medical Sciences (PGIMS), Rohtak, Haryana, India
| | - Shashi Seth
- Senior Professor, Department of Biochemistry, Post Graduate Institute of Medical Sciences (PGIMS), Rohtak, Haryana, India
| | - Kanchan Arora
- Senior Resident, Department of Biochemistry, VMMC and Safdarjung Hospital, New Delhi, India
| | - Monica Verma
- Senior Resident, Department of Biochemistry, Post Graduate Institute of Medical Sciences (PGIMS), Rohtak, Haryana, India
| |
Collapse
|
25
|
Huang JW, Guan BZ, Yin LH, Liu FN, Hu B, Zheng QY, Li FL, Zhong YX, Chen Y. Effects of estrogen-related receptor alpha (ERRα) on proliferation and metastasis of human lung cancer A549 cells. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2014; 34:875-881. [PMID: 25480584 DOI: 10.1007/s11596-014-1367-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/16/2014] [Indexed: 10/24/2022]
Abstract
Estrogen-related receptor alpha (ERRα) plays an important role in the development of hormone-dependent cancers, but its roles in lung cancer remain elusive. The present study was aimed to investigate the effects of ERRα on the proliferation and metastasis of lung cancer A549 cells. The mRNA and protein levels of ERRα were detected in lung cancer A549 and MCF-7 cells and bronchial epithelial BEAS-2B cells by qRT-PCR and Western blotting, respectively. ERRα plasmid transfection and XCT-790 (an inverse agonist of ERRα) were used to up-regulate or down-regulate ERRα expression in A549 cells, respectively. The viability of A549 cells was measured by cell counting kit-8 (CCK-8) and the motility of A549 cells by wound healing assay and Transwell migration/invasion assay. The epithelial markers E-cadherin (E-Cad) and zona occludin-1 (ZO-1), the mesenchymal markers fibronectin (FN) and vimentin (Vim) and the transcription factors (Snail, Zeb1 Twist and Slug) were further detected at mRNA and protein levels by qRT-PCR and Western blotting, respectively. The results showed that ERRα promoted the growth of lung cancer A549 cells in vitro. XCT-790 significantly inhibited the migration and invasion of A549 cells. Over-expression of ERRα promoted the epithelial-to-mesenchymal transition (EMT) of A549 cells, down-regulated the epithelial makers E-Cad and ZO-1, and up-regulated the mesenchymal makers FN and Vim. Silencing of Slug, but not other transcription factors, significantly abolished the ERRα-induced EMT of A549 cells. It was suggested that ERRα promoted the migration and invasion of A549 cells by inducing EMT, and Slug was involved in the process. Targeting ERRα might be an efficient approach for lung cancer treatment.
Collapse
Affiliation(s)
- Jian-Wei Huang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Bao-Zhang Guan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Liang-Hong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Fan-Na Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qi-Yi Zheng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Fo-Lan Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ying-Xue Zhong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yu Chen
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
26
|
Shevde LA, Samant RS. Role of osteopontin in the pathophysiology of cancer. Matrix Biol 2014; 37:131-41. [PMID: 24657887 PMCID: PMC5916777 DOI: 10.1016/j.matbio.2014.03.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is a multifunctional cytokine that impacts cell proliferation, survival, drug resistance, invasion, and stem like behavior. Due to its critical involvement in regulating cellular functions, its aberrant expression and/or splicing is functionally responsible for undesirable alterations in disease pathologies, specifically cancer. It is implicated in promoting invasive and metastatic progression of many carcinomas. Due to its autocrine and paracrine activities OPN has been shown to be a crucial mediator of cellular cross talk and an influential factor in the tumor microenvironment. OPN has been implicated as a prognostic and diagnostic marker for several cancer types. It has also been explored as a possible target for treatment. In this article we hope to provide a broad perspective on the importance of OPN in the pathophysiology of cancer.
Collapse
Affiliation(s)
- Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| | - Rajeev S Samant
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| |
Collapse
|
27
|
OPN and αvβ3 expression are predictors of disease severity and worse prognosis in hepatocellular carcinoma. PLoS One 2014; 9:e87930. [PMID: 24498405 PMCID: PMC3912195 DOI: 10.1371/journal.pone.0087930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/01/2014] [Indexed: 12/17/2022] Open
Abstract
Expressions of OPN and αvβ3 are associated with a poor prognosis in many malignancies. However, their relationship in hepatocellular carcinoma remains unclear. We systematically collected hepatocellular carcinoma tissue samples from 305 patients over 3 years, and analyzed the status of OPN and αvβ3 in hepatocellular carcinoma and correlate expression with patient disease status and survival outcome. Our study results indicated that OPN and αvβ3 are expressed at significantly higher rates in hepatocellular carcinoma compared with adjacent non-tumorous tissue (69.5% vs 18.4%, p<0.01 and 77.4% vs 21.6%, p<0.01, respectively). Both OPN and αvβ3 expression levels are associated with poor prognostic factors, including tumor size, capsular invasion, tumor thrombus of the portal vein, metastasis of the lymph node and clinical staging. Patients expressing OPN and αvβ3 had significantly shorter survival compared with patients negative for protein expression (p<0.01). Multivariate analysis also showed that both OPN and αvβ3 expression are independent prognostic factors for poorer survival in hepatocellular carcinoma. By this study, we conclude that OPN and αvβ3 are negative prognostic predictors in patients with hepatocellular carcinoma. The expressions of both OPN and αvβ3 are associated with worse survival outcome.
Collapse
|
28
|
Bramwell VHC, Tuck AB, Chapman JAW, Anborgh PH, Postenka CO, Al-Katib W, Shepherd LE, Han L, Wilson CF, Pritchard KI, Pollak MN, Chambers AF. Assessment of osteopontin in early breast cancer: correlative study in a randomised clinical trial. Breast Cancer Res 2014; 16:R8. [PMID: 24451146 PMCID: PMC3978736 DOI: 10.1186/bcr3600] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/10/2014] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Osteopontin (OPN) is a malignancy-associated glycoprotein that contributes functionally to tumor aggressiveness. In metastatic breast cancer, we previously demonstrated that elevated OPN in primary tumor and blood was associated with poor prognosis. METHODS We measured OPN in plasma by ELISA, and in tumors by immunohistochemistry, in 624 (94%) and 462 (69%), respectively, of 667 postmenopausal women with hormone responsive early breast cancer treated by surgery followed by adjuvant treatment with tamoxifen +/- octreotide in a randomized trial (NCIC CTG MA.14; National Cancer Institute of Canada Clinical Trials Group Mammary.14). RESULTS Plasma OPN was measured in 2,540 samples; 688 at baseline and 1,852 collected during follow-up. Mean baseline plasma OPN was 46 ng/ml (range 22.6 to 290) which did not differ from normal levels. Mean percentage OPN tumor cell positivity was 33.9 (95% CI: 30.2 to 37.9). There was no correlation between plasma and tumor OPN values. In multivariate analysis, neither was associated with event-free survival (EFS), relapse-free survival (RFS), overall survival (OS), bone RFS or non-bone RFS. An exploratory analysis in patients with recurrence showed higher mean OPN plasma levels 60.7 ng/ml (23.9 to 543) in the recurrence period compared with baseline levels. CONCLUSIONS The hypothesis that OPN tumor expression would have independent prognostic value in early breast cancer was not supported by multivariate analysis of this study population. Plasma OPN levels in women with hormone responsive early breast cancer in the MA.14 trial were not elevated and there was no evidence for prognostic value of plasma OPN in this defined group of patients. However, our finding of elevated mean OPN plasma level around the time of recurrence warrants further study. TRIAL REGISTRATION NCT00002864, http://clinicaltrials.gov/show/NCT00002864.
Collapse
|