1
|
Saad HM, Oda SS, Alexiou A, Papadakis M, Mahmoud MH, Batiha GES, Khalifa E. Hepatoprotective activity of Lactéol® forte and quercetin dihydrate against thioacetamide-induced hepatic cirrhosis in male albino rats. J Cell Mol Med 2024; 28:e18196. [PMID: 38534093 DOI: 10.1111/jcmm.18196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/20/2023] [Accepted: 02/04/2024] [Indexed: 03/28/2024] Open
Abstract
Liver cirrhosis is a silent disease in humans and is experimentally induced by many drugs and toxins as thioacetamide (TAA) in particular, which is the typical model for experimental induction of hepatic fibrosis. Thus, the objective of the present study was to elucidate the possible protective effects of lactéol® forte (LF) and quercetin dihydrate (QD) against TAA-induced hepatic damage in male albino rats. Induction of hepatotoxicity was performed by TAA injection (200 mg/kg I/P, twice/ week) in rats. LF (1 × 109 CFU/rat 5 times/week) and QD (50 mg/kg 5 times/week) treated groups were administered concurrently with TAA injection (200 mg/kg I/P, twice/ week). The experimental treatments were conducted for 12 weeks. Hepatotoxicity was evaluated biochemically by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) in the serum and histopathologically with the scoring of histopathological changes besides histochemical assessment of collagen by Masson's trichrome and immunohistochemical analysis for α-smooth muscle actin (α-SMA), Ki67 and caspase-3 expression in liver sections. Our results indicated that LF and QD attenuated some biochemical changes and histochemical markers in TAA-mediated hepatotoxicity in rats by amelioration of biochemical markers and collagen, α-SMA, Ki67 and caspase3 Immunoexpression. Additionally, LF and QD supplementation downregulated the proliferative, necrotic, fibroblastic changes, eosinophilic intranuclear inclusions, hyaline globules and Mallory-like bodies that were detected histopathologically in the TAA group. In conclusion, LF showed better hepatic protection than QD against TAA-induced hepatotoxicity in rats by inhibiting inflammatory reactions with the improvement of some serum hepatic transaminases, histopathological picture and immunohistochemical markers.
Collapse
Affiliation(s)
- Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Samah S Oda
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Abees, Alexandria Province, Egypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Germany
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, Wuppertal, Germany
| | - Mohamed H Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| |
Collapse
|
2
|
Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression-An Overview. Cells 2024; 13:579. [PMID: 38607018 PMCID: PMC11011399 DOI: 10.3390/cells13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.
Collapse
Affiliation(s)
- Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mallikarjuna Siraganahalli Eshwaraiah
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| | - Jaquelene Kennedy
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| |
Collapse
|
3
|
Carlessi R, Denisenko E, Boslem E, Köhn-Gaone J, Main N, Abu Bakar NDB, Shirolkar GD, Jones M, Beasley AB, Poppe D, Dwyer BJ, Jackaman C, Tjiam MC, Lister R, Karin M, Fallowfield JA, Kendall TJ, Forbes SJ, Gray ES, Olynyk JK, Yeoh G, Forrest AR, Ramm GA, Febbraio MA, Tirnitz-Parker JE. Single-nucleus RNA sequencing of pre-malignant liver reveals disease-associated hepatocyte state with HCC prognostic potential. CELL GENOMICS 2023; 3:100301. [PMID: 37228755 PMCID: PMC10203275 DOI: 10.1016/j.xgen.2023.100301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/27/2023] [Accepted: 03/17/2023] [Indexed: 05/27/2023]
Abstract
Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state. These cells were absent in healthy livers but increasingly prevalent as chronic liver disease progressed. Copy number variation (CNV) analysis of microdissected tissue demonstrated that daHep-enriched regions are riddled with structural variants, suggesting these cells represent a pre-malignant intermediary. Integrated analysis of three recent human snRNA-seq datasets confirmed the presence of a similar phenotype in human chronic liver disease and further supported its enhanced mutational burden. Importantly, we show that high daHep levels precede carcinogenesis and predict a higher risk of hepatocellular carcinoma development. These findings may change the way chronic liver disease patients are staged, surveilled, and risk stratified.
Collapse
Affiliation(s)
- Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Elena Denisenko
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Ebru Boslem
- Cellular & Molecular Metabolism Laboratory, Monash Institute of Pharmacological Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Julia Köhn-Gaone
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Nathan Main
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - N. Dianah B. Abu Bakar
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Gayatri D. Shirolkar
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Matthew Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Aaron B. Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Benjamin J. Dwyer
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Connie Jackaman
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - M. Christian Tjiam
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan A. Fallowfield
- University of Edinburgh Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Timothy J. Kendall
- University of Edinburgh Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Stuart J. Forbes
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Elin S. Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - John K. Olynyk
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - George Yeoh
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Alistair R.R. Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Grant A. Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Mark A. Febbraio
- Cellular & Molecular Metabolism Laboratory, Monash Institute of Pharmacological Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Janina E.E. Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
4
|
TWEAK/Fn14 Signalling Regulates the Tissue Microenvironment in Chronic Pancreatitis. Cancers (Basel) 2023; 15:cancers15061807. [PMID: 36980694 PMCID: PMC10046490 DOI: 10.3390/cancers15061807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic pancreatitis increases the risk of developing pancreatic cancer through the upregulation of pathways favouring proliferation, fibrosis, and sustained inflammation. We established in previous studies that the ligand tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) signals through its cognate receptor fibroblast growth factor-inducible 14 (Fn14) to regulate these underlying cellular processes in the chronic liver injury niche. However, the role of the TWEAK/Fn14 signalling pathway in pancreatic disease is entirely unknown. An analysis of publicly available datasets demonstrated that the TWEAK receptor Fn14 is upregulated in pancreatitis and pancreatic adenocarcinoma, with single cell RNA sequencing revealing pancreatic ductal cells as the main Fn14 producers. We then used choline-deficient, ethionine-supplemented (CDE) diet feeding of wildtype C57BL/6J and Fn14 knockout littermates to (a) confirm CDE treatment as a suitable model of chronic pancreatitis and (b) to investigate the role of the TWEAK/Fn14 signalling pathway in pancreatic ductal proliferation, as well as fibrotic and inflammatory cell dynamics. Our time course data obtained at three days, three months, and six months of CDE treatment reveal that a lack of TWEAK/Fn14 signalling significantly inhibits the establishment and progression of the tissue microenvironment in CDE-induced chronic pancreatitis, thus proposing the TWEAK/Fn14 pathway as a novel therapeutic target.
Collapse
|
5
|
Mowla A, Belford R, Köhn-Gaone J, Main N, Tirnitz-Parker JEE, Yeoh GC, Kennedy BF. Biomechanical assessment of chronic liver injury using quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5050-5066. [PMID: 36187256 PMCID: PMC9484444 DOI: 10.1364/boe.467684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Hepatocellular carcinoma is one of the most lethal cancers worldwide, causing almost 700,000 deaths annually. It mainly arises from cirrhosis, which, in turn, results from chronic injury to liver cells and corresponding fibrotic changes. Although it is known that chronic liver injury increases the elasticity of liver tissue, the role of increased elasticity of the microenvironment as a possible hepatocarcinogen is yet to be investigated. One reason for this is the paucity of imaging techniques capable of mapping the micro-scale elasticity variation in liver and correlating that with cancerous mechanisms on the cellular scale. The clinical techniques of ultrasound elastography and magnetic resonance elastography typically do not provide micro-scale resolution, while atomic force microscopy can only assess the elasticity of a limited number of cells. We propose quantitative micro-elastography (QME) for mapping the micro-scale elasticity of liver tissue into images known as micro-elastograms, and therefore, as a technique capable of correlating the micro-environment elasticity of tissue with cellular scale cancerous mechanisms in liver. We performed QME on 13 freshly excised healthy and diseased mouse livers and present micro-elastograms, together with co-registered histology, in four representative cases. Our results indicate a significant increase in the mean (×6.3) and standard deviation (×6.0) of elasticity caused by chronic liver injury and demonstrate that the onset and progression of pathological features such as fibrosis, hepatocyte damage, and immune cell infiltration correlate with localized variations in micro-elastograms.
Collapse
Affiliation(s)
- Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Rose Belford
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Julia Köhn-Gaone
- Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Nathan Main
- Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Janina E. E. Tirnitz-Parker
- Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Centre for Medical Research, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - George C. Yeoh
- Centre for Medical Research, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| |
Collapse
|
6
|
Goldfarb CN, Karri K, Pyatkov M, Waxman DJ. Interplay Between GH-regulated, Sex-biased Liver Transcriptome and Hepatic Zonation Revealed by Single-Nucleus RNA Sequencing. Endocrinology 2022; 163:6580481. [PMID: 35512247 PMCID: PMC9154260 DOI: 10.1210/endocr/bqac059] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/19/2022]
Abstract
The zonation of liver metabolic processes is well-characterized; however, little is known about the cell type-specificity and zonation of sexually dimorphic gene expression or its growth hormone (GH)-dependent transcriptional regulators. We address these issues using single-nucleus RNA-sequencing of 32 000 nuclei representing 9 major liver cell types. Nuclei were extracted from livers from adult male and female mice; from males infused with GH continuously, mimicking the female plasma GH pattern; and from mice exposed to TCPOBOP, a xenobiotic agonist ligand of the nuclear receptor CAR that perturbs sex-biased gene expression. Analysis of these rich transcriptomic datasets revealed the following: 1) expression of sex-biased genes and their GH-dependent transcriptional regulators is primarily restricted to hepatocytes and is not a feature of liver nonparenchymal cells; 2) many sex-biased transcripts show sex-dependent zonation within the liver lobule; 3) gene expression is substantially feminized both in periportal and pericentral hepatocytes when male mice are infused with GH continuously; 4) sequencing nuclei increases the sensitivity for detecting thousands of nuclear-enriched long-noncoding RNAs (lncRNAs) and enables determination of their liver cell type-specificity, sex-bias and hepatocyte zonation profiles; 5) the periportal to pericentral hepatocyte cell ratio is significantly higher in male than female liver; and 6) TCPOBOP exposure disrupts both sex-specific gene expression and hepatocyte zonation within the liver lobule. These findings highlight the complex interconnections between hepatic sexual dimorphism and zonation at the single-cell level and reveal how endogenous hormones and foreign chemical exposure can alter these interactions across the liver lobule with large effects both on protein-coding genes and lncRNAs.
Collapse
Affiliation(s)
- Christine N Goldfarb
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Kritika Karri
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program Boston University, Boston, Massachusetts 02215, USA
| | - Maxim Pyatkov
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Le Y, Zhang Z, Wang C, Lu D. Ferroptotic Cell Death: New Regulatory Mechanisms for Metabolic Diseases. Endocr Metab Immune Disord Drug Targets 2021; 21:785-800. [DOI: 10.2174/1871530320666200731175328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
Background:
Cell death is a fundamental biological phenomenon that contributes to the
pathogenesis of various diseases. Regulation of iron and iron metabolism has received considerable
research interests especially concerning the progression of metabolic diseases.
Discussion:
Emerging evidence shows that ferroptosis, a non-apoptotic programmed cell death induced by iron-dependent
lipid peroxidation, contributes to the development of complex diseases such as non-alcoholic steatohepatitis, cardiomyopathy, renal ischemia-reperfusion, and neurodegenerative diseases. Therefore, inhibiting ferroptosis can improve the pathophysiology of associated metabolic diseases. This review describes the vital role of ferroptosis in mediating the development
of certain metabolic diseases. Besides, the potential risk of iron and ferroptosis in atherosclerosis and cardiovascular diseases is also described. Iron overload and ferroptosis are potential secondary causes of death in metabolic diseases. Moreover,
this review also provides potential novel approaches against ferroptosis based on recent research advances.
Conclusion:
Several controversies exist concerning mechanisms underlying ferroptotic cell death in metabolic diseases, particularly in atherosclerosis. Since ferroptosis participates in the progression of metabolic diseases such as non-alcoholic steatohepatitis (NASH), there is a need to develop new drugs targeting ferroptosis to alleviate such diseases.
Collapse
Affiliation(s)
- Yifei Le
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijie Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Gratte FD, Pasic S, Abu Bakar NDB, Gogoi-Tiwari J, Liu X, Carlessi R, Kisseleva T, Brenner DA, Ramm GA, Olynyk JK, Tirnitz-Parker JEE. Previous liver regeneration induces fibro-protective mechanisms during thioacetamide-induced chronic liver injury. Int J Biochem Cell Biol 2021; 134:105933. [PMID: 33540107 DOI: 10.1016/j.biocel.2021.105933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/29/2022]
Abstract
Chronic liver injury is characterised by continuous or repeated epithelial cell loss and inflammation. Hepatic wound healing involves matrix deposition through activated hepatic stellate cells (HSCs) and the expansion of closely associated Ductular Reactions and liver progenitor cells (LPCs), which are thought to give rise to new epithelial cells. In this study, we used the murine thioacetamide (TAA) model to reliably mimic these injury and regeneration dynamics and assess the impact of a recovery phase on subsequent liver injury and fibrosis. Age-matched naïve or 6-week TAA-treated/4-week recovered mice (C57BL/6 J, n = 5-9) were administered TAA for six weeks (C57BL/6 J, n = 5-9). Sera and liver tissues were harvested at key time points to assess liver injury biochemically, by real-time PCR for fibrotic mediators, Sirius Red staining and hydroxyproline assessment for collagen deposition as well as immunofluorescence for inflammatory, HSC and LPC markers. In addition, primary HSCs and the HSC cell line LX-2 were co-cultured with the well-characterised LPC line BMOL and analysed for potential changes in expression of fibrogenic mediators. Our data demonstrate that recovery from a previous TAA insult, with LPCs still present on day 0 of the second treatment, led to a reduced TAA-induced disease progression with less severe fibrosis than in naïve TAA-treated animals. Importantly, primary activated HSCs significantly reduced pro-fibrogenic gene expression when co-cultured with LPCs. Taken together, previous TAA injury established a fibro-protective molecular and cellular microenvironment. Our proof-of principle HSC/LPC co-culture data demonstrate that LPCs communicate with HSCs to regulate fibrogenesis, highlighting a key role for LPCs as regulatory cells during chronic liver disease.
Collapse
Affiliation(s)
- Francis D Gratte
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia; Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| | - Sara Pasic
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| | - N Dianah B Abu Bakar
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| | - Jully Gogoi-Tiwari
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia; Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| | - Xiao Liu
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - David A Brenner
- School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; The University of Queensland, Brisbane, QLD, Australia.
| | - John K Olynyk
- Fiona Stanley and Fremantle Hospital Group, Perth, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.
| | - Janina E E Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
9
|
Liver Cancer: Therapeutic Challenges and the Importance of Experimental Models. Can J Gastroenterol Hepatol 2021; 2021:8837811. [PMID: 33728291 PMCID: PMC7937489 DOI: 10.1155/2021/8837811] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the main causes of death related to cancer worldwide; its etiology is related with infections by C or B hepatitis virus, alcohol consumption, smoking, obesity, nonalcoholic fatty liver disease, diabetes, and iron overload, among other causes. Several kinds of primary liver cancer occur, but we will focus on hepatocellular carcinoma (HCC). Numerous cellular signaling pathways are implicated in hepatocarcinogenesis, including YAP-HIPPO, Wnt-β-catenin, and nuclear factor-κB (NF-κB); these in turn are considered novel therapeutic targets. In this review, the role of lipid metabolism regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in the development of HCC will also be discussed. Moreover, recent evidence has been obtained regarding the participation of epigenetic changes such as acetylation and methylation of histones and DNA methylation in the development of HCC. In this review, we provide detailed and current information about these topics. Experimental models represent useful tools for studying the different stages of liver cancer and help to develop new pharmacologic treatments. Each model in vivo and in vitro has several characteristics and advantages to offer for the study of this disease. Finally, the main therapies approved for the treatment of HCC patients, first- and second-line therapies, are described in this review. We also describe a novel option, pirfenidone, which due to its pharmacological properties could be considered in the future as a therapeutic option for HCC treatment.
Collapse
|
10
|
Magusto J, Majdi A, Gautheron J. [Cell death mechanisms in non-alcoholic steatohepatitis]. Biol Aujourdhui 2020; 214:1-13. [PMID: 32773025 DOI: 10.1051/jbio/2020002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/24/2022]
Abstract
Continuous cell death associated with inflammation is a key trigger of disease progression notably in chronic liver diseases such as non-alcoholic steatohepatitis (NASH). Apoptosis has been studied as a potential target for reducing cell death in NASH. However, recent studies suggest that caspase inhibition is inefficient to treat NASH patients and may aggravate the disease by redirecting cells to alternative mechanisms of cell death. Alternative forms of lytic cell death have recently been identified and are known to induce strong inflammatory responses due to cell membrane permeabilization. Therefore, controlling lytic cell death modes offers new opportunities for potential therapeutic intervention in NASH. This review summarizes the underlying molecular mechanisms of apoptosis and lytic cell death modes, including necroptosis, pyroptosis and ferroptosis, and discusses their relevance in NASH.
Collapse
Affiliation(s)
- Julie Magusto
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), 27 rue Chaligny, 75571 Paris cedex 12, France - Institut de Cardiométabolisme et de Nutrition (ICAN), GHU Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75013 Paris, France
| | - Amine Majdi
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), 27 rue Chaligny, 75571 Paris cedex 12, France - Institut de Cardiométabolisme et de Nutrition (ICAN), GHU Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75013 Paris, France
| | - Jérémie Gautheron
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), 27 rue Chaligny, 75571 Paris cedex 12, France - Institut de Cardiométabolisme et de Nutrition (ICAN), GHU Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
11
|
Gautheron J, Gores GJ, Rodrigues CMP. Lytic cell death in metabolic liver disease. J Hepatol 2020; 73:394-408. [PMID: 32298766 PMCID: PMC7371520 DOI: 10.1016/j.jhep.2020.04.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/02/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Regulated cell death is intrinsically associated with inflammatory liver disease and is pivotal in governing outcomes of metabolic liver disease. Different types of cell death may coexist as metabolic liver disease progresses to inflammation, fibrosis, and ultimately cirrhosis. In addition to apoptosis, lytic forms of hepatocellular death, such as necroptosis, pyroptosis and ferroptosis elicit strong inflammatory responses due to cell membrane permeabilisation and release of cellular components, contributing to the recruitment of immune cells and activation of hepatic stellate cells. The control of liver cell death is of fundamental importance and presents novel opportunities for potential therapeutic intervention. This review summarises the underlying mechanism of distinct lytic cell death modes and their commonalities, discusses their relevance to metabolic liver diseases of different aetiologies, and acknowledges the limitations of current knowledge in the field. We focus on the role of hepatocyte necroptosis, pyroptosis and ferroptosis in non-alcoholic fatty liver disease, alcohol-associated liver disease and other metabolic liver disorders, as well as potential therapeutic implications.
Collapse
Affiliation(s)
- Jérémie Gautheron
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
12
|
A Cholecystokinin Receptor Antagonist Halts Nonalcoholic Steatohepatitis and Prevents Hepatocellular Carcinoma. Dig Dis Sci 2020; 65:189-203. [PMID: 31297627 PMCID: PMC6946881 DOI: 10.1007/s10620-019-05722-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic steatohepatitis (NASH) is a common inflammatory liver condition that may lead to cirrhosis and hepatocellular carcinoma (HCC). Risk factors for NASH include a saturated fat diet, altered lipid metabolism, and genetic and epigenetic factors, including microRNAs. Serum levels of cholecystokinin (CCK) are elevated in mice and humans that consume a high-saturated fat diet. CCK receptors (CCK-Rs) have been reported on fibroblasts which when activated can induce fibrosis; however, their role in hepatic fibrosis remains unknown. We hypothesized that elevated levels of CCK acting on the CCK-Rs play a role in the development of NASH and in NASH-associated HCC. METHODS We performed a NASH Prevention study and Reversal study in mice fed a saturated fat 75% choline-deficient-ethionine-supplemented (CDE) diet for 12 or 18 weeks. In each study, half of the mice received untreated drinking water, while the other half received water supplemented with the CCK-R antagonist proglumide. CCK-R expression was evaluated in mouse liver and murine HCC cells. RESULTS CCK receptor antagonist treatment not only prevented NASH but also reversed hepatic inflammation, fibrosis, and steatosis and normalized hepatic transaminases after NASH was established. Thirty-five percent of the mice on the CDE diet developed HCC compared with none in the proglumide-treated group. We found that CCK-BR expression was markedly upregulated in mouse CDE liver and HCC cells compared with normal hepatic parenchymal cells, and this expression was epigenetically regulated by microRNA-148a. CONCLUSION These results support the novel role of CCK receptors in the pathogenesis of NASH and HCC.
Collapse
|
13
|
Tsurusaki S, Tsuchiya Y, Koumura T, Nakasone M, Sakamoto T, Matsuoka M, Imai H, Yuet-Yin Kok C, Okochi H, Nakano H, Miyajima A, Tanaka M. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis 2019; 10:449. [PMID: 31209199 PMCID: PMC6579767 DOI: 10.1038/s41419-019-1678-y] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a metabolic liver disease that progresses from simple steatosis to the disease state of inflammation and fibrosis. Previous studies suggest that apoptosis and necroptosis may contribute to the pathogenesis of NASH, based on several murine models. However, the mechanisms underlying the transition of simple steatosis to steatohepatitis remain unclear, because it is difficult to identify when and where such cell deaths begin to occur in the pathophysiological process of NASH. In the present study, our aim is to investigate which type of cell death plays a role as the trigger for initiating inflammation in fatty liver. By establishing a simple method of discriminating between apoptosis and necrosis in the liver, we found that necrosis occurred prior to apoptosis at the onset of steatohepatitis in the choline-deficient, ethionine-supplemented (CDE) diet model. To further investigate what type of necrosis is involved in the initial necrotic cell death, we examined the effect of necroptosis and ferroptosis inhibition by administering inhibitors to wild-type mice in the CDE diet model. In addition, necroptosis was evaluated using mixed lineage kinase domain-like protein (MLKL) knockout mice, which is lacking in a terminal executor of necroptosis. Consequently, necroptosis inhibition failed to block the onset of necrotic cell death, while ferroptosis inhibition protected hepatocytes from necrotic death almost completely, and suppressed the subsequent infiltration of immune cells and inflammatory reaction. Furthermore, the amount of oxidized phosphatidylethanolamine, which is involved in ferroptosis pathway, was increased in the liver sample of the CDE diet-fed mice. These findings suggest that hepatic ferroptosis plays an important role as the trigger for initiating inflammation in steatohepatitis and may be a therapeutic target for preventing the onset of steatohepatitis.
Collapse
Affiliation(s)
- Shinya Tsurusaki
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Tsuchiya
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Tomoko Koumura
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Misaki Nakasone
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Taro Sakamoto
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masaki Matsuoka
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hirotaka Imai
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Cindy Yuet-Yin Kok
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Centre for Heart Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Genz B, Coleman MA, Irvine KM, Kutasovic JR, Miranda M, Gratte FD, Tirnitz-Parker JEE, Olynyk JK, Calvopina DA, Weis A, Cloonan N, Robinson H, Hill MM, Al-Ejeh F, Ramm GA. Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-β-induced collagen expression in hepatic stellate cells. Sci Rep 2019; 9:8541. [PMID: 31189969 PMCID: PMC6561916 DOI: 10.1038/s41598-019-44865-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
During chronic liver injury hepatic stellate cells (HSCs), the principal source of extracellular matrix in the fibrotic liver, transdifferentiate into pro-fibrotic myofibroblast-like cells - a process potentially regulated by microRNAs (miRNAs). Recently, we found serum miRNA-25-3p (miR-25) levels were upregulated in children with Cystic Fibrosis (CF) without liver disease, compared to children with CF-associated liver disease and healthy individuals. Here we examine the role of miR-25 in HSC biology. MiR-25 was detected in the human HSC cell line LX-2 and in primary murine HSCs, and increased with culture-induced activation. Transient overexpression of miR-25 inhibited TGF-β and its type 1 receptor (TGFBR1) mRNA expression, TGF-β-induced Smad2 phosphorylation and subsequent collagen1α1 induction in LX-2 cells. Pull-down experiments with biotinylated miR-25 revealed Notch signaling (co-)activators ADAM-17 and FKBP14 as miR-25 targets in HSCs. NanoString analysis confirmed miR-25 regulation of Notch- and Wnt-signaling pathways. Expression of Notch signaling pathway components and endogenous Notch1 signaling was downregulated in miR-25 overexpressing LX-2 cells, as were components of Wnt signaling such as Wnt5a. We propose that miR-25 acts as a negative feedback anti-fibrotic control during HSC activation by reducing the reactivity of HSCs to TGF-β-induced collagen expression and modulating the cross-talk between Notch, Wnt and TGF-β signaling.
Collapse
Affiliation(s)
- Berit Genz
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Mater Research, Translational Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Miranda A Coleman
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jamie R Kutasovic
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mariska Miranda
- Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Francis D Gratte
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Janina E E Tirnitz-Parker
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - John K Olynyk
- Department of Gastroenterology & Hepatology, Fiona Stanley Fremantle Hospital Group, Murdoch, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Diego A Calvopina
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anna Weis
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicole Cloonan
- Genomic Biology Lab, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Harley Robinson
- Precision & Systems Biomedicine, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle M Hill
- Precision & Systems Biomedicine, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fares Al-Ejeh
- Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. .,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Clerbaux LA, Manco R, Van Hul N, Bouzin C, Sciarra A, Sempoux C, Theise ND, Leclercq IA. Invasive Ductular Reaction Operates Hepatobiliary Junctions upon Hepatocellular Injury in Rodents and Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1569-1581. [PMID: 31108103 DOI: 10.1016/j.ajpath.2019.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
Abstract
Ductular reaction (DR) is observed in virtually all liver diseases in both humans and rodents. Depending on the injury, DR is confined within the periportal area or invades the parenchyma. On severe hepatocellular injury, invasive DR has been proposed to arise for supplying the liver with new hepatocytes. However, experimental data evidenced that DR contribution to hepatocyte repopulation is at the most modest, unless replicative capacity of hepatocytes is abrogated. Herein, we proposed that invasive DR could contribute to operating hepatobiliary junctions on hepatocellular injury. The choline-deficient ethionine-supplemented mouse model of hepatocellular injury and human liver samples were used to evaluate the hepatobiliary junctional role of the invasive form of DR. Choline-deficient ethionine-supplemented-induced DR expanded as biliary epithelium into the lobule and established new junctions with the canaliculi. By contrast, no new ductular-canalicular junctions were observed in mouse models of biliary obstructive injury exhibiting noninvasive DR. Similarly, in humans, an increased number of hepatobiliary junctions were observed in hepatocellular diseases (viral, drug induced, or metabolic) in which DR invaded the lobule but not in biliary diseases (obstruction or cholangitis) in which DR was contained within the portal mesenchyme. In conclusion, our data in rodents and humans support that invasive DR plays a hepatobiliary junctional role to maintain structural continuity between hepatocytes and ducts in disorders affecting hepatocytes.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Rita Manco
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Noémi Van Hul
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Caroline Bouzin
- Imaging Platform, Institute of clinical and Experimental Research, Université Catholique de Louvain, Brussels, Belgium
| | - Amedeo Sciarra
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Neil D Theise
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Isabelle A Leclercq
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
16
|
Wang F, Sun NN, Li LL, Zhu WW, Xiu J, Shen Y, Xu Q. Hepatic progenitor cell activation is induced by the depletion of the gut microbiome in mice. Microbiologyopen 2019; 8:e873. [PMID: 31094067 PMCID: PMC6813488 DOI: 10.1002/mbo3.873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
The homeostasis of the gut microbiome is crucial for human health and for liver function. However, it has not been established whether the gut microbiome influence hepatic progenitor cells (HPCs). HPCs are capable of self‐renewal and differentiate into hepatocytes and cholangiocytes; however, HPCs are normally quiescent and are rare in adults. After sustained liver damage, a ductular reaction occurs, and the number of HPCs is substantially increased. Here, we administered five broad‐spectrum antibiotics for 14 days to deplete the gut microbiomes of male C57BL/6 mice, and we measured the plasma aminotransferases and other biochemical indices. The expression levels of two HPC markers, SRY‐related high mobility group‐box gene 9 (Sox9) and cytokeratin (CK), were also measured. The plasma aminotransferase activities were not affected, but the triglyceride, lactate dehydrogenase, low‐density lipoprotein, and high‐density lipoprotein concentrations were significantly altered; this suggests that liver function is affected by the composition of the gut microbiome. The mRNA expression of Sox9 was significantly higher in the treated mice than it was in the control mice (p < 0.0001), and a substantial expression of Sox9 and CK was observed around the bile ducts. The mRNA expression levels of proinflammatory factors (interleukin [IL]‐1β, IL‐6, tumor necrosis factor [TNF]‐α, and TNF‐like weak inducer of apoptosis [Tweak]) were also significantly higher in the antibiotic‐treated mice than the levels in the control mice. These data imply that the depletion of the gut microbiome leads to liver damage, negatively impacts the hepatic metabolism and function, and activates HPCs. However, the underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan-Nan Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lan-Lan Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Wan-Wan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Xiu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Salama SM, Ibrahim IAA, Shahzad N, Al-Ghamdi S, Ayoub N, AlRashdi AS, Abdulla MA, Salehen N, Bilgen M. Hepatoprotectivity of Panduratin A against liver damage: In vivo demonstration with a rat model of cirrhosis induced by thioacetamide. APMIS 2018; 126:710-721. [PMID: 30058214 DOI: 10.1111/apm.12878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 06/22/2018] [Indexed: 12/16/2022]
Abstract
This experiment evaluated Panduratin A (PA), a chalcone isolated from Boesenbergia rotunda rhizomes, for its hepatoprotectivity. Rats were subjected to liver damage induced by intra-peritoneal injection of thioacetamide (TAA). PA was tested first for its acute toxicity and then administered by oral gavage at doses 5, 10, and 50 mg/kg to rats. At the end of the 8th week, livers from all rats were excised and evaluated ex vivo. Measurements included alkaline phosphatase (AP), alanine transaminase (ALT), aspartate transaminase (AST) and gamma-glutamyl transferase (GGT), serum platelet-derived growth factor (PDGF) and transforming growth factor (TGF-β1), and hepatic metalloproteinase enzyme (MMP-2) and its inhibitor extracellular matrix protein (TIMP-1). Oxidative stress was measured by liver malondialdehyde (MDA) and nitrotyrosine levels, urinary 8-hydroxy 2- deoxyguanosine (8-OH-dG), and hepatic antioxidant enzyme activities. The immunohistochemistry of TGF-β1 was additionally performed. PA revealed safe dose of 250 mg/kg on experimental rats and positive effect on the liver. The results suggested reduced hepatic stellate cells (HSCs) activity as verified from the attenuation of serum PDGF and TGF-β1, hepatic MMP-2 and TIMP-1, and oxidative stress. The extensive data altogether conclude that PA treatment could protect the liver from the progression of cirrhosis through a possible mechanism inhibiting HSCs activity.
Collapse
Affiliation(s)
- Suzy M Salama
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saeed Al-Ghamdi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nahla Ayoub
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed Salim AlRashdi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nur'Ain Salehen
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mehmet Bilgen
- Biophysics Department, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
18
|
Shoeib HM, Keshk WA, Foda AM, Abo El Noeman SEDAE. A study on the regenerative effect of platelet-rich plasma on experimentally induced hepatic damage in albino rats. Can J Physiol Pharmacol 2018; 96:630-636. [DOI: 10.1139/cjpp-2017-0738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic fibrosis is a worldwide health problem with significant morbidity and mortality. Currently, there is no effective therapy for hepatic fibrosis. The present study was aimed to evaluate the possible regenerative effect of platelet-rich plasma (PRP) against thioacetamide (TAA)-induced hepatic damage. Eighty albino rats were included; 40 were used for PRP preparation and 40 were randomly divided into 4 groups: group I (control group); group II (PRP control); group III (TAA-intoxicated by a dose of 200 mg/kg body mass, intraperitoneally, twice weekly for 7 weeks), and group IV (TAA intoxicated + PRP treated). Macrophage inflammatory protein-1α (MIP-1α) and cyclic adenosine monophosphate (cAMP) were immunoassayed in addition to peroxinitrite level, NADPH-quinone oxidoreductase-1 (NQO1) enzyme activity, and liver function. PRP treatment showed significant improvement in hepatic function, and decreased MIP-1α and peroxinitrite levels. Meanwhile, significant increase in NQO1 enzyme activity and cAMP level were observed. The histopathological results confirmed the laboratory results with improvement of hepatic architecture except for some inflammatory cellular infiltrates. This study shows that PRP has the ability to protect against TAA-induced liver damage, possibly by improving redox status, liver histopathological architecture, and disruption of the inflammatory and fibrotic response induced by TAA.
Collapse
Affiliation(s)
- Heba Mamdoh Shoeib
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Walaa Arafa Keshk
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abdallah Mahmoud Foda
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Saad El-Deen Abd Elfatah Abo El Noeman
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
19
|
Gratte FD, Pasic S, Olynyk JK, Yeoh GCT, Tosh D, Coombe DR, Tirnitz-Parker JEE. Transdifferentiation of pancreatic progenitor cells to hepatocyte-like cells is not serum-dependent when facilitated by extracellular matrix proteins. Sci Rep 2018. [PMID: 29531353 PMCID: PMC5847606 DOI: 10.1038/s41598-018-22596-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The rising prevalence of chronic liver disease, coupled with a permanent shortage of organs for liver transplantation, has sparked enormous interest in alternative treatment strategies. Previous protocols to generate hepatocyte-like cells (HLCs) via pancreas-to-liver transdifferentiation have utilised fetal bovine serum, introducing unknown variables and severely limiting study reproducibility. Therefore, the main goal of this study was to develop a protocol for transdifferentiation of pancreatic progenitor cells to HLCs in a chemically defined, serum-free culture medium. The clonal pancreatic progenitor cell line AR42J-B13 was cultured in basal growth medium on uncoated plastic culture dishes in the absence or presence of Dexamethasone on uncoated, laminin- or fibronectin-coated culture substrata, with or without serum supplementation. The hepatocytic differentiation potential was evaluated: (i) morphologically through bright-field and scanning electron microscopy, (ii) by assessing pancreatic and hepatic marker expression and (iii) by determining the function of HLCs through their ability to synthesise glycogen or take up and release indocyanine green. Here we demonstrate for the first time that transdifferentiation of pancreatic cells to HLCs is not dependent on serum. These results will assist in converting current differentiation protocols into procedures that are compliant with clinical use in future cell-based therapies to treat liver-related metabolic disorders.
Collapse
Affiliation(s)
- Francis D Gratte
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Sara Pasic
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - John K Olynyk
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia.,Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospitals, Perth, WA, Australia
| | - George C T Yeoh
- Cancer and Cell Biology Division, The Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - David Tosh
- Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Deirdre R Coombe
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia. .,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia.
| | - Janina E E Tirnitz-Parker
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia. .,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia. .,School of Medicine and Pharmacology, University of Western Australia, Fremantle, WA, Australia.
| |
Collapse
|
20
|
Li Y, Shang W, Liang X, Zeng C, Liu M, Wang S, Li H, Tian J. The diagnosis of hepatic fibrosis by magnetic resonance and near-infrared imaging using dual-modality nanoparticles. RSC Adv 2018; 8:6699-6708. [PMID: 35540380 PMCID: PMC9078292 DOI: 10.1039/c7ra10847h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatic fibrosis (HF), as the only reversible process of chronic liver disease, remains a big diagnostic challenge. Development of noninvasive and effective methods to assess quantitatively early-stage HF is of great clinical importance. Compared with conventional diagnostic methods, near-infrared fluorescence imaging (NIR) and magnetic resonance imaging (MRI) could offer highly sensitive and spatial resolution signals for HF detection. However, precise detection using contrast agents is not possible. Superparamagnetic iron oxide (SPIO) nanoparticles have low toxicity, high sensitivity and excellent biocompatibility. Integration of Fe3O4 nanoparticles and indocyanine green (ICG), coupled with targeting ligand of integrin αvβ3, arginine–glycine–aspartic acid (RGD) expressed on hepatic stellate cells (HSCs), were used to detect HF. Both in vivo and in vitro results showed that the SPIO@SiO2–ICG–RGD had high stability and low cytotoxicity. The biodistribution of SPIO@SiO2–ICG–RGD was significantly different between mice with HF and healthy controls. SPIO@SiO2–ICG–RGD was characterized and the results of imaging in vitro and in vivo demonstrated the expression of integrin αvβ3 on activated HSCs. These data suggest that our SPIO@SiO2–ICG–RGD probe could be used for the diagnosis of early-stage HF. This new nanoprobe with a dual-modality imaging approach holds great potential for the diagnosis and classification of HF. Schematic diagram for the synthesis of SPIO@SiO2–ICG–RGD.![]()
Collapse
Affiliation(s)
- Yunfang Li
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xiaoyuan Liang
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chaoting Zeng
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Mingming Liu
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Sudan Wang
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Hongjun Li
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Jie Tian
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
21
|
Gogoi-Tiwari J, Köhn-Gaone J, Giles C, Schmidt-Arras D, Gratte FD, Elsegood CL, McCaughan GW, Ramm GA, Olynyk JK, Tirnitz-Parker JEE. The Murine Choline-Deficient, Ethionine-Supplemented (CDE) Diet Model of Chronic Liver Injury. J Vis Exp 2017. [PMID: 29155718 DOI: 10.3791/56138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic liver diseases, such as viral hepatitis, alcoholic liver disease, or non-alcoholic fatty liver disease, are characterized by continual inflammation, progressive destruction and regeneration of the hepatic parenchyma, liver progenitor cell proliferation, and fibrosis. The end-stage of every chronic liver disease is cirrhosis, a major risk factor for the development of hepatocellular carcinoma. To study processes regulating disease initiation, establishment, and progression, several animal models are used in laboratories. Here we describe a six-week time course of the choline-deficient and ethionine-supplemented (CDE) mouse model, which involves feeding six-week old male C57BL/6J mice with choline-deficient chow and 0.15% DL-ethionine-supplemented drinking water. Monitoring of animal health and a typical body weight loss curve are explained. The protocol demonstrates the gross examination of a CDE-treated liver and blood collection by cardiac puncture for subsequent serum analyses. Next, the liver perfusion technique and collection of different hepatic lobes for standard evaluations are shown, including liver histology assessments by hematoxylin and eosin or Sirius Red stainings, immunofluorescent detection of hepatic cell populations as well as transcriptome profiling of the liver microenvironment. This mouse model is suitable for studying inflammatory, fibrogenic, and liver progenitor cell dynamics induced through chronic liver disease and can be used to test potential therapeutic agents that may modulate these processes.
Collapse
Affiliation(s)
- Jully Gogoi-Tiwari
- School of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University
| | - Julia Köhn-Gaone
- School of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University
| | - Corey Giles
- School of Public Health & Curtin Health Innovation Research Institute, Curtin University
| | | | - Francis D Gratte
- School of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University; School of Veterinary and Life Sciences, Murdoch University
| | - Caryn L Elsegood
- School of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University
| | - Geoffrey W McCaughan
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney; Royal Prince Alfred Hospital; A.W. Morrow Gastroenterology and Liver Centre
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute; Faculty of Medicine and Biomedical Sciences, The University of Queensland
| | - John K Olynyk
- Fiona Stanley and Fremantle Hospitals; School of Medical and Health Sciences, Edith Cowan University
| | - Janina E E Tirnitz-Parker
- School of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University; School of Medicine and Pharmacology, University of Western Australia;
| |
Collapse
|
22
|
Taurocholate Induces Biliary Differentiation of Liver Progenitor Cells Causing Hepatic Stellate Cell Chemotaxis in the Ductular Reaction: Role in Pediatric Cystic Fibrosis Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2744-2757. [PMID: 28935574 DOI: 10.1016/j.ajpath.2017.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/14/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis liver disease (CFLD) in children causes progressive fibrosis leading to biliary cirrhosis; however, its cause(s) and early pathogenesis are unclear. We hypothesized that a bile acid-induced ductular reaction (DR) drives fibrogenesis. The DR was evaluated by cytokeratin-7 immunohistochemistry in liver biopsies, staged for fibrosis, from 60 children with CFLD, and it demonstrated that the DR was significantly correlated with hepatic fibrosis stage and biliary taurocholate levels. To examine the mechanisms involved in DR induction, liver progenitor cells (LPCs) were treated with taurocholate, and key events in DR evolution were assessed: LPC proliferation, LPC biliary differentiation, and hepatic stellate cell (HSC) chemotaxis. Taurocholate induced a time-dependent increase in LPC proliferation and expression of genes associated with cholangiocyte differentiation (cytokeratin 19, connexin 43, integrin β4, and γ-glutamyltranspeptidase), whereas the hepatocyte specification marker HNF4α was suppressed. Functional cholangiocyte differentiation was demonstrated via increased acetylated α-tubulin and SOX9 proteins, the number of primary cilia+ LPCs, and increased active γ-glutamyltranspeptidase enzyme secretion. Taurocholate induced LPCs to release MCP-1, MIP1α, and RANTES into conditioned medium causing HSC chemotaxis, which was inhibited by anti-MIP1α. Immunofluorescence confirmed chemokine expression localized to CK7+ DR and LPCs in CFLD liver biopsies. This study suggests that taurocholate is involved in initiating functional LPC biliary differentiation and the development of the DR, with subsequent induction of chemokines that drive HSC recruitment in CFLD.
Collapse
|
23
|
Tan AKY, Loh KM, Ang LT. Evaluating the regenerative potential and functionality of human liver cells in mice. Differentiation 2017; 98:25-34. [PMID: 29078082 DOI: 10.1016/j.diff.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023]
Abstract
Liver diseases afflict millions of patients worldwide. Currently, the only long-term treatment for liver failure is the transplantation of a new liver. However, intravenously transplanting a suspension of human hepatocytes might be a less-invasive approach to partially reconstitute lost liver functions in human patients as evinced by promising outcomes in clinical trials. The purpose of this essay is to emphasize outstanding questions that continue to surround hepatocyte transplantation. While adult primary human hepatocytes are the gold standard for transplantation, hepatocytes are heterogeneous. Whether all hepatocytes engraft equally and what specifically defines an "engraftable" hepatocyte capable of long-term liver reconstitution remains unclear. To this end, mouse models of liver injury enable the evaluation of human hepatocytes and their behavior upon transplantation into a complex injured liver environment. While mouse models may not be fully representative of the injured human liver and human hepatocytes tend to engraft mice less efficiently than mouse hepatocytes, valuable lessons have nonetheless been learned from transplanting human hepatocytes into mouse models. With an eye to the future, it will be crucial to eventually detail the optimal biological source (whether in vivo- or in vitro-derived) and presumptive heterogeneity of human hepatocytes and to understand the mechanisms through which they engraft and regenerate liver tissue in vivo.
Collapse
Affiliation(s)
- Antson Kiat Yee Tan
- Stem Cell&Developmental Biology Group, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and the Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Stem Cell&Developmental Biology Group, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore.
| |
Collapse
|
24
|
Lukacs-Kornek V, Lammert F. The progenitor cell dilemma: Cellular and functional heterogeneity in assistance or escalation of liver injury. J Hepatol 2017; 66:619-630. [PMID: 27826058 DOI: 10.1016/j.jhep.2016.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
Liver progenitor cells (LPCs) are quiescent cells that are activated during liver injury and thought to give rise to hepatocytes and cholangiocytes in order to support liver regeneration and tissue restitution. While hepatocytes are capable of self-renewal, during most chronic injuries the proliferative capacity of hepatocytes is inhibited, thus LPCs provide main source for regeneration. Despite extensive lineage tracing studies, their role and involvement in these processes are often controversial. Additionally, increasing evidence suggests that the LPC compartment consists of heterogeneous cell populations that are actively involved in cellular interactions with myeloid and lymphoid cells during regeneration. On the other hand, LPC expansion has been associated with an increased fibrogenic response, raising concerns about the therapeutic use of these cells. This review aims to summarize the current understanding of the identity, the cellular interactions and the key pathways affecting the biology of LPCs. Understanding the regulatory circuits and the specific role of LPCs is especially important as it could provide novel therapeutic platforms for the treatment of liver inflammation, fibrosis and regeneration.
Collapse
Affiliation(s)
- Veronika Lukacs-Kornek
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|