1
|
Sanchez S, McDowell-Sanchez AK, Al-Meerani SB, Cala-Garcia JD, Waich Cohen AR, Ochsner SA, McKenna NJ, Celada LJ, Wu M, Assassi S, Rosas IO, Tsoyi K. PIK-III exerts anti-fibrotic effects in activated fibroblasts by regulating p38 activation. PLoS One 2024; 19:e0306624. [PMID: 39240940 PMCID: PMC11379285 DOI: 10.1371/journal.pone.0306624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/20/2024] [Indexed: 09/08/2024] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune-driven connective tissue disorder that results in fibrosis of the skin and internal organs such as the lung. Fibroblasts are known as the main effector cells involved in the progression of SSc through the induction of extracellular matrix (ECM) proteins and myofibroblast differentiation. Here, we demonstrate that 4'-(cyclopropylmethyl)-N2-4-pyridinyl-[4,5'-bipyrimidine]-2,2'-diamine (PIK-III), known as class III phosphatidylinositol 3-kinase (PIK3C3/VPS34) inhibitor, exerts potent antifibrotic effects in human dermal fibroblasts (HDFs) by attenuating transforming growth factor-beta 1 (TGF-β1)-induced ECM expression, cell contraction and myofibroblast differentiation. Unexpectedly, neither genetic silencing of PIK3C3 nor other PIK3C3 inhibitors (e.g., SAR405 and Autophinib) were able to mimic PIK-III-mediated antifibrotic effect in dermal fibroblasts, suggesting that PIK-III inhibits fibroblast activation through another signaling pathway. We identified that PIK-III effectively inhibits p38 activation in TGF-β1-stimulated dermal fibroblasts. Finally, PIK-III administration significantly attenuated dermal and lung fibrosis in bleomycin-injured mice.
Collapse
Affiliation(s)
- Santiago Sanchez
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Aaron K McDowell-Sanchez
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Sharaz B Al-Meerani
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Juan D Cala-Garcia
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Alan R Waich Cohen
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lindsay J Celada
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Minghua Wu
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States of America
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States of America
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Konstantin Tsoyi
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
2
|
Hasegawa T, Utsunomiya A, Chino T, Kasamatsu H, Shimizu T, Matsushita T, Obara T, Ishii N, Ogasawara H, Ikeda W, Imai T, Oyama N, Hasegawa M. Anti-CX3CL1 (fractalkine) monoclonal antibody attenuates lung and skin fibrosis in sclerodermatous graft-versus-host disease mouse model. Arthritis Res Ther 2024; 26:94. [PMID: 38702742 PMCID: PMC11067205 DOI: 10.1186/s13075-024-03307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/10/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular injury and inflammation, followed by excessive fibrosis of the skin and other internal organs, including the lungs. CX3CL1 (fractalkine), a chemokine expressed on endothelial cells, supports the migration of macrophages and T cells that express its specific receptor CX3CR1 into targeted tissues. We previously reported that anti-CX3CL1 monoclonal antibody (mAb) treatment significantly inhibited transforming growth factor (TGF)-β1-induced expression of type I collagen and fibronectin 1 in human dermal fibroblasts. Additionally, anti-mouse CX3CL1 mAb efficiently suppressed skin inflammation and fibrosis in bleomycin- and growth factor-induced SSc mouse models. However, further studies using different mouse models of the complex immunopathology of SSc are required before the initiation of a clinical trial of CX3CL1 inhibitors for human SSc. METHODS To assess the preclinical utility and functional mechanism of anti-CX3CL1 mAb therapy in skin and lung fibrosis, a sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) mouse model was analyzed with immunohistochemical staining for characteristic infiltrating cells and RNA sequencing assays. RESULTS On day 42 after bone marrow transplantation, Scl-cGVHD mice showed increased serum CX3CL1 level. Intraperitoneal administration of anti-CX3CL1 mAb inhibited the development of fibrosis in the skin and lungs of Scl-cGVHD model, and did not result in any apparent adverse events. The therapeutic effects were correlated with the number of tissue-infiltrating inflammatory cells and α-smooth muscle actin (α-SMA)-positive myofibroblasts. RNA sequencing analysis of the fibrotic skin demonstrated that cGVHD-dependent induction of gene sets associated with macrophage-related inflammation and fibrosis was significantly downregulated by mAb treatment. In the process of fibrosis, mAb treatment reduced cGVHD-induced infiltration of macrophages and T cells in the skin and lungs, especially those expressing CX3CR1. CONCLUSIONS Together with our previous findings in other SSc mouse models, the current results indicated that anti-CX3CL1 mAb therapy could be a rational therapeutic approach for fibrotic disorders, such as human SSc and Scl-cGVHD.
Collapse
Affiliation(s)
- Takumi Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Akira Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Takenao Chino
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Hiroshi Kasamatsu
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Tomomi Shimizu
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | | | - Naoto Ishii
- KAN Research Institute, Inc, Kobe, Hyogo, 650-0047, Japan
| | | | - Wataru Ikeda
- KAN Research Institute, Inc, Kobe, Hyogo, 650-0047, Japan
- IDDK Co., Ltd, Tokyo, 135-0047, Japan
| | - Toshio Imai
- KAN Research Institute, Inc, Kobe, Hyogo, 650-0047, Japan
- Advanced Therapeutic Target Discovery, Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0047, Japan
| | - Noritaka Oyama
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Minoru Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.
| |
Collapse
|
3
|
Ilg MM, Harding S, Lapthorn AR, Kirvell S, Ralph DJ, Bustin SA, Ball G, Cellek S. Temporal gene signature of myofibroblast transformation in Peyronie's disease: first insights into the molecular mechanisms of irreversibility. J Sex Med 2024; 21:278-287. [PMID: 38383071 DOI: 10.1093/jsxmed/qdae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Transformation of resident fibroblasts to profibrotic myofibroblasts in the tunica albuginea is a critical step in the pathophysiology of Peyronie's disease (PD). We have previously shown that myofibroblasts do not revert to the fibroblast phenotype and we suggested that there is a point of no return at 36 hours after induction of the transformation. However, the molecular mechanisms that drive this proposed irreversibility are not known. AIM Identify molecular pathways that drive the irreversibility of myofibroblast transformation by analyzing the expression of the genes involved in the process in a temporal fashion. METHODS Human primary fibroblasts obtained from tunica albuginea of patients with Peyronie's disease were transformed to myofibroblasts using transforming growth factor beta 1 (TGF-β1). The mRNA of the cells was collected at 0, 24, 36, 48, and 72 hours after stimulation with TGF-β1 and then analyzed using a Nanostring nCounter Fibrosis panel. The gene expression results were analyzed using Reactome pathway analysis database and ANNi, a deep learning-based inference algorithm based on a swarm approach. OUTCOMES The study outcome was the time course of changes in gene expression during transformation of PD-derived fibroblasts to myofibroblasts. RESULTS The temporal analysis of the gene expression revealed that the majority of the changes at the gene expression level happened within the first 24 hours and remained so throughout the 72-hour period. At 36 hours, significant changes were observed in genes involved in MAPK-Hedgehog signaling pathways. CLINICAL TRANSLATION This study highlights the importance of early intervention in clinical management of PD and the future potential of new drugs targeting the point of no return. STRENGTHS AND LIMITATIONS The use of human primary cells and confirmation of results with further RNA analysis are the strengths of this study. The study was limited to 760 genes rather than the whole transcriptome. CONCLUSION This study is to our knowledge the first analysis of temporal gene expression associated with the regulation of the transformation of resident fibroblasts to profibrotic myofibroblasts in PD. Further research is warranted to investigate the role of the MAPK-Hedgehog signaling pathways in reversibility of PD.
Collapse
Affiliation(s)
- Marcus M Ilg
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Sophie Harding
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Alice R Lapthorn
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Sara Kirvell
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - David J Ralph
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
- Urology Department, University College London, London, W1G 8PH, United Kingdom
| | - Stephen A Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Selim Cellek
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| |
Collapse
|
4
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
5
|
Nakabori I, Hamaguchi Y, Sawada K, Horii M, Fushida N, Kitano T, Chenyang W, Xibei J, Ikawa Y, Komuro A, Matsushita T. FcγRIIB inhibits inflammation in a murine model of psoriasis. J Dermatol Sci 2022; 108:87-97. [PMID: 36567222 DOI: 10.1016/j.jdermsci.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Psoriasis is a chronic, inflammatory cutaneous disease. FcγRIIB is a low-affinity receptor for the IgG Fc fragment that provides a negative feedback pathway to down-regulate B-cell antigen receptor signaling. OBJECTIVE The aim of this study was to investigate the role of FcγRIIB in the development of murine imiquimod (IMQ)-induced, psoriasis-like skin inflammation. METHODS The experimental psoriasis-like skin inflammation was induced by the topical application of IMQ to the ears of FcγRIIB deficient (FcγRIIB-/-) and wild-type (WT) mice. After 6 days, epidermal thickness and inflammatory cell infiltration of the skin were histopathologically assessed and cytokine and chemokine expression levels were measured with RT-PCR. RESULTS Skin inflammation was significantly worse in FcγRIIB-/- mice than WT mice. In the skin, the numbers of Gr-1+ neutrophils, CD11c+ dendritic cells, and Foxp3+ T cells were significantly higher in FcγRIIB-/- mice than WT mice. In the spleen, the numbers of CD25+Foxp3+ T cells and CD19+IL-10+ B cells were also significantly higher in FcγRIIB-/-mice than WT mice. The mRNA expression of Il-6, Il-17a, and Il-23a was significantly enhanced in FcγRIIB-/- mice. An adoptive transfer of splenic leukocytes from FcγRIIB-/- mice into WT mice also exacerbated skin inflammation compared to WT mice that received splenic leukocytes from WT mice. Intravenous immunoglobulin significantly reduced skin inflammation in WT mice, but this improvement was not observed in FcγRIIB-/- mice. CONCLUSION These results indicate that FcγRIIB likely plays a suppressive role in IMQ-induced, psoriasis-like skin inflammation. Furthermore, signal modulation via FcγRIIB is a potential therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Irisu Nakabori
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kaori Sawada
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Motoki Horii
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Natsumi Fushida
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tasuku Kitano
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Wang Chenyang
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Jia Xibei
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuichi Ikawa
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa, Japan
| | - Akito Komuro
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Braun LM, Zeiser R. Kinase Inhibition as Treatment for Acute and Chronic Graft- Versus-Host Disease. Front Immunol 2021; 12:760199. [PMID: 34868001 PMCID: PMC8635802 DOI: 10.3389/fimmu.2021.760199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies via the donor immune system driven graft-versus-leukemia effect. However, the therapy is mainly limited by severe acute and chronic graft-versus-host disease (GvHD), both being life-threatening complications after allo-HCT. GvHD develops when donor T cells do not only recognize remaining tumor cells as foreign, but also the recipient’s tissue, leading to a severe inflammatory disease. Typical GvHD target organs include the skin, liver and intestinal tract. Currently all approved strategies for GvHD treatment are immunosuppressive therapies, with the first-line therapy being glucocorticoids. However, therapeutic options for glucocorticoid-refractory patients are still limited. Novel therapeutic approaches, which reduce GvHD severity while preserving GvL activity, are urgently needed. Targeting kinase activity with small molecule inhibitors has shown promising results in preclinical animal models and clinical trials. Well-studied kinase targets in GvHD include Rho-associated coiled-coil-containing kinase 2 (ROCK2), spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) to control B- and T-cell activation in acute and chronic GvHD. Janus Kinase 1 (JAK1) and 2 (JAK2) are among the most intensively studied kinases in GvHD due to their importance in cytokine production and inflammatory cell activation and migration. Here, we discuss the role of kinase inhibition as novel treatment strategies for acute and chronic GvHD after allo-HCT.
Collapse
Affiliation(s)
- Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Sawada K, Hamaguchi Y, Mizumaki K, Oishi K, Maeda S, Ikawa Y, Komuro A, Takehara K, Matsushita T. A role for FcγRIIB in the development of murine bleomycin-induced fibrosis. J Dermatol Sci 2021; 104:201-209. [PMID: 34844843 DOI: 10.1016/j.jdermsci.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/17/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by excessive fibrosis. FcγRIIB is a low-affinity receptor for the Fc fragment of IgG. FcγRIIB is expressed on the surface of various leukocyte subsets and signals negative feedback pathways to down-regulate B-cell antigen receptor signaling. OBJECTIVE The aim of the present study was to investigate the role of FcγRIIB in the development of a murine bleomycin-induced scleroderma model. METHODS The experimental fibrosis model was generated by the intradermal injection of bleomycin into wild-type (WT) and FcγRIIB-deficient (FcγRIIB-/-) mice. We histologically assessed skin and lung fibrosis as well as inflammatory cell infiltration. Cytokine and chemokine expression levels were measured with RT-PCR. RESULTS The severity of fibrosis in the skin and lung was significantly worse in FcγRIIB-/- mice than in WT mice. In the skin of bleomycin-treated mice, the numbers of CD8+ T cells, F4/80+ macrophages, MPO+ neutrophils, NK1.1+NK cells, and B220+ B cells were significantly higher in FcγRIIB-/- mice than in WT mice. The expression of TNF-α and IL-1β was significantly higher in FcγRIIB-/- mice than in WT mice as was the expression of ICAM-1, CXCL2, and CCL3 in the affected skin. An adoptive transfer of splenic leukocytes from FcγRIIB-/- mice into WT mice showed exacerbated skin and lung fibrosis compared to WT mice without an adoptive transfer. CONCLUSION These results indicate that FcγRIIB plays an inhibitory role in skin and lung fibrosis. Moreover, modulating FcγRIIB signaling has potential as a therapeutic approach for SSc.
Collapse
Affiliation(s)
- Kaori Sawada
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kie Mizumaki
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kyosuke Oishi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shintaro Maeda
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuka Ikawa
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akito Komuro
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Ong CH, Tham CL, Harith HH, Firdaus N, Israf DA. TGF-β-induced fibrosis: A review on the underlying mechanism and potential therapeutic strategies. Eur J Pharmacol 2021; 911:174510. [PMID: 34560077 DOI: 10.1016/j.ejphar.2021.174510] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Transforming growth factor-beta (TGF-β) plays multiple homeostatic roles in the regulation of inflammation, proliferation, differentiation and would healing of various tissues. Many studies have demonstrated that TGF-β stimulates activation and proliferation of fibroblasts, which result in extracellular matrix deposition. Its increased expression can result in many fibrotic diseases, and the level of expression is often correlated with disease severity. On this basis, inhibition of TGF-β and its activity has great therapeutic potential for the treatment of various fibrotic diseases such as pulmonary fibrosis, renal fibrosis, systemic sclerosis and etc. By understanding the molecular mechanism of TGF-β signaling and activity, researchers were able to develop different strategies in order to modulate the activity of TGF-β. Antisense oligonucleotide was developed to target the mRNA of TGF-β to inhibit its expression. There are also neutralizing monoclonal antibodies that can target the TGF-β ligands or αvβ6 integrin to prevent binding to receptor or activation of latent TGF-β respectively. Soluble TGF-β receptors act as ligand traps that competitively bind to the TGF-β ligands. Many small molecule inhibitors have been developed to inhibit the TGF-β receptor at its cytoplasmic domain and also intracellular signaling molecules. Peptide aptamer technology has been used to target downstream TGF-β signaling. Here, we summarize the underlying mechanism of TGF-β-induced fibrosis and also review various strategies of inhibiting TGF-β in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Chun Hao Ong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Nazmi Firdaus
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia.
| |
Collapse
|
10
|
Ahmadi Moughari F, Eslahchi C. A computational method for drug sensitivity prediction of cancer cell lines based on various molecular information. PLoS One 2021; 16:e0250620. [PMID: 33914775 PMCID: PMC8084246 DOI: 10.1371/journal.pone.0250620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
Determining sensitive drugs for a patient is one of the most critical problems in precision medicine. Using genomic profiles of the tumor and drug information can help in tailoring the most efficient treatment for a patient. In this paper, we proposed a classification machine learning approach that predicts the sensitive/resistant drugs for a cell line. It can be performed by using both drug and cell line similarities, one of the cell line or drug similarities, or even not using any similarity information. This paper investigates the influence of using previously defined as well as two newly introduced similarities on predicting anti-cancer drug sensitivity. The proposed method uses max concentration thresholds for assigning drug responses to class labels. Its performance was evaluated using stratified five-fold cross-validation on cell line-drug pairs in two datasets. Assessing the predictive powers of the proposed model and three sets of methods, including state-of-the-art classification methods, state-of-the-art regression methods, and off-the-shelf classification machine learning approaches shows that the proposed method outperforms other methods. Moreover, The efficiency of the model is evaluated in tissue-specific conditions. Besides, the novel sensitive associations predicted by this model were verified by several supportive evidence in the literature and reliable database. Therefore, the proposed model can efficiently be used in predicting anti-cancer drug sensitivity. Material and implementation are available at https://github.com/fahmadimoughari/CDSML.
Collapse
Affiliation(s)
- Fatemeh Ahmadi Moughari
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences(IPM), Tehran, Iran
| |
Collapse
|
11
|
Carvalheiro T, Zimmermann M, Radstake TRDJ, Marut W. Novel insights into dendritic cells in the pathogenesis of systemic sclerosis. Clin Exp Immunol 2020; 201:25-33. [PMID: 31970748 PMCID: PMC7290079 DOI: 10.1111/cei.13417] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe autoimmune fibrotic disease characterized by fibrosis, vasculopathy, and immune dysregulation. Dendritic cells (DCs) are the most potent antigen-presenting cells, specialized in pathogen sensing, with high capacity to shape the immune responses. The most recent technological advances have allowed the discovery of new DC subsets with potential implications in inflammatory conditions. Alterations of DC distribution in circulation and affected tissue as well as impaired DC function have been described in SSc patients, pointing towards a crucial role of these cells in SSc pathogenesis. In particular, recent studies have shown the importance of plasmacytoid DCs either by their high capacity to produce type I interferon or other inflammatory mediators implicated in SSc pathology, such as chemokine C-X-C motif ligand 4 (CXCL4). In-vivo models of SSc have been vital to clarify the implications of DCs in this disease, especially DCs depletion and specific gene knock-down studies. This review provides these new insights into the contribution of the different DCs subsets in the pathogenesis of SSc, as well as to the novel developments on DCs in in-vivo models of SSc and the potential use of DCs and their mediators as therapeutic targets.
Collapse
Affiliation(s)
- T Carvalheiro
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M Zimmermann
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - T R D J Radstake
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - W Marut
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
12
|
Non-canonical (non-SMAD2/3) TGF-β signaling in fibrosis: Mechanisms and targets. Semin Cell Dev Biol 2019; 101:115-122. [PMID: 31883994 DOI: 10.1016/j.semcdb.2019.11.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023]
Abstract
Transforming growth factor (TGF)-β uses several intracellular signaling pathways besides canonical ALK5-Smad2/3 signaling to regulate a diverse array of cellular functions. Several of these so-called non-canonical (non-Smad2/3) pathways have been implicated in the pathogenesis of fibrosis and may therefore represent targets for therapeutic intervention. This review summarizes our current knowledge on the mechanisms of non-canonical TGF-β signaling in fibrosis, the potential molecular targets and the use of agonists/antagonists for therapeutic intervention.
Collapse
|
13
|
Zhao C, Matsushita T, Ha Nguyen VT, Tennichi M, Fujimoto M, Takehara K, Hamaguchi Y. CD22 and CD72 contribute to the development of scleroderma in a murine model. J Dermatol Sci 2019; 97:66-76. [PMID: 31883832 DOI: 10.1016/j.jdermsci.2019.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/01/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by excessive fibrosis. CD22 and CD72 are B cell-specific cell surface molecules that negatively regulate B cell function. OBJECTIVE The aim of the present study was to investigate the roles of CD22 and CD72 in a murine scleroderma model. METHODS The experimental fibrosis model was generated by subcutaneous injection of bleomycin or hypochlorous acid (HOCL) into wild-type (WT), CD22-deficient (CD22-/-), CD72-deficient (CD72-/-) and CD22 and CD72 double-deficient (CD22-/-/CD72-/-) mice. We histologically assessed skin fibrosis and inflammatory cell infiltration. Cytokine and chemokine expression levels were measured by real-time polymerase chain reaction. RESULTS The severity of fibrosis in the skin and lung was significantly less in CD22-/-, CD72-/-, and CD22-/-/CD72-/- mice than in WT mice in the bleomycin-induced model. In the skin of bleomycin-treated mice, the numbers of CD3+ T cells, CD8+ T cells, and F4/80+ macrophages were significantly lower in CD22-/-, CD72-/-, and CD22-/-/CD72-/- mice than in WT mice. The expression levels of mRNAs for IL-6, TNF-α, TGF-β, CTGF, IL-1β, IL-13, CXCL2, and ICAM-1 were significantly lower in CD22-/-, CD72-/-, and CD22-/-/CD72-/- mice than in WT mice. In the HOCL-induced model, both skin and lung fibrosis were ameliorated in CD22-/-, CD72-/- and CD22-/-/CD72-/- mice compared to WT mice. CONCLUSION These results indicate that CD22 and CD72 likely play crucial roles in skin and lung fibrosis. Moreover, the inhibition of CD22 and CD72 function has potential as a therapeutic approach to SSc.
Collapse
Affiliation(s)
- Chunyan Zhao
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Vinh Thi Ha Nguyen
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Momoko Tennichi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
14
|
CXCL4 is a driver of cytokine mRNA stability in monocyte-derived dendritic cells. Mol Immunol 2019; 114:524-534. [DOI: 10.1016/j.molimm.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
|
15
|
Astolfi A, Kudolo M, Brea J, Manni G, Manfroni G, Palazzotti D, Sabatini S, Cecchetti F, Felicetti T, Cannalire R, Massari S, Tabarrini O, Loza MI, Fallarino F, Cecchetti V, Laufer SA, Barreca ML. Discovery of potent p38α MAPK inhibitors through a funnel like workflow combining in silico screening and in vitro validation. Eur J Med Chem 2019; 182:111624. [PMID: 31445234 DOI: 10.1016/j.ejmech.2019.111624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 01/31/2023]
Abstract
This work describes the rational discovery of novel chemotypes of p38α MAPK inhibitors using a funnel approach consisting of several computer-aided drug discovery methods and biological experiments. Among the identified hits, four compounds belonging to different chemical families showed IC50 values lower than 10 μM. In particular, the 1,4-benzodioxane derivative 5 turned out to be a potent and efficient p38α MAPK inhibitor having IC50 = 0.07 μM, and LEexp and LipE values of 0.38 and 4.8, respectively; noteworthy, the compound had also a promising kinase selectivity profile and the capability to suppress p38α MAPK effects in human immune cells. Overall, the collected findings highlight that the applied strategy has been successful in generating chemical novelty in the inhibitor kinase field, providing suitable chemical candidates for further inhibitor optimization.
Collapse
Affiliation(s)
- Andrea Astolfi
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Mark Kudolo
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Jose Brea
- CIMUS Research Center, University of Santiago de Compostela, Avda de Barcelona s/n, Planta 3, Despacho1, 15782, Santiago de Compostela, Spain
| | - Giorgia Manni
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06100, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Deborah Palazzotti
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Federica Cecchetti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06100, Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Maria Isabel Loza
- CIMUS Research Center, University of Santiago de Compostela, Avda de Barcelona s/n, Planta 3, Despacho1, 15782, Santiago de Compostela, Spain
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06100, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Stefan A Laufer
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| |
Collapse
|
16
|
CD22 and CD72 cooperatively contribute to the development of the reverse Arthus reaction model. J Dermatol Sci 2019; 95:36-43. [DOI: 10.1016/j.jdermsci.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 12/15/2022]
|
17
|
Lee J, An JN, Hwang JH, Lee H, Lee JP, Kim SG. p38 MAPK activity is associated with the histological degree of interstitial fibrosis in IgA nephropathy patients. PLoS One 2019; 14:e0213981. [PMID: 30897126 PMCID: PMC6428396 DOI: 10.1371/journal.pone.0213981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/05/2019] [Indexed: 01/02/2023] Open
Abstract
Activation of p38 mitogen-activated protein kinase (MAPK) is associated with tissue fibrosis, and inhibition of p38 MAPK can attenuate the progression of fibrosis. We aimed to investigate whether p38 MAPK activity in kidney tissue confirmed by immunohistochemical staining is associated with renal tubulointerstitial fibrosis in chronic kidney disease patients with IgA nephropathy. We collected kidney biopsy specimens from 341 IgA nephropathy patients and 15 control patients to identify the clinical and histopathological factors associated with kidney tubulointerstitial fibrosis and to find an association between kidney phosphorylated p38 immunoactivity and pathological grading. In addition, we aimed to investigate whether the anti-fibrotic effect of p38 MAPK inhibition can be identified by assessing the immunostaining intensity of phosphorylated p38 in kidney tissue. A renal tubulointerstitial fibrosis model was introduced using 7-week-old C57BL/6 mice subjected to unilateral ureteral obstruction (UUO). The p38 MAPK inhibitor SB-731445 was injected intraperitoneally every day for 7 days, and changes in renal fibrosis-associated markers were investigated. Assessment of kidney biopsy specimens from IgA nephropathy patients revealed that the degree of interstitial fibrosis was significantly associated with the tissue immunoactivity of phosphorylated p38. High-grade interstitial fibrosis was associated with a low glomerular filtration rate, high proteinuria, and high-grade histopathological changes, including tubular atrophy, interstitial inflammation, and glomerular sclerosis. In a mouse UUO model, renal protein expression of COL1 and phosphorylated p38 were significantly increased, and the protein expression of COL1 and phosphorylated p38 decreased in mice administered 10 mg/kg/day p38 MAPK inhibitor. We found that kidney interstitial fibrosis is associated with increased immunoactivity of phosphorylated p38 in a UUO mouse model and in human IgA nephropathy patients and that the anti-fibrotic effect of p38 MAPK inhibition can be confirmed using immunohistochemical staining for phosphorylated p38 in kidney tissue.
Collapse
Affiliation(s)
- Jeonghwan Lee
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Gyeonggi-do, Korea
| | - Jung Nam An
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Jin Ho Hwang
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sung Gyun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Gyeonggi-do, Korea
- * E-mail:
| |
Collapse
|
18
|
Kano M, Kobayashi T, Date M, Tennichi M, Hamaguchi Y, Strasser DS, Takehara K, Matsushita T. Attenuation of murine sclerodermatous models by the selective S1P 1 receptor modulator cenerimod. Sci Rep 2019; 9:658. [PMID: 30679645 PMCID: PMC6345830 DOI: 10.1038/s41598-018-37074-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a lipid mediator, regulates lymphocyte migration between lymphoid tissue and blood. Furthermore, S1P participates in several physiological phenomena including angiogenesis, inflammation, immune regulation, and neurotransmitter release. Moreover, S1P/S1P receptor signaling involves in systemic sclerosis (SSc) pathogenesis. This study aimed to investigate whether the selective S1P1 receptor modulator cenerimod attenuates murine sclerodermatous models. Cenerimod was orally administered to murine sclerodermatous chronic graft versus host disease (Scl-cGVHD) mice, either from day 0 to 42 or day 22 to 42 after bone marrow transplantation. Bleomycin-induced SSc model mice were administered cenerimod from day 0 to 28. Early cenerimod administration inhibited, and delayed cenerimod administration attenuated skin and lung fibrosis in Scl-cGVHD mice. Cenerimod suppressed the infiltration of CD4+ T cells, CD8+ T cells, and CD11b+ cells into the inflamed skin of Scl-cGVHD mice as opposed to control mice. In contrast, cenerimod increased the frequency of regulatory T cells in the spleen and skin of Scl-cGVHD mice. Additionally, cenerimod attenuated the mRNA expression of extracellular matrix and fibrogenic cytokines in the skin. Furthermore, cenerimod attenuated bleomycin-induced fibrosis in the skin and lung. Hence, the selective S1P1 receptor modulator cenerimod is a promising candidate for treating patients with SSc and Scl-cGVHD.
Collapse
Affiliation(s)
- Miyu Kano
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Tadahiro Kobayashi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Mutsumi Date
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Momoko Tennichi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Daniel S Strasser
- Idorsia Pharmaceuticals Ltd., Drug Discovery, Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan.
| |
Collapse
|
19
|
Contribution of Interleukin-6 to the Pathogenesis of Systemic Sclerosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology, manifesting in patients as tissue fibrosis, endothelial dysfunction, and inflammation. The disease is characterized by autoantibodies, a hallmark of autoimmunity. Various cytokines and growth factors are elevated in the systemic circulation and fibrotic lesions of patients with SSc. In particular, several studies over the past 2 decades have shown that interleukin-6 (IL-6) appears to be involved in the pathogenesis of SSc. Based on the association between aberrant IL-6 production and tissue fibrosis in patients with SSc, the anti-IL-6 receptor antibody, tocilizumab, is being investigated in clinical trials. This article reviews the biological features of IL-6 and the IL-6 receptor; the role of IL-6 in the pathogenesis of SSc; and the potential for IL-6 inhibition to be used in the treatment of patients with SSc.
Collapse
|