1
|
Pateras IS, Igea A, Nikas IP, Leventakou D, Koufopoulos NI, Ieronimaki AI, Bergonzini A, Ryu HS, Chatzigeorgiou A, Frisan T, Kittas C, Panayiotides IG. Diagnostic Challenges during Inflammation and Cancer: Current Biomarkers and Future Perspectives in Navigating through the Minefield of Reactive versus Dysplastic and Cancerous Lesions in the Digestive System. Int J Mol Sci 2024; 25:1251. [PMID: 38279253 PMCID: PMC10816510 DOI: 10.3390/ijms25021251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
In the setting of pronounced inflammation, changes in the epithelium may overlap with neoplasia, often rendering it impossible to establish a diagnosis with certainty in daily clinical practice. Here, we discuss the underlying molecular mechanisms driving tissue response during persistent inflammatory signaling along with the potential association with cancer in the gastrointestinal tract, pancreas, extrahepatic bile ducts, and liver. We highlight the histopathological challenges encountered in the diagnosis of chronic inflammation in routine practice and pinpoint tissue-based biomarkers that could complement morphology to differentiate reactive from dysplastic or cancerous lesions. We refer to the advantages and limitations of existing biomarkers employing immunohistochemistry and point to promising new markers, including the generation of novel antibodies targeting mutant proteins, miRNAs, and array assays. Advancements in experimental models, including mouse and 3D models, have improved our understanding of tissue response. The integration of digital pathology along with artificial intelligence may also complement routine visual inspections. Navigating through tissue responses in various chronic inflammatory contexts will help us develop novel and reliable biomarkers that will improve diagnostic decisions and ultimately patient treatment.
Collapse
Affiliation(s)
- Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Ana Igea
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Mobile Genomes, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Danai Leventakou
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Nektarios I. Koufopoulos
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Argyro Ioanna Ieronimaki
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Anna Bergonzini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52 Stockholm, Sweden;
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Christos Kittas
- Department of Histopathology, Biomedicine Group of Health Company, 156 26 Athens, Greece;
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| |
Collapse
|
2
|
Ren G, Zheng X, Sharma V, Letson J, Nestor-Kalinoski AL, Furuta S. Loss of Nitric Oxide Induces Fibrogenic Response in Organotypic 3D Co-Culture of Mammary Epithelia and Fibroblasts-An Indicator for Breast Carcinogenesis. Cancers (Basel) 2021; 13:cancers13112815. [PMID: 34198735 PMCID: PMC8201212 DOI: 10.3390/cancers13112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Fibrosis, which is often caused by chronic diseases and environmental substances, is closely associated with cancer. Thus, the development of a robust method allowing for deep studies of the linkage between fibrosis and cancer is essential. Here, we tested whether our novel three-dimensional (3D) co-culture of breast epithelia and fibroblasts would be a suitable model for that purpose. We compared the phenotypic effects of L-NAME, an inhibitor of nitric oxide (NO) production, on 3D mono- and co-cultures. We previously reported that prolonged NO depletion with L-NAME caused fibrosis and tumorigenesis in mouse mammary glands. Such in vivo effects of L-NAME were well recapitulated in 3D co-cultures, but not in 3D mono-cultures of epithelia and fibroblasts. These results support not only the essential roles of the presence of the stroma in cancer development, but also the utility of this co-culture in studying the causal relationship between fibrosis and cancer. Abstract Excessive myofibroblast activation, which leads to dysregulated collagen deposition and the stiffening of the extracellular matrix (ECM), plays pivotal roles in cancer initiation and progression. Cumulative evidence attests to the cancer-causing effects of a number of fibrogenic factors found in the environment, diseases and drugs. While identifying such factors largely depends on epidemiological studies, it would be of great importance to develop a robust in vitro method to demonstrate the causal relationship between fibrosis and cancer. Here, we tested whether our recently developed organotypic three-dimensional (3D) co-culture would be suitable for that purpose. This co-culture system utilizes the discontinuous ECM to separately culture mammary epithelia and fibroblasts in the discrete matrices to model the complexity of the mammary gland. We observed that pharmaceutical deprivation of nitric oxide (NO) in 3D co-cultures induced myofibroblast differentiation of the stroma as well as the occurrence of epithelial–mesenchymal transition (EMT) of the parenchyma. Such in vitro response to NO deprivation was unique to co-cultures and closely mimicked the phenotype of NO-depleted mammary glands exhibiting stromal desmoplasia and precancerous lesions undergoing EMT. These results suggest that this novel 3D co-culture system could be utilized in the deep mechanistic studies of the linkage between fibrosis and cancer.
Collapse
Affiliation(s)
- Gang Ren
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Xunzhen Zheng
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
| | - Andrea L. Nestor-Kalinoski
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA;
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA; (G.R.); (X.Z.); (V.S.); (J.L.)
- Correspondence:
| |
Collapse
|
3
|
Sachdeva UM, Shimonosono M, Flashner S, Cruz-Acuña R, Gabre JT, Nakagawa H. Understanding the cellular origin and progression of esophageal cancer using esophageal organoids. Cancer Lett 2021; 509:39-52. [PMID: 33838281 DOI: 10.1016/j.canlet.2021.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) organoids are a novel tool to model epithelial cell biology and human diseases of the esophagus. 3D organoid culture systems have been utilized to investigate the pathobiology of esophageal cancer, including both squamous cell carcinoma and adenocarcinoma. Additional organoid-based approaches for study of esophageal development and benign esophageal diseases have provided key insights into esophageal keratinocyte differentiation and mucosal regeneration. These investigations have implications for the identification of esophageal cancer stem cells, as well as the potential to halt malignant progression through induction of differentiation pathways. Patient-derived organoids (PDOs) from human tissue samples allow for unique and faithful in vitro modeling of esophageal cancers, and provide an exciting platform for investigation into personalized medicine and targeted treatment approaches, as well as new models for understanding therapy resistance and recurrent disease. Future directions include high-throughput genomic screening using PDOs, and study of tumor-microenvironmental interactions through co-culture with immune and stromal cells and novel extracellular matrix complexes.
Collapse
Affiliation(s)
- Uma M Sachdeva
- Divison of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Masataka Shimonosono
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Ricardo Cruz-Acuña
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Joel T Gabre
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Marchand B, Pitarresi JR, Reichert M, Suzuki K, Laczkó D, Rustgi AK. PRRX1 isoforms cooperate with FOXM1 to regulate the DNA damage response in pancreatic cancer cells. Oncogene 2019; 38:4325-4339. [PMID: 30705403 PMCID: PMC6542713 DOI: 10.1038/s41388-019-0725-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
PRRX1 is a homeodomain transcriptional factor, which has two isoforms, PRXX1A and PRRX1B. The PRRX1 isoforms have been demonstrated to be important in pancreatic cancer, especially in the regulation of epithelial-to-mesenchymal transition (EMT) in Pancreatic Ductal Adenocarcinoma (PDAC) and of mesenchymal-to-epithelial transition (MET) in liver metastasis. In order to determine the functional underpinnings of PRRX1 and its isoforms, we have unraveled a new interplay between PRRX1 and the FOXM1 transcriptional factors. Our detailed biochemical analysis reveals the direct physical interaction between PRRX1 and FOXM1 proteins that requires the PRRX1A/B 200-222/217 amino acid (aa) region and the FOXM1 Forkhead domain. Additionally, we demonstrate the cooperation between PRRX1 and FOXM1 in the regulation of FOXM1-dependent transcriptional activity. Moreover, we establish FOXM1 as a critical downstream target of PRRX1 in pancreatic cancer cells. We demonstrate a novel role for PRRX1 in the regulation of genes involved in DNA repair pathways. Indeed, we show that expression of PRRX1 isoforms may limit the induction of DNA damage in pancreatic cancer cells. Finally, we demonstrate that targeting FOXM1 with the small molecule inhibitor FDI6 suppress pancreatic cancer cell proliferation and induces their apoptotic cell death. FDI6 sensitizes pancreatic cancer cells to Etoposide and Gemcitabine induced apoptosis. Our data provide new insights into PRRX1's involvement in regulating DNA damage and provide evidence of a possible PRRX1-FOXM1 axis that is critical for PDAC cells.
Collapse
Affiliation(s)
- Benoît Marchand
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason R Pitarresi
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maximilian Reichert
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- II. Medizinische Klinik, Technical University of Munich, 81675, Munich, Germany
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kensuke Suzuki
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dorottya Laczkó
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Shaverdashvili K, Padlo J, Weinblatt D, Jia Y, Jiang W, Rao D, Laczkó D, Whelan KA, Lynch JP, Muir AB, Katz JP. KLF4 activates NFκB signaling and esophageal epithelial inflammation via the Rho-related GTP-binding protein RHOF. PLoS One 2019; 14:e0215746. [PMID: 30998758 PMCID: PMC6472825 DOI: 10.1371/journal.pone.0215746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding the regulatory mechanisms within esophageal epithelia is essential to gain insight into the pathogenesis of esophageal diseases, which are among the leading causes of morbidity and mortality throughout the world. The zinc-finger transcription factor Krüppel-like factor (KLF4) is implicated in a large number of cellular processes, such as proliferation, differentiation, and inflammation in esophageal epithelia. In murine esophageal epithelia, Klf4 overexpression causes chronic inflammation which is mediated by activation of NFκB signaling downstream of KLF4, and this esophageal inflammation produces epithelial hyperplasia and subsequent esophageal squamous cell cancer. Yet, while NFκB activation clearly promotes esophageal inflammation, the mechanisms by which NFκB signaling is activated in esophageal diseases are not well understood. Here, we demonstrate that the Rho-related GTP-binding protein RHOF is activated by KLF4 in esophageal keratinocytes, leading to the induction of NFκB signaling. Moreover, RHOF is required for NFκB activation by KLF4 in esophageal keratinocytes and is also important for esophageal keratinocyte proliferation and migration. Finally, we find that RHOF is upregulated in eosinophilic esophagitis, an important esophageal inflammatory disease in humans. Thus, RHOF activation of NFκB in esophageal keratinocytes provides a potentially important and clinically-relevant mechanism for esophageal inflammation and inflammation-mediated esophageal squamous cell cancer.
Collapse
Affiliation(s)
- Khvaramze Shaverdashvili
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Jennie Padlo
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Daniel Weinblatt
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Yang Jia
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Wenpeng Jiang
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Divya Rao
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Dorottya Laczkó
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Kelly A. Whelan
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - John P. Lynch
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, United States of America
| | - Jonathan P. Katz
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Whelan KA, Muir AB, Nakagawa H. Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine. Cell Mol Gastroenterol Hepatol 2018; 5:461-478. [PMID: 29713660 PMCID: PMC5924738 DOI: 10.1016/j.jcmgh.2018.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
The stratified squamous epithelium of the esophagus shows a proliferative basal layer of keratinocytes that undergo terminal differentiation in overlying suprabasal layers. Esophageal pathologies, including eosinophilic esophagitis, gastroesophageal reflux disease, Barrett's esophagus, squamous cell carcinoma, and adenocarcinoma, cause perturbations in the esophageal epithelial proliferation-differentiation gradient. Three-dimensional (3D) culture platforms mimicking in vivo esophageal epithelial tissue architecture ex vivo have emerged as powerful experimental tools for the investigation of esophageal biology in the context of homeostasis and pathology. Herein, we describe types of 3D culture that are used to model the esophagus, including organotypic, organoid, and spheroid culture systems. We discuss the development and optimization of various esophageal 3D culture models; highlight the applications, strengths, and limitations of each method; and summarize how these models have been used to evaluate the esophagus under homeostatic conditions as well as under the duress of inflammation and precancerous/cancerous conditions. Finally, we present future perspectives regarding the use of esophageal 3D models in basic science research as well as translational studies with the potential for personalized medicine.
Collapse
Key Words
- 3D, 3-dimensional
- BE, Barrett’s esophagus
- COX, cyclooxygenase
- CSC, cancer stem cell
- EADC, esophageal adenocarcinoma
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- ESCC, esophageal squamous cell carcinoma
- EoE, eosinophilic esophagitis
- Esophageal Disease
- FEF3, primary human fetal esophageal fibroblast
- GERD, gastroesophageal reflux disease
- OTC, organotypic 3-dimensional culture
- Organoid
- Organotypic Culture
- STAT3, signal transducer and activator of transcription-3
- Spheroid Culture
Collapse
Affiliation(s)
- Kelly A. Whelan
- Pathology and Laboratory Medicine, Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda B. Muir
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence Address correspondence to: Amanda B. Muir, MD, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center 902E, Philadelphia, Pennsylvania 19103. fax: (267) 426–7814.
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|