1
|
Mjörnstedt F, Wilhelmsson R, Ulleryd M, Hammarlund M, Bergström G, Gummesson A, Johansson ME. The alpha 7 nicotinic acetylcholine receptor agonist PHA 568487 dampens inflammation in PBMCs from patients with newly discovered coronary artery disease. Am J Physiol Heart Circ Physiol 2024; 327:H1198-H1204. [PMID: 39269451 DOI: 10.1152/ajpheart.00562.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
The alpha 7 nicotinic acetylcholine receptor (α7nAChR) regulates inflammation in experimental models and is expressed in human peripheral blood mononuclear cells (PBMCs) and in human atherosclerotic plaques. However, its role in regulating inflammation in patients with cardiovascular disease is unknown. This study aims to investigate whether α7nAChR stimulation can reduce the inflammatory response in PBMCs from patients with newly diagnosed coronary artery disease (CAD). Human PBMCs, extracted from patients with verified CAD (n = 38) and control participants with healthy vessels (n = 38), were challenged in vitro with lipopolysaccharide (LPS) in combination with the α7nAChR agonist PHA 568487. Cytokine levels of the supernatants were analyzed using a multiplex immunoassay. Patients in the CAD group were reexamined after 6 mo. The immune response to LPS did not differ between PBMCs from control and CAD groups. α7nAChR stimulation decreased TNFα in both control and CAD groups. The most pronounced effect of α7nAChR stimulation was observed in patients with CAD at their first visit, where 15 of 17 cytokines were decreased [IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12 (p70), IL-17A, G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1β, and TNFα]. In conclusion, stimulation with α7nAChR agonist PHA 568487 dampens the inflammatory response in human PBMCs. This finding suggests that the anti-inflammatory properties of the α7nAChR may have a role in treating CAD.NEW & NOTEWORTHY The α7nAChR is an important regulator of inflammation; however, its anti-inflammatory function in patients with newly diagnosed coronary artery disease (CAD) remains unclear. We demonstrate that stimulation of α7nAChR with PHA 568487 attenuates the inflammatory response in immune cells extracted from healthy controls and patients with newly diagnosed CAD, with a more pronounced effect observed in patients with CAD. This suggests that the anti-inflammatory properties of α7nAChR may have a role in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Filip Mjörnstedt
- Department of Physiology, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Rebecka Wilhelmsson
- Department of Physiology, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Marcus Ulleryd
- Department of Physiology, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Maria Hammarlund
- Department of Physiology, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
2
|
Guan Z. Alterations in Neuronal Nicotinic Acetylcholine Receptors in the Pathogenesis of Various Cognitive Impairments. CNS Neurosci Ther 2024; 30:e70069. [PMID: 39370620 PMCID: PMC11456617 DOI: 10.1111/cns.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Cognitive impairment is a typical symptom of both neurodegenerative and certain other diseases. In connection with these different pathologies, the etiology and neurological and metabolic changes associated with cognitive impairment must differ. Until these characteristics and differences are understood in greater detail, pharmacological treatment of the different forms of cognitive impairment remains suboptimal. Neurotransmitter receptors, including neuronal nicotinic acetylcholine receptors (nAChRs), dopamine receptors, and glutamine receptors, play key roles in the functions and metabolisms of the brain. Among these, the role of nAChRs in the development of cognitive impairment has attracted more and more attention. The present review summarizes what is presently known concerning the structure, distribution, metabolism, and function of nAChRs, as well as their involvement in major cognitive disorders such as Alzheimer's disease, Parkinson's disease, vascular dementia, schizophrenia, and diabetes mellitus. As will be discussed, the relevant scientific literature reveals clearly that the α4β2 and α7 nAChR subtypes and/or subunits of the receptors play major roles in maintaining cognitive function and in neuroprotection of the brain. Accordingly, focusing on these as targets of drug therapy can be expected to lead to breakthroughs in the treatment of cognitive disorders such as AD and schizophrenia.
Collapse
Affiliation(s)
- Zhi‐Zhong Guan
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- Key Laboratory of Endemic and Ethnic DiseasesGuizhou Medical University, Ministry of Education and Provincial Key Laboratory of Medical Molecular BiologyGuiyangP.R. China
| |
Collapse
|
3
|
Ye X, Shao S, Wang Y, Su W. Ginsenoside Rg2 alleviates neurovascular damage in 3xTg-AD mice with Alzheimer's disease through the MAPK-ERK pathway. J Chem Neuroanat 2023; 133:102346. [PMID: 37805189 DOI: 10.1016/j.jchemneu.2023.102346] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and ginsenoside Rg2 (Rg2) is proven to inhibit AD's progression. This study investigates the potential benefits of Rg2 treatment on 3xTg-AD mice. Following 6 weeks of gavage treatment, Rg2-treated 3xTg-AD mice exhibited improved spatial recognition memory behaviors, regional cerebral blood flow, and histopathological injury of the hippocampus, which were observed through a Y-maze test, laser Doppler flowmetry, and hematoxylin-eosin staining. Additionally, Rg2 treatment caused a decrease in the levels of amyloid beta 25-35, TNF-α, IL-1β, and IL-6, as measured by enzyme-linked immunosorbent assay, as well as a reduction in mRNA levels of IL-1β and IL-6 in 3xTg-AD mouse brains using quantitative real-time PCR. In particular, NeuN and CD31 levels were inhibited and GFAP level was elevated in 3xTg-AD mice that were observed through immunofluorescence, and these levels were all antagonized by Rg2, suggesting the effects of Rg2 on neurovascular damage, astrocyte activation, and neuronal loss. Furthermore, Western blot and qRT-PCR assays showed that Rg2 blocked the expression of ICAM-1 and VCAM-1 in 3xTg-AD mice. By Western blot, the ratios of p-ERK/ERK and p-MAPK/MAPK in 3xTg-AD mice were upregulated by Rg2 treatment, suggesting the neuroprotective effects of Rg2 may be related to the MAPK-ERK pathway. In summary, this study demonstrated the potential of Rg2 to improve AD and provided a scientific basis for research on the biological mechanism of AD and the development of Rg2.
Collapse
Affiliation(s)
- Xiaojun Ye
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Sen Shao
- Department of Neurology, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang 310023, China
| | - Yanbo Wang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310000, China
| | - Wenwen Su
- Department of Internal Medicine, Cixi Seventh People's Hospital, Ningbo, Zhejiang 315000, China.
| |
Collapse
|
4
|
Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012092. [PMID: 36292947 PMCID: PMC9603563 DOI: 10.3390/ijms232012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.
Collapse
|
5
|
Shi W, Wu H, Liu S, Wu Z, Wu H, Liu J, Hou Y. Progesterone Suppresses Cholesterol Esterification in APP/PS1 mice and a cell model of Alzheimer's Disease. Brain Res Bull 2021; 173:162-173. [PMID: 34044033 DOI: 10.1016/j.brainresbull.2021.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023]
Abstract
AIMS Cholesteryl ester(CE), generated from the mitochondria associated membrane (MAM), is involved in the pathogenesis of Alzheimer's Disease (AD). In theory, the different neuroprotective effects of progesterone in AD are all linked to MAM, yet the effect on cholesterol esterification has not been reported. Therefore, this study was aimed to investigate the regulation of progesterone on intracerebral CE in AD models and the underlying mechanism. METHODS APP/PS1 mice and AD cell model induced by Aβ 25-35 were selected as the research objects. APP/PS1 mice were daily administrated intragastrically with progesterone and The Morris Water Maze test was performed to detect the learning and memory abilities. Intracellular cholesterol was measured by Cholesterol/Cholesteryl Ester Quantitation Assay. The structure of MAMs were observed with transmission electron microscopy. The expression of acyl-CoA: cholesterol acyltransferase 1 (ACAT1), ERK1/2 and p-ERK1/2 were detected with western blotting, immunohistochemistry or immunofluorescence. RESULTS Progesterone suppressed the accumulation of intracellular CE, shortened the length of abnormally prolonged MAM in cortex of APP/PS1 mice. Progesterone decreased the expression of ACAT1, which could be blocked by progesterone receptor membrane component 1 (PGRMC1) inhibitor AG205. The ERK1/2 pathway maybe involved in the progesterone mediated regulation of ACAT1 in AD models, rather than the PI3K/Akt and the P38 MEPK pathways. SIGNIFICANCE The results supported a line of evidence that progesterone regulates CE level and the structure of MAM in neurons of AD models, providing a promising treatment against AD on the dysfunction of cholesterol metabolism.
Collapse
Affiliation(s)
- Wenjing Shi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China.
| | - Hang Wu
- Department of Pharmacy, Heze University, Heze 274000, Shandong Province, China.
| | - Sha Liu
- Department of Pharmacy, the Third Hospital of Shijiazhuang, Shijiazhuang 050000, Hebei Province, China.
| | - Zhigang Wu
- Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou 075000, China.
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| | - Jianfang Liu
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| | - Yanning Hou
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| |
Collapse
|
6
|
Desale SE, Chinnathambi S. Phosphoinositides signaling modulates microglial actin remodeling and phagocytosis in Alzheimer's disease. Cell Commun Signal 2021; 19:28. [PMID: 33627135 PMCID: PMC7905611 DOI: 10.1186/s12964-021-00715-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease is one of the neurodegenerative diseases, characterized by the accumulation of abnormal protein deposits, which disrupts signal transduction in neurons and other glia cells. The pathological protein in neurodegenerative diseases, Tau and amyloid-β contribute to the disrupted microglial signaling pathways, actin cytoskeleton, and cellular receptor expression. The important secondary messenger lipids i.e., phosphatidylinositols are largely affected by protein deposits of amyloid-β in Alzheimer's disease. Phosphatidylinositols are the product of different phosphatidylinositol kinases and the state of phosphorylation at D3, D4, and D5 positions of inositol ring. Phosphatidylinositol 3,4,5-triphosphate (PI 3, 4, 5-P3) involves in phagocytic cup formation, cell polarization, whereas Phosphatidylinositol 4,5-bisphosphate (PI 4, 5-P2)-mediates the process of phagosomes formation and further its fusion with early endosome.. The necessary activation of actin-binding proteins such as Rac, WAVE complex, and ARP2/3 complex for the actin polymerization in the process of phagocytosis, migration is regulated and maintained by PI 3, 4, 5-P3 and PI 4, 5-P2. The ratio and types of fatty acid intake can influence the intracellular secondary lipid messengers along with the cellular content of phaphatidylcholine and phosphatidylethanolamine. The Amyloid-β deposits and extracellular Tau seeds disrupt phosphatidylinositides level and actin cytoskeletal network that hamper microglial-signaling pathways in AD. We hypothesize that being a lipid species intracellular levels of phosphatidylinositol would be regulated by dietary fatty acids. Further we are interested to understand phosphoinositide-based signaling cascades in phagocytosis and actin remodeling. Video Abstract.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
| |
Collapse
|
7
|
Rosuvastatin Improves Cognitive Function of Chronic Hypertensive Rats by Attenuating White Matter Lesions and Beta-Amyloid Deposits. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4864017. [PMID: 32851076 PMCID: PMC7441415 DOI: 10.1155/2020/4864017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
Abstract
Hypertensive white matter lesion (WML) is one of common causes of vascular cognitive impairment. In this study, we aimed to investigate the effect of rosuvastatin on cognitive impairment and its underlying mechanisms in chronic hypertensive rats. From the 8th week after establishment of stroke-prone renovascular hypertensive rats (RHRSPs), rosuvastatin (10 mg/kg) or saline as a control was administrated once daily for consecutive 12 weeks by gastric gavage. Cognitive function was assessed with the Morris water maze test and novel object recognition test. WML was observed by Luxol fast blue staining. Aβ deposits, Claudin-5, Occludin, and ZO-1 were determined by immunofluorescence. After rosuvastatin treatment, the escape latencies were decreased and the time of crossing the hidden platform was increased in the Morris water maze, compared with the vehicle-treated RHRSP group. In a novel object recognition test, the recognition index in the rosuvastatin-treated RHRSP group was significantly larger than that in the vehicle-treated RHRSP group. Rosuvastatin treatment presented with the effects of lower WML grades, higher expression of tight junction proteins Claudin-5, Occludin, and ZO-1 in the corpus callosum, and less Aβ deposits in the cortex and hippocampus. The data suggested that rosuvastatin improved the cognitive function of chronic hypertensive rats partly by attenuating WML and reducing Aβ burden.
Collapse
|
8
|
Cao K, Dong YT, Xiang J, Xu Y, Li Y, Song H, Yu WF, Qi XL, Guan ZZ. The neuroprotective effects of SIRT1 in mice carrying the APP/PS1 double-transgenic mutation and in SH-SY5Y cells over-expressing human APP670/671 may involve elevated levels of α7 nicotinic acetylcholine receptors. Aging (Albany NY) 2020; 12:1792-1807. [PMID: 32003755 PMCID: PMC7053601 DOI: 10.18632/aging.102713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
The aim was to determine whether the neuroprotective effect of SIRT1 in Alzheimer’s disease (AD), due to inhibition of aggregation of the β-amyloid peptide (Aβ), involves activation of α7 nAChR. In present study, four-month-old APP/PS1 mice were administered resveratrol (RSV) or suramin once daily for two months, following which their spatial learning and memory were assessed using the Morris water maze test. Deposits of Aβ in vivo were detected by near-infrared imaging (NIRI) and confocal laser scanning. SH-SY5Y/APPswe cells were treated with RSV, suramin, U0126 or methyllycaconitine (MLA). Levels of proteins and mRNA were determined by Western blotting and qRT-PCR, respectively. The results show that activation of SIRT1 improved their spatial learning and memory and reduced the production and aggregation of Aβ in the hippocampus and cerebral cortex; whereas inhibition of SIRT1 had the opposite effects. In addition, activation of SIRT1 increased the levels of both α7 nAChR and αAPP in the brains these animals. Finally, activation of SIRT1 elevated the levels of pERK1/2, while inhibition of ERK1/2 counteracted the increase in α7 nAChR caused by RSV. These findings indicate that neuroprotection by SIRT1 may involve increasing levels of α7 nAChR through activation of the MAPK/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Kun Cao
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Jie Xiang
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China
| | - Yi Xu
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Yi Li
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Zhi-Zhong Guan
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| |
Collapse
|
9
|
Shakour N, Bianconi V, Pirro M, Barreto GE, Hadizadeh F, Sahebkar A. In silico evidence of direct interaction between statins and β‐amyloid. J Cell Biochem 2018; 120:4710-4715. [DOI: 10.1002/jcb.27761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/06/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine University of Perugia Perugia Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine University of Perugia Perugia Italy
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago Chile
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|