1
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Abedimanesh S, Safaralizadeh R, Jahanafrooz Z, Najafi S, Amini M, Nazarloo SS, Bahojb Mahdavi SZ, Baradaran B, Jebelli A, Mokhtarzadeh AA. Interaction of noncoding RNAs with hippo signaling pathway in cancer cells and cancer stem cells. Noncoding RNA Res 2024; 9:1292-1307. [PMID: 39045083 PMCID: PMC11263728 DOI: 10.1016/j.ncrna.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
The Hippo signaling pathway has a regulatory function in the organogenesis process and cellular homeostasis, switching the cascade reactions of crucial kinases acts to turn off/on the Hippo pathway, altering the downstream gene expression and thereby regulating proliferation, apoptosis, or stemness. Disruption of this pathway can lead to the occurrence of various disorders and different types of cancer. Recent findings highlight the importance of ncRNAs, such as microRNA, circular RNA, and lncRNAs, in modulating the Hippo pathway. Defects in ncRNAs can disrupt Hippo pathway balance, increasing tumor cells, tumorigenesis, and chemotherapeutic resistance. This review summarizes ncRNAs' inhibitory or stimulatory role in - Hippo pathway regulation in cancer and stem cells. Identifying the relation between ncRNAs and the components of this pathway could pave the way for developing new biomarkers in the treatment and diagnosis of cancers.
Collapse
Affiliation(s)
- Saba Abedimanesh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Soltani Nazarloo
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Deng S, Lu X, Wang X, Liang B, Xu H, Yang D, Cui G, Yonemura A, Paine H, Zhou Y, Zhang Y, Simile MM, Urigo F, Evert M, Calvisi DF, Green BL, Chen X. Overexpression of TBX3 suppresses tumorigenesis in experimental and human cholangiocarcinoma. Cell Death Dis 2024; 15:441. [PMID: 38909034 PMCID: PMC11193761 DOI: 10.1038/s41419-024-06839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
TBX3 behaves as a tumor suppressor or oncoprotein across cancer. However, TBX3 function remains undetermined in intrahepatic cholangiocarcinoma (iCCA), a deadly primary liver malignancy with few systemic treatment options. This study sought to investigate the impact of TBX3 on iCCA. We found that overexpression of TBX3 strongly inhibited human iCCA cell growth. In the Akt/FBXW7ΔF mouse iCCA model, overexpression of Tbx3 reduced cholangiocarcinogenesis in vivo, while inducible genetic knockout of Tbx3 accelerated iCCA growth. RNA-seq identified MAD2L1 as a downregulated gene in TBX3-overexpressing cells, and ChIP confirmed that TBX3 binds to the MAD2L1 promoter. CRISPR-mediated knockdown of Mad2l1 significantly reduced the growth of two iCCA models in vivo. Finally, we found that TBX3 expression is upregulated in ~20% of human iCCA samples, and its high expression is associated with less proliferation and better survival. MAD2L1 expression is upregulated in most human iCCA samples and negatively correlated with TBX3 expression. Altogether, our findings suggest that overexpression of TBX3 suppresses CCA progression via repressing MAD2L1 expression.
Collapse
Affiliation(s)
- Shanshan Deng
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue Wang
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Binyong Liang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Hongwei Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Doris Yang
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Guofei Cui
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Andrew Yonemura
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Honor Paine
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Yi Zhou
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Yi Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 400054, Chongqing, China
| | - Maria Maddalena Simile
- Department of Medicine, Surgery, and Pharmacy, Division of Experimental Pathology and Oncology, University of Sassari, 07100, Sassari, Italy
| | - Francesco Urigo
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Benjamin L Green
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA.
| | - Xin Chen
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA.
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
4
|
Wang CH, Baskaran R, Ng SSC, Wang TF, Li CC, Ho TJ, Hsieh DJY, Kuo CH, Chen MC, Huang CY. Platycodin D confers oxaliplatin Resistance in Colorectal Cancer by activating the LATS2/YAP1 axis of the hippo signaling pathway. J Cancer 2023; 14:393-402. [PMID: 36860929 PMCID: PMC9969589 DOI: 10.7150/jca.77322] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023] Open
Abstract
Oxaliplatin-based therapy is used as a first-line drug to treat metastatic colorectal cancer. However, long-term and repeated drug treatment resulted in drug resistance and the failure of chemotherapy. Various natural compounds were previously reported to act as chemosensitizers to reverse drug resistance. In this study, we found that platycodin D (PD), a saponin found in Platycodon grandiflorum, inhibited LoVo and OR-LoVo cells proliferation, invasion, and migration ability. Our results indicated that combined treatment of oxaliplatin with PD dramatically reduced the cellular proliferation in both LoVo and OR-LoVo cells. Furthermore, treatment with PD dose-dependently decreased LATS2/YAP1 hippo signaling and survival marker p-AKT expression, as well as increased cyclin-dependent kinase inhibitor proteins such as p21 and p27 expression. Importantly, PD activates and promotes YAP1 degradation through the ubiquitination and proteasome pathway. The nuclear transactivation of YAP was significantly reduced under PD treatment, leading to transcriptional inhibition of the downstream genes regulating cell proliferation, pro-survival, and metastasis. In conclusion, our results showed that PD is suitable as a promising agent for overcoming oxaliplatin-resistant colorectal cancer.
Collapse
Affiliation(s)
- Chien-Hao Wang
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Shawn Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan,Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,✉ Corresponding author: Chih-Yang Huang Ph.D., Chair Professor, Cardiovascular and Mitochondria related diseases research center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Tel: +886-4-22053366 ext 3313. Fax: +886-4-22032295. E-mail address:
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria related diseases research center, Hualien Tzu Chi Hospital, Hualien 970, Taiwan,Graduate Institute of Biomedicine, China Medical University, Taichung, Taiwan,Department of Biotechnology, Asia University, Taichung 413, Taiwan,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan,✉ Corresponding author: Chih-Yang Huang Ph.D., Chair Professor, Cardiovascular and Mitochondria related diseases research center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Tel: +886-4-22053366 ext 3313. Fax: +886-4-22032295. E-mail address:
| |
Collapse
|
5
|
Wang Y, Chen H, Yu J, Kang W, To KF. Recent insight into the role and therapeutic potential of YAP/TAZ in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188787. [PMID: 36041574 DOI: 10.1016/j.bbcan.2022.188787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of cancer treatment, gastrointestinal (GI) cancers are still the most prevalent malignancies with high morbidity and mortality worldwide. Dysregulation of the Hippo signaling pathway has been recognized to play a critical role during cancer development and adopted for monitoring disease progression and therapy response. Despite the well-documented tumor proliferation and metastasis, recent efforts in two core Hippo components, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), have identified as the driving forces behind cancer metabolism, stemness, tumor immunity, and therapy resistance. Understanding the molecular mechanisms by which YAP/TAZ facilitates the tumorigenesis and progression of GI cancer, and identifying novel therapeutic strategies for targeting YAP/TAZ are crucial to GI cancer treatment and prevention. In this study, we summarize the latest findings on the function and regulatory mechanisms of YAP/TAZ in GI cancers, and highlight the translational significance of targeting YAP/TAZ for cancer therapies.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
6
|
Hu S, Molina L, Tao J, Liu S, Hassan M, Singh S, Poddar M, Bell A, Sia D, Oertel M, Raeman R, Nejak-Bowen K, Singhi A, Luo J, Monga SP, Ko S. NOTCH-YAP1/TEAD-DNMT1 Axis Drives Hepatocyte Reprogramming Into Intrahepatic Cholangiocarcinoma. Gastroenterology 2022; 163:449-465. [PMID: 35550144 PMCID: PMC9329208 DOI: 10.1053/j.gastro.2022.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (ICC) is a devastating liver cancer with extremely high intra- and inter-tumoral molecular heterogeneity, partly due to its diverse cellular origins. We investigated clinical relevance and the molecular mechanisms underlying hepatocyte (HC)-driven ICC development. METHODS Expression of ICC driver genes in human diseased livers at risk for ICC development were examined. The sleeping beauty and hydrodynamic tail vein injection based Akt-NICD/YAP1 ICC model was used to investigate pathogenetic roles of SRY-box transcription factor 9 (SOX9) and yes-associated protein 1 (YAP1) in HC-driven ICC. We identified DNA methyltransferase 1 (DNMT1) as a YAP1 target, which was validated by loss- and gain-of-function studies, and its mechanism addressed by chromatin immunoprecipitation sequencing. RESULTS Co-expression of AKT and Notch intracellular domain (NICD)/YAP1 in HC yielded ICC that represents 13% to 29% of clinical ICC. NICD independently regulates SOX9 and YAP1 and deletion of either, significantly delays ICC development. Yap1 or TEAD inhibition, but not Sox9 deletion, impairs HC-to-biliary epithelial cell (BEC) reprogramming. DNMT1 was discovered as a novel downstream effector of YAP1-TEAD complex that directs HC-to-BEC/ICC fate switch through the repression of HC-specific genes regulated by master regulators for HC differentiation, including hepatocyte nuclear factor 4 alpha, hepatocyte nuclear factor 1 alpha, and CCAAT/enhancer-binding protein alpha/beta. DNMT1 loss prevented NOTCH/YAP1-dependent HC-driven cholangiocarcinogenesis, and DNMT1 re-expression restored ICC development following TEAD repression. Co-expression of DNMT1 with AKT was sufficient to induce tumor development including ICC. DNMT1 was detected in a subset of HCs and dysplastic BECs in cholestatic human livers prone to ICC development. CONCLUSION We identified a novel NOTCH-YAP1/TEAD-DNMT1 axis essential for HC-to-BEC/ICC conversion, which may be relevant in cholestasis-to-ICC pathogenesis in the clinic.
Collapse
Affiliation(s)
- Shikai Hu
- School of Medicine, Tsinghua University, Beijing, China;,Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Junyan Tao
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Silvia Liu
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA;,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Mohammed Hassan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Minakshi Poddar
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Aaron Bell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Daniela Sia
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA;,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Reben Raeman
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA;,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA;,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Aatur Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA;,Division of Anatomic Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Jianhua Luo
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA;,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA;,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA;,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA;,Co-Corresponding Authors: Sungjin Ko, D.V.M., Ph.D., Assistant Professor, Department of Pathology and Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, 200 Lothrop Street S-424 BST, Pittsburgh, PA 15261, Tel: 412-648-8146; Fax: (412) 648-1916; , Satdarshan P. Monga, M.D., FAASLD., Professor of Pathology and Medicine, Director, Pittsburgh Liver Research Center, UPMC Endowed Chair, Vice Chair and Division Chief of Experimental Pathology, University of Pittsburgh, School of Medicine and UPMC, 200 Lothrop Street S-422 BST, Pittsburgh, PA 15261, Tel: (412) 648-9966; Fax: (412) 648-1916;
| | - Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
7
|
Cadamuro M, Strazzabosco M. Inflammatory pathways and cholangiocarcinoma risk mechanisms and prevention. Adv Cancer Res 2022; 156:39-73. [PMID: 35961707 PMCID: PMC10916841 DOI: 10.1016/bs.acr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cholangiocarcinoma (CCA), a neoplasm burdened by a poor prognosis and currently lacking adequate therapeutic treatments, can originate at different levels of the biliary tree, in the intrahepatic, hilar, or extrahepatic area. The main risk factors for the development of CCA are the presence of chronic cholangiopathies of various etiology. To date, the most studied prodromal diseases of CCA are primary sclerosing cholangitis, Caroli's disease and fluke infestations, but other conditions, such as metabolic syndrome, nonalcoholic fatty liver disease and obesity, are emerging as associated with an increased risk of CCA development. In this review, we focused on the analysis of the pro-inflammatory mechanisms that induce the development of CCA and on the role of cells of the immune response in cholangiocarcinogenesis. In very recent times, these cellular mechanisms have been the subject of emerging studies aimed at verifying how the modulation of the inflammatory and immunological responses can have a therapeutic significance and how these can be used as therapeutic targets.
Collapse
Affiliation(s)
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
8
|
Ko S, Kim M, Molina L, Sirica AE, Monga SP. YAP1 activation and Hippo pathway signaling in the pathogenesis and treatment of intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:283-317. [PMID: 35961703 PMCID: PMC9972177 DOI: 10.1016/bs.acr.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA), the second most common primary liver cancer, is a highly lethal epithelial cell malignancy exhibiting features of cholangiocyte differentiation. iCCAs can potentially develop from multiple cell types of origin within liver, including immature or mature cholangiocytes, hepatic stem cells/progenitor cells, and from transdifferentiation of hepatocytes. Understanding the molecular mechanisms and genetic drivers that diversely drive specific cell lineage pathways leading to iCCA has important biological and clinical implications. In this context, activation of the YAP1-TEAD dependent transcription, driven by Hippo-dependent or -independent diverse mechanisms that lead to the stabilization of YAP1 is crucially important to biliary fate commitment in hepatobiliary cancer. In preclinical models, YAP1 activation in hepatocytes or cholangiocytes is sufficient to drive their malignant transformation into iCCA. Moreover, nuclear YAP1/TAZ is highly prevalent in human iCCA irrespective of the varied etiology, and significantly correlates with poor prognosis in iCCA patients. Based on the ubiquitous expression and diverse physiologic roles for YAP1/TAZ in the liver, recent studies have further revealed distinct functions of active YAP1/TAZ in regulating tumor metabolism, as well as the tumor immune microenvironment. In the current review, we discuss our current understanding of the various roles of the Hippo-YAP1 signaling in iCCA pathogenesis, with a specific focus on the roles played by the Hippo-YAP1 pathway in modulating biliary commitment and oncogenicity, iCCA metabolism, and immune microenvironment. We also discuss the therapeutic potential of targeting the YAP1/TAZ-TEAD transcriptional machinery in iCCA, its current limitations, and what future studies are needed to facilitate clinical translation.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States.
| | - Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States
| | - Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States; Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, PA, United States.
| |
Collapse
|
9
|
Vanaroj P, Chaijaroenkul W, Na-Bangchang K. Notch signaling in the pathogenesis, progression and identification of potential targets for cholangiocarcinoma (Review). Mol Clin Oncol 2022; 16:66. [PMID: 35154706 PMCID: PMC8825743 DOI: 10.3892/mco.2022.2499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/03/2022] [Indexed: 11/05/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive type of bile duct cancer that is characterized by a high mortality rate due to its late diagnosis and ineffective treatment. The aim of the present systematic review was to analyze the association between Notch signaling and CCA in terms of its pathogenesis, progression and potential treatment targets. Relevant information was gathered from the PubMed, ScienceDirect and Scopus databases using the search terms 'cholangiocarcinoma' AND 'Notch signaling'. Of the 90 articles identified, 28 fulfilled the eligibility criteria and were included in the analysis. It was concluded that overexpression/upregulation of Notch ligands, such as Jagged1 and Notch receptors (Notch1, Notch2 and Notch3), as well as upregulation of the upstream Notch signaling pathway, promoted CCA development and progression. In addition, downregulation of Notch1 signaling through several possible interventions appears to be a promising strategy for inhibition of CCA development and progression. Therefore, the Notch signaling pathway may be considered as a potential target for CCA control.
Collapse
Affiliation(s)
- Peeranate Vanaroj
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Wanna Chaijaroenkul
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120 Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, 12120 Thailand
| |
Collapse
|
10
|
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional coactivator that activates transcriptional enhanced associate domain transcription factors upon inactivation of the Hippo signaling pathway, to regulate biological processes like proliferation, survival, and differentiation. YAP1 is most prominently expressed in biliary epithelial cells (BECs) in normal adult livers and during development. In the current review, we will discuss the multiple roles of YAP1 in the development and morphogenesis of bile ducts inside and outside the liver, as well as in orchestrating the cholangiocyte repair response to biliary injury. We will review how biliary repair can occur through the process of hepatocyte-to-BEC transdifferentiation and how YAP1 is pertinent to this process. We will also discuss the liver's capacity for metabolic reprogramming as an adaptive mechanism in extreme cholestasis, such as when intrahepatic bile ducts are absent due to YAP1 loss from hepatic progenitors. Finally, we will discuss the roles of YAP1 in the context of pediatric pathologies afflicting bile ducts, such as Alagille syndrome and biliary atresia. In conclusion, we will comprehensively discuss the spatiotemporal roles of YAP1 in biliary development and repair after biliary injury while describing key interactions with other well-known developmental pathways.
Collapse
Affiliation(s)
- Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine
| | - Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Liu H, Li J, Yuan W, Hao S, Wang M, Wang F, Xuan H. Bioactive components and mechanisms of poplar propolis in inhibiting proliferation of human hepatocellular carcinoma HepG2 cells. Biomed Pharmacother 2021; 144:112364. [PMID: 34700230 DOI: 10.1016/j.biopha.2021.112364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The aim of this study was to elucidate the bioactive components and anti-tumor mechanism of poplar propolis extract obtained from North China (CP) in human hepatocellular carcinoma HepG2 cells in vitro. METHODS Cell viability and proliferation were measured by SRB assay and EdU proliferation test kit, respectively. Cell migration was evaluated by scratching test. Reactive oxygen species (ROS) production and mitochondrial membrane potential were investigated with the fluorescent probes, DCHF and JC-1, respectively. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were inspected by measurement kits. Apoptosis was assessed by acridine orange (AO) and Hoechst 33258 staining. Levels of Bax, Bcl-2, caspase 9, caspase 3, PARP, MMP-2, MMP-9, PI3K/p-PI3K, AKT/p-AKT, p38MAPK/p-p38 MAPK, ERK/p-ERK, LATS2, YAP, TAZ and TEAD1 were assessed by western blotting, respectively. RESULTS The bioactive components of CP inhibiting HepG2 cells were mainly flavonoids, and esters. CP induced HepG2 apoptosis through a mitochondrial-dependent intrinsic pathway with elevated the levels of cleaved PARP, cleaved caspase 3, and Bax and decreased the expressions of Bcl-2 and procaspase 9. It seemed that CP triggered apoptosis by activation of the p38 MAPK and inactivation of p-ERK. More importantly, we found that CP suppressed the Hippo pathway, leading to inactivation of YAP/TAZ and TEAD1 and inhibition of PI3K/AKT signaling molecules. CONCLUSION CP exerted excellent anti-proliferation and pro-apoptosis actions in HepG2 cells by inactivation of the loop between the Hippo/YAP and PI3K/AKT pathways, and may be a promising therapy for HCC.
Collapse
Affiliation(s)
- Hui Liu
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Junya Li
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Wenwen Yuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Shengyu Hao
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Meng Wang
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Fei Wang
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
12
|
Liang B, Zhou Y, Qian M, Xu M, Wang J, Zhang Y, Song X, Wang H, Lin S, Ren C, Monga SP, Wang B, Evert M, Chen Y, Chen X, Huang Z, Calvisi DF, Chen X. TBX3 functions as a tumor suppressor downstream of activated CTNNB1 mutants during hepatocarcinogenesis. J Hepatol 2021; 75:120-131. [PMID: 33577921 PMCID: PMC8217095 DOI: 10.1016/j.jhep.2021.01.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Gain of function (GOF) mutations in the CTNNB1 gene are one of the most frequent genetic events in hepatocellular carcinoma (HCC). T-box transcription factor 3 (TBX3) is a liver-specific target of the Wnt/β-catenin pathway and thought to be an oncogene mediating activated β-catenin-driven HCC formation. METHODS We evaluated the expression pattern of TBX3 in human HCC specimens. Tbx3 was conditionally knocked out in murine HCC models by hydrodynamic tail vein injection of Cre together with c-Met and ΔN90-β-catenin (c-Met/β-catenin) in Tbx3flox/flox mice. TBX3 was overexpressed in human HCC cell lines to investigate the functions of TBX3 in vitro. RESULTS A bimodal expression pattern of TBX3 in human HCC samples was detected: high expression of TBX3 in GOF CTNNB1 HCC and downregulation of TBX3 in non-CTNNB1 mutant tumors. High expression of TBX3 was associated with increased differentiation and decreased expression signatures of tumor growth. Using Tbx3flox/flox mice, we found that ablation of Tbx3 significantly accelerates c-Met/β-catenin-driven HCC formation. Moreover, Tbx3(-) HCC demonstrated increased YAP/TAZ activity. The accelerated tumor growth induced by loss of TBX3 in c-Met/β-catenin mouse HCC was successfully prevented by overexpression of LATS2, which inhibited YAP/TAZ activity. In human HCC cell lines, overexpression of TBX3 inhibited HCC cell growth as well as YAP/TAZ activation. A negative correlation between TBX3 and YAP/TAZ target genes was observed in human HCC samples. Mechanistically, phospholipase D1 (PLD1), a known positive regulator of YAP/TAZ, was identified as a novel transcriptional target repressed by TBX3. CONCLUSION Our study suggests that TBX3 is induced by GOF CTNNB1 mutants and suppresses HCC growth by inactivating PLD1, thus leading to the inhibition of YAP/TAZ oncogenes. LAY SUMMARY TBX3 is a liver-specific target of the Wnt/β-catenin pathway and thought to be an oncogene in promoting liver cancer development. Herein, we demonstrate that TBX3 is in fact a tumor suppressor gene that restricts liver tumor growth. Strategies which increase TBX3 expression and/or activities may be effective for HCC treatment.
Collapse
Affiliation(s)
- Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yi Zhou
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Manning Qian
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; College of Clinical Medicine, Yangzhou University, Yangzhou, China
| | - Meng Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; Department of Gastroenterology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shumei Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Satdarshan P Monga
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bruce Wang
- Department of Medicine and Liver Center, University of California San Francisco, San Francisco, CA, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yifa Chen
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Pocaterra A, Scattolin G, Romani P, Ament C, Ribback S, Chen X, Evert M, Calvisi DF, Dupont S. Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Commun Biol 2021; 4:763. [PMID: 34155338 PMCID: PMC8217270 DOI: 10.1038/s42003-021-02286-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mechanical forces control cell behavior, including cancer progression. Cells sense forces through actomyosin to activate YAP. However, the regulators of F-actin dynamics playing relevant roles during mechanostransduction in vitro and in vivo remain poorly characterized. Here we identify the Fascin1 F-actin bundling protein as a factor that sustains YAP activation in response to ECM mechanical cues. This is conserved in the mouse liver, where Fascin1 regulates YAP-dependent phenotypes, and in human cholangiocarcinoma cell lines. Moreover, this is relevant for liver tumorigenesis, because Fascin1 is required in the AKT/NICD cholangiocarcinogenesis model and it is sufficient, together with AKT, to induce cholangiocellular lesions in mice, recapitulating genetic YAP requirements. In support of these findings, Fascin1 expression in human intrahepatic cholangiocarcinomas strongly correlates with poor patient prognosis. We propose that Fascin1 represents a pro-oncogenic mechanism that can be exploited during intrahepatic cholangiocarcinoma development to overcome a mechanical tumor-suppressive environment.
Collapse
Affiliation(s)
- Arianna Pocaterra
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Gloria Scattolin
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Cindy Ament
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Matthias Evert
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
14
|
Budel SJ, Penning MM, Penning LC. Hippo signaling pathway in companion animal diseases, an under investigated signaling cascade. Vet Q 2021; 41:172-180. [PMID: 33945400 PMCID: PMC8128184 DOI: 10.1080/01652176.2021.1923085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The Hippo pathway is a highly conserved kinase cascade in mammals with the proteins YAP and TAZ as its most important downstream effectors that shuttle between cytoplasma and nucleus. It has a crucial role in processes such as embryogenesis, organ size control, homeostasis and tissue regeneration, where mechanosensing and/or cell-cell interactions are involved. As the pathway is associated with many essential functions in the body, its dysregulation is related to many diseases. In contrast to human pathology, a PubMed-search on Hippo, YAP/TAZ and companion animals (horse, equine, dog, canine, cat, feline) retrieved few publications. Because of its high level of functional conservation, it is anticipated that also in veterinary sciences aberrant Hippo YAP/TAZ signaling would be implicated in animal pathologies. Publications on Hippo YAP/TAZ in companion animals are mainly in cats and dogs and related to oncology. Here, we emphasize the important role of YAP/TAZ in liver diseases. First the liver has a remarkable regeneration capacity and a strict size control and the liver has a moderate liver cell renewal (homeostasis). The last years numerous papers show the importance of YAP/TAZ in hepatocellular carcinoma (HCC), hepatocyte differentiation and bile duct epithelial (BEC) cell survival. YAP/TAZ signaling is involved in activation of hepatic stellate cells crucial in fibrogenesis. The availability of drugs (e.g. verteporfin) targeting the YAP/TAZ pathway are described as is their potential usage in veterinary medicine. The aim of this overview is to stimulate researchers' and clinicians' interest in the potential role of Hippo YAP/TAZ signaling in veterinary medicine.
Collapse
Affiliation(s)
- Shaydee J Budel
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marloes M Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Brandi G, Tavolari S. In Vitro and In Vivo Model Systems of Cholangiocarcinoma. DIAGNOSIS AND MANAGEMENT OF CHOLANGIOCARCINOMA 2021:471-494. [DOI: 10.1007/978-3-030-70936-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Guo P, Wang Z, Zhou Z, Tai Y, Zhang A, Wei W, Wang Q. Immuno-hippo: Research progress of the hippo pathway in autoimmune disease. Immunol Lett 2020; 230:11-20. [PMID: 33345861 DOI: 10.1016/j.imlet.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
Extensive research in Drosophila and mammals has identified the core components of Hippo signaling, which controls gene expression. Studies of Drosophila have demonstrated the highly conserved Hippo pathway controls tissue homeostasis and organ size by regulating the balance between cell proliferation and apoptosis. Recent work has indicated a potential role of the Hippo pathway in regulating the immune system, which is the key player in autoimmune disease (AID). Therefore, the Hippo pathway may become a novel target for curing AID. Although the pivotal role of both the Hippo pathway in tumorigenesis has been thoroughly investigated, the role of it in AID is still poorly understood. Elucidating the role of Hippo signaling pathways in the activation and expression of specific molecules involved in immune regulation is important for understanding the pathogenesis of AID and exploring novel therapeutic targets. To aid in further research, this review describes the relationship between the Hippo pathway and inflammatory signals such as NF-κB and JAK-STAT, the function of the Hippo pathway in the formation and differentiation of immune cells, and the regulatory role of the Hippo pathway in AID.
Collapse
Affiliation(s)
- Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China
| | - Zhen Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China
| | - Zhengwei Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China
| | - Aijun Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China.
| |
Collapse
|
17
|
Wang H, Wang J, Zhang S, Jia J, Liu X, Zhang J, Wang P, Song X, Che L, Liu K, Ribback S, Cigliano A, Evert M, Wu H, Calvisi DF, Zeng Y, Chen X. Distinct and Overlapping Roles of Hippo Effectors YAP and TAZ During Human and Mouse Hepatocarcinogenesis. Cell Mol Gastroenterol Hepatol 2020; 11:1095-1117. [PMID: 33232824 PMCID: PMC7903139 DOI: 10.1016/j.jcmgh.2020.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Yes-associated protein (YAP) and its paralog transcriptional co-activator with post synaptic density protein, drosophila disc large tumor suppressor and zonula occludens-1-binding motif (TAZ) are 2 co-activators downstream of Hippo tumor-suppressor cascade. Both have been implicated in the development of hepatocellular carcinoma (HCC). However, whether YAP and TAZ have distinct or overlapping functions during hepatocarcinogenesis remains unknown. METHODS Expression patterns of YAP and TAZ were analyzed in human HCC samples. The requirement of Yap and/or Taz in protein kinase B (Akt)/ neuroblastoma RAS viral oncogene homolog (NRas) -driven liver tumorigenesis was analyzed using conditional Yap, Taz, and Yap;Taz knockout mice. Transcriptional programs regulated by YAP and/or TAZ were identified via RNA sequencing. RESULTS We found that in human HCC samples, an almost ubiquitous activation of YAP or TAZ occurs, underlying their role in this tumor type. Intriguingly, 70% of HCC samples showed only nuclear YAP or TAZ immunoreactivity. In the Akt/NRas liver tumor model, where nuclear Yap and Taz can be detected readily, deletion of Yap or Taz alone only mildly delayed liver tumor development, whereas their concomitant ablation strongly inhibited tumor cell proliferation and significantly suppressed Akt/NRas-driven hepatocarcinogenesis. In HCC cell lines, silencing of either YAP or TAZ led to decreased expression of both overlapping and distinct sets of genes, with the most prominent gene signatures related to cell-cycle progression and DNA replication. CONCLUSIONS YAP and TAZ have overlapping and distinct roles in hepatocarcinogenesis. HCCs may display unique activation of YAP or TAZ, thus relying on either YAP or TAZ for their growth.
Collapse
Affiliation(s)
- Haichuan Wang
- Liver Transplantation Division, Department of Liver Surgery, Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Jiaoyuan Jia
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; Department of Oncology and Hematology, The Second Hospital, Jilin University, Changchun, China
| | - Xianqiong Liu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; School of Pharmacy, Hubei University of Chinese Medicine Wuhan, Hubei, China
| | - Jie Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Pan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Ke Liu
- Department of Pediatrics and Human Development, East Lansing, Michigan; Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Antonio Cigliano
- Institute of Pathology, University Clinic of Regensburg, Regensburg, Germany
| | - Matthias Evert
- Institute of Pathology, University Clinic of Regensburg, Regensburg, Germany
| | - Hong Wu
- Liver Transplantation Division, Department of Liver Surgery, Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Diego F Calvisi
- Institute of Pathology, University Clinic of Regensburg, Regensburg, Germany.
| | - Yong Zeng
- Liver Transplantation Division, Department of Liver Surgery, Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California.
| |
Collapse
|
18
|
Matsumori T, Kodama Y, Takai A, Shiokawa M, Nishikawa Y, Matsumoto T, Takeda H, Marui S, Okada H, Hirano T, Kuwada T, Sogabe Y, Kakiuchi N, Tomono T, Mima A, Morita T, Ueda T, Tsuda M, Yamauchi Y, Kuriyama K, Sakuma Y, Ota Y, Maruno T, Uza N, Marusawa H, Kageyama R, Chiba T, Seno H. Hes1 Is Essential in Proliferating Ductal Cell-Mediated Development of Intrahepatic Cholangiocarcinoma. Cancer Res 2020; 80:5305-5316. [PMID: 33067264 DOI: 10.1158/0008-5472.can-20-1161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is frequently driven by aberrant KRAS activation and develops in the liver with chronic inflammation. Although the Notch signaling pathway is critically involved in ICC development, detailed mechanisms of Notch-driven ICC development are still unknown. Here, we use mice whose Notch signaling is genetically engineered to show that the Notch signaling pathway, specifically the Notch/Hes1 axis, plays an essential role in expanding ductular cells in the liver with chronic inflammation or oncogenic Kras activation. Activation of Notch1 enhanced the development of proliferating ductal cells (PDC) in injured livers, while depletion of Hes1 led to suppression. In correlation with PDC expansion, ICC development was also regulated by the Notch/Hes1 axis and suppressed by Hes1 depletion. Lineage-tracing experiments using EpcamcreERT2 mice further confirmed that Hes1 plays a critical role in the induction of PDC and that ICC could originate from PDC. Analysis of human ICC specimens showed PDC in nonneoplastic background tissues, confirming HES1 expression in both PDC and ICC tumor cells. Our findings provide novel direct experimental evidence that Hes1 plays an essential role in the development of ICC via PDC. SIGNIFICANCE: This study contributes to the identification of the cells of origin that initiate ICC and suggests that HES1 may represent a therapeutic target in ICC.
Collapse
Affiliation(s)
- Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Department of Gastroenterology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Matsumoto
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirokazu Okada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Hirano
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Sogabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruko Tomono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Mima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuki Ueda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Katsutoshi Kuriyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yojiro Sakuma
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuji Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology, Japanese Red Cross Hospital Osaka, Osaka, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-Ku, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Kansai Electric Power Hospital, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Rauff B, Malik A, Bhatti YA, Chudhary SA, Qadri I, Rafiq S. Notch signalling pathway in development of cholangiocarcinoma. World J Gastrointest Oncol 2020; 12:957-974. [PMID: 33005291 PMCID: PMC7509998 DOI: 10.4251/wjgo.v12.i9.957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) comprises of extra-hepatic cholangiocarcinoma and intrahepatic cholangiocarcinoma cancers as a result of inflammation of epithelium cell lining of the bile duct. The incidence rate is increasing dramatically worldwide with highest rates in Eastern and South Asian regions. Major risk factors involve chronic damage and inflammation of bile duct epithelium from primary sclerosing cholangitis, chronic hepatitis virus infection, gallstones and liver fluke infection. Various genetic variants have also been identified and as CCA develops on the background of biliary inflammation, diverse range of molecular mechanisms are involved in its progression. Among these, the Notch signalling pathway acts as a major driver of cholangiocarcinogenesis and its components (receptors, ligands and downstream signalling molecules) represent a promising therapeutic targets. Gamma-Secretase Inhibitors have been recognized in inhibiting the Notch pathway efficiently. A comprehensive knowledge of the molecular pathways activated by the Notch signalling cascade as well as its functional crosstalk with other signalling pathways provide better approach in developing innovative therapies against CCA.
Collapse
Affiliation(s)
- Bisma Rauff
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Yasir Ali Bhatti
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Shafiq Ahmad Chudhary
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore 54000, Pakistan
| | - Ishtiaq Qadri
- Department of Biology, Faculty of Science, King Abdulaziz University Jeddah Kingdom of Saudi Arabia
| | - Shafquat Rafiq
- Department of Gastrointestinal medicine, Croydon University Hospital, Croydon CR7 7YE, United Kingdom
| |
Collapse
|
20
|
Massa A, Varamo C, Vita F, Tavolari S, Peraldo-Neia C, Brandi G, Rizzo A, Cavalloni G, Aglietta M. Evolution of the Experimental Models of Cholangiocarcinoma. Cancers (Basel) 2020; 12:cancers12082308. [PMID: 32824407 PMCID: PMC7463907 DOI: 10.3390/cancers12082308] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare, aggressive disease with poor overall survival. In advanced cases, surgery is often not possible or fails; in addition, there is a lack of effective and specific therapies. Multidisciplinary approaches and advanced technologies have improved the knowledge of CCA molecular pathogenesis, highlighting its extreme heterogeneity and high frequency of genetic and molecular aberrations. Effective preclinical models, therefore, should be based on a comparable level of complexity. In the past years, there has been a consistent increase in the number of available CCA models. The exploitation of even more complex CCA models is rising. Examples are the use of CRISPR/Cas9 or stabilized organoids for in vitro studies, as well as patient-derived xenografts or transgenic mouse models for in vivo applications. Here, we examine the available preclinical CCA models exploited to investigate: (i) carcinogenesis processes from initiation to progression; and (ii) tools for personalized therapy and innovative therapeutic approaches, including chemotherapy and immune/targeted therapies. For each model, we describe the potential applications, highlighting both its advantages and limits.
Collapse
Affiliation(s)
- Annamaria Massa
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (A.M.); (G.C.)
| | - Chiara Varamo
- Department of Oncology, University of Turin, 10126 Torino, Italy; (C.V.); (F.V.)
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, B3000 KU Leuven, Belgium
| | - Francesca Vita
- Department of Oncology, University of Turin, 10126 Torino, Italy; (C.V.); (F.V.)
| | - Simona Tavolari
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| | | | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (G.B.); (A.R.)
| | - Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (G.B.); (A.R.)
| | - Giuliana Cavalloni
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (A.M.); (G.C.)
| | - Massimo Aglietta
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (A.M.); (G.C.)
- Department of Oncology, University of Turin, 10126 Torino, Italy; (C.V.); (F.V.)
- Correspondence:
| |
Collapse
|
21
|
Zhu Y, Kwong LN. Insights Into the Origin of Intrahepatic Cholangiocarcinoma From Mouse Models. Hepatology 2020; 72:305-314. [PMID: 32096245 DOI: 10.1002/hep.31200] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yan Zhu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
22
|
Zhang S, Zhang J, Evert K, Li X, Liu P, Kiss A, Schaff Z, Ament C, Zhang Y, Serra M, Evert M, Chen N, Xu F, Chen X, Tao J, Calvisi DF, Cigliano A. The Hippo Effector Transcriptional Coactivator with PDZ-Binding Motif Cooperates with Oncogenic β-Catenin to Induce Hepatoblastoma Development in Mice and Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1397-1413. [PMID: 32283103 DOI: 10.1016/j.ajpath.2020.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023]
Abstract
Hepatoblastoma (HB) is the most common pediatric liver tumor. Though Wnt/β-catenin and Hippo cascades are implicated in HB development, studies on crosstalk between β-catenin and Hippo downstream effector transcriptional coactivator with PDZ-binding motif (TAZ) in HB are lacking. Expression levels of TAZ and β-catenin in human HB specimens were assessed by immunohistochemistry. Functional interplay between TAZ and β-catenin was determined by overexpression of an activated form of TAZ (TAZS89A), either alone or combined with an oncogenic form of β-catenin (ΔN90-β-catenin), in mouse liver via hydrodynamic transfection. Activation of TAZ often co-occurred with that of β-catenin in clinical specimens. Although the overexpression of TAZS89A alone did not induce hepatocarcinogenesis, concomitant overexpression of TAZS89A and ΔN90-β-catenin triggered the development of HB lesions exhibiting both epithelial and mesenchymal features. Mechanistically, TAZ/β-catenin-driven HB development required TAZ interaction with transcriptional enhanced associate domain factors. Blockade of the Notch cascade did not inhibit TAZ/β-catenin-dependent HB formation in mice but suppressed the mesenchymal phenotype. Neither Yes-associated protein nor heat shock factor 1 depletion affected HB development in TAZ/β-catenin mice. In human HB cell lines, silencing of TAZ resulted in decreased cell growth, which was further reduced when TAZ knockdown was associated with suppression of either β-catenin or Yes-associated protein. Overall, our study identified TAZ as a crucial oncogene in HB development and progression.
Collapse
Affiliation(s)
- Shu Zhang
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California
| | - Jie Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California; Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xiaolei Li
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA, Jinan, PR China
| | - Pin Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Andras Kiss
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Cindy Ament
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yi Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Monica Serra
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Nianyong Chen
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Feng Xu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Diego F Calvisi
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy.
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Lan X, Wu N, Wu L, Qu K, Osoro EK, Guan D, Du X, Wang B, Chen S, Miao J, Ren J, Liu L, Li H, Ning Q, Li D, Lu S. The Human Novel Gene LNC-HC Inhibits Hepatocellular Carcinoma Cell Proliferation by Sequestering hsa-miR-183-5p. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:468-479. [PMID: 32278306 PMCID: PMC7150434 DOI: 10.1016/j.omtn.2020.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed cancer and the leading cause of cancer mortality. Several lines of evidence have demonstrated the aberrant expression of long noncoding RNAs (lncRNAs) in carcinogenesis and their universal regulatory properties. A thorough understanding of lncRNA regulatory roles in HCC pathology would contribute to HCC prevention and treatment. In this study, we identified a novel human lncRNA, LNC-HC, with significantly reduced levels in hepatic tumors from patients with HCC. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyltetrazolium bromide) assays as well as colony formation and wound healing experiments showed that LNC-HC significantly inhibited the proliferation of the HCC cell line Huh7. Xenograft transplantation of LNC-HC-overexpressing Huh7 cells in nude mice resulted in the production of smaller tumors. Mechanistically, LNC-HC inhibited the proliferation of HCC cells by directly interacting with hsa-miR-183-5p. LNC-HC rescued the expression of five tumor suppressors, including AKAP12, DYRK2, FOXN3, FOXO1, and LATS2, that were verified as target genes of hsa-miR-183-5p. Overall, human LNC-HC was identified as a novel tumor suppressor that could inhibit HCC cell proliferation in vitro and suppress tumor growth in vivo by competitively binding hsa-miR-183-5p as a competing endogenous RNA (ceRNA). These findings suggest that LNC-HC could be a biomarker of HCC and provide a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xi Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of the Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China.
| | - Nan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of the Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of the Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ezra Kombo Osoro
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of the Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaojuan Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of the Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Sifan Chen
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan Ren
- Department of Reproductive Medicine, The Fourth Hospital of Xi'an, Xi'an, Shaanxi 710004, China
| | - Li Liu
- Department of Basic Medical Science, Xi'an Medical College, Xi'an, Shaanxi, China
| | - Haiyun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of the Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Qilan Ning
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of the Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of the Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of the Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China.
| |
Collapse
|
24
|
Thompson BJ. YAP/TAZ: Drivers of Tumor Growth, Metastasis, and Resistance to Therapy. Bioessays 2020; 42:e1900162. [DOI: 10.1002/bies.201900162] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/11/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Barry J. Thompson
- EMBL AustraliaJohn Curtin School of Medical ResearchThe Australian National University 131 Garran Rd, Acton 2602 Canberra ACT Australia
| |
Collapse
|
25
|
Effect of Diphtheria Toxin-Based Gene Therapy for Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12020472. [PMID: 32085552 PMCID: PMC7072394 DOI: 10.3390/cancers12020472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/09/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global malignancy, responsible for >90% of primary liver cancers. Currently available therapeutic options have poor performances due to the highly heterogeneous nature of the tumor cells; recurrence is highly probable, and some patients develop resistances to the therapies. Accordingly, the development of a novel therapy is essential. We assessed gene therapy for HCC using a diphtheria toxin fragment A (DTA) gene-expressing plasmid, utilizing a non-viral hydrodynamics-based procedure. The antitumor effect of DTA expression in HCC cell lines (and alpha-fetoprotein (AFP) promoter selectivity) is assessed in vitro by examining HCC cell growth. Moreover, the effect and safety of the AFP promoter-selective DTA expression was examined in vivo using an HCC mice model established by the hydrodynamic gene delivery of the yes-associated protein (YAP)-expressing plasmid. The protein synthesis in DTA transfected cells is inhibited by the disappearance of tdTomato and GFP expression co-transfected upon the delivery of the DTA plasmid; the HCC cell growth is inhibited by the expression of DTA in HCC cells in an AFP promoter-selective manner. A significant inhibition of HCC occurrence and the suppression of the tumor marker of AFP and des-gamma-carboxy prothrombin can be seen in mice groups treated with hydrodynamic gene delivery of DTA, both 0 and 2 months after the YAP gene delivery. These results suggest that DTA gene therapy is effective for HCC.
Collapse
|
26
|
Erice O, Vallejo A, Ponz-Sarvise M, Saborowski M, Vogel A, Calvisi DF, Saborowski A, Vicent S. Genetic Mouse Models as In Vivo Tools for Cholangiocarcinoma Research. Cancers (Basel) 2019; 11:cancers11121868. [PMID: 31769429 PMCID: PMC6966555 DOI: 10.3390/cancers11121868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a genetically and histologically complex disease with a highly dismal prognosis. A deeper understanding of the underlying cellular and molecular mechanisms of human CCA will increase our current knowledge of the disease and expedite the eventual development of novel therapeutic strategies for this fatal cancer. This endeavor is effectively supported by genetic mouse models, which serve as sophisticated tools to systematically investigate CCA pathobiology and treatment response. These in vivo models feature many of the genetic alterations found in humans, recapitulate multiple hallmarks of cholangiocarcinogenesis (encompassing cell transformation, preneoplastic lesions, established tumors and metastatic disease) and provide an ideal experimental setting to study the interplay between tumor cells and the surrounding stroma. This review is intended to serve as a compendium of CCA mouse models, including traditional transgenic models but also genetically flexible approaches based on either the direct introduction of DNA into liver cells or transplantation of pre-malignant cells, and is meant as a resource for CCA researchers to aid in the selection of the most appropriate in vivo model system.
Collapse
Affiliation(s)
- Oihane Erice
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
| | - Adrian Vallejo
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
| | - Mariano Ponz-Sarvise
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Michael Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.V.)
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.V.)
| | - Diego F. Calvisi
- Institute for Pathology, Regensburg University, 93053 Regensburg, Germany;
| | - Anna Saborowski
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain;
- Correspondence: (A.S.); (S.V.); Tel.: +49-511-532-9590 (A.S.); +34-948194700 (ext. 812029) (S.V.)
| | - Silvestre Vicent
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (A.S.); (S.V.); Tel.: +49-511-532-9590 (A.S.); +34-948194700 (ext. 812029) (S.V.)
| |
Collapse
|
27
|
Xu M, Wang J, Xu Z, Li R, Wang P, Shang R, Cigliano A, Ribback S, Solinas A, Pes GM, Evert K, Wang H, Song X, Zhang S, Che L, Pascale RM, Calvisi DF, Liu Q, Chen X. SNAI1 Promotes the Cholangiocellular Phenotype, but not Epithelial-Mesenchymal Transition, in a Murine Hepatocellular Carcinoma Model. Cancer Res 2019; 79:5563-5574. [PMID: 31383647 PMCID: PMC7237201 DOI: 10.1158/0008-5472.can-18-3750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/29/2019] [Accepted: 07/30/2019] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has limited treatment options. Snail family transcriptional repressor 1 (SNAI1) is a master regulator of epithelial-mesenchymal transition (EMT) and has been implicated in HCC initiation and progression. However, the precise role of SNAI1 and the way it contributes to hepatocarcinogenesis have not been investigated in depth, especially in vivo. Here, we analyzed the functional relevance of SNAI1 in promoting hepatocarcinogenesis in the context of the AKT/c-Met-driven mouse liver tumor model (AKT/c-Met/SNAI1). Overexpression of SNAI1 did not accelerate AKT/c-Met-induced HCC development or induce metastasis in mice. Elevated SNAI1 expression rather led to the formation of cholangiocellular (CCA) lesions in the mouse liver, a phenotype that was paralleled by increased activation of Yap and Notch. Ablation of Yap strongly inhibited AKT/c-Met/SNAI-induced HCC and CCA development, whereas inhibition of the Notch pathway specifically blocked the CCA-like phenotype in mice. Intriguingly, overexpression of SNAI1 failed to induce EMT, indicated by strong E-cadherin expression and lack of vimentin expression by AKT/c-Met/SNAI tumor cells. SNAI1 mRNA levels strongly correlated with the expression of CCA markers, including SOX9, CK19, and EPCAM, but not with EMT markers such as E-CADHERIN and ZO-1, in human HCC samples. Overall, our findings suggest SNAI1 regulates the CCA-like phenotype in hepatocarcinogenesis via regulation of Yap and Notch. SIGNIFICANCE: These findings report a new function of SNAI1 to promote cholangiocellular transdifferentiation instead of epithelial-mesenchymal transition in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Meng Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, P. R. China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, P. R. China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, PR China
| | - Zhong Xu
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, P. R. China
| | - Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Pan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering
| | - Runze Shang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
- Department of Hepatobiliary Surgery, Xi'jing Hospital, Air Force Military Medical University, Xi'an, P. R. China
| | - Antonio Cigliano
- Institute of Pathology, University Clinic of Regensburg, Regensburg, Germany
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Mario Pes
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Katja Evert
- Institute of Pathology, University Clinic of Regensburg, Regensburg, Germany
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Shu Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
- Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Rosa Maria Pascale
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Diego Francesco Calvisi
- Institute of Pathology, University Clinic of Regensburg, Regensburg, Germany.
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| |
Collapse
|
28
|
Vicent S, Lieshout R, Saborowski A, Verstegen MMA, Raggi C, Recalcati S, Invernizzi P, van der Laan LJW, Alvaro D, Calvisi DF, Cardinale V. Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver Int 2019; 39 Suppl 1:79-97. [PMID: 30851232 DOI: 10.1111/liv.14094] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Human cholangiocarcinoma (CCA) is an aggressive tumour entity arising from the biliary tree, whose molecular pathogenesis remains largely undeciphered. Over the last decade, the advent of high-throughput and cell-based techniques has significantly increased our knowledge on the molecular mechanisms underlying this disease while, at the same time, unravelling CCA complexity. In particular, it becomes clear that CCA displays pronounced inter- and intratumoural heterogeneity, which is presumably the consequence of the interplay between distinct tissues and cells of origin, the underlying diseases, and the associated molecular alterations. To better characterize these events and to design novel and more effective therapeutic strategies, a number of CCA experimental and preclinical models have been developed and are currently generated. This review summarizes the current knowledge and understanding of these models, critically underlining their translational usefulness and limitations. Furthermore, this review aims to provide a comprehensive overview on cells of origin, cancers stem cells and their dynamic interplay within CCA tissue.
Collapse
Affiliation(s)
- Silvestre Vicent
- Program in Solid Tumors, Center for Applied Applied Medical Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ruby Lieshout
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospita, l, University of Milano, Bicocca, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Manmadhan S, Ehmer U. Hippo Signaling in the Liver - A Long and Ever-Expanding Story. Front Cell Dev Biol 2019; 7:33. [PMID: 30931304 PMCID: PMC6423448 DOI: 10.3389/fcell.2019.00033] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/25/2019] [Indexed: 12/27/2022] Open
Abstract
The first description of Hippo signaling in mammals a little more than 10 years ago showed a striking phenotype in the liver, linking the role of this signaling pathway to organ size control and carcinogenesis. Even though Hippo signaling has been extensively studied in the liver and other organs over the recent years, many open questions remain in our understanding of its role in hepatic physiology and disease. The functions of Hippo signaling extend well beyond cancer and organ size determination: components of upstream Hippo signaling and the downstream effectors YAP and TAZ are involved in a multitude of cell and non-cell autonomous functions including cell proliferation, survival, development, differentiation, metabolism, and cross-talk with the immune system. Moreover, regulation and biological functions of Hippo signaling are often organ or even cell type specific – making its role even more complex. Here, we give a concise overview of the role of Hippo signaling in the liver with a focus on cell-type specific functions. We outline open questions and future research directions that will help to improve our understanding of this important pathway in liver disease.
Collapse
Affiliation(s)
- Saumya Manmadhan
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ursula Ehmer
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|