Fotouh A, Abdel-Maguid DS, Abdelhaseib M, Zaki RS, Darweish M. Pathological and pharmacovigilance monitoring as toxicological imputations of azithromycin and its residues in broilers.
Vet World 2024;
17:1271-1280. [PMID:
39077436 PMCID:
PMC11283599 DOI:
10.14202/vetworld.2024.1271-1280]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim
The importance of monitoring antimicrobial residues in food is underlined by increasing worries about food safety and public health. The potential toxicity of azithromycin (Az) on broilers and its impact on chicken meat residues require further investigation. This study assesses Az's toxicity effects and associated risks in broiler chickens through evaluation.
Materials and Methods
One hundred and twenty chicks were distributed into four equal groups randomly. Each group received different daily oral doses of Az: 200 mg/kg for Az1, 100 mg/kg for Az2, and 50 mg/kg for Az3. The FAz group was given plain water. High-performance liquid chromatography was used to measure Az residue levels in muscle and liver. Oxidative markers (malondialdehyde [MDA], superoxide dismutase [SOD], catalase [CAT]), liver and kidney function tests, and histopathological examination were conducted.
Results
The levels of alanine aminotransferase and aspartate aminotransferase increased in Az1 and Az2 groups from 8 h to 3 days and decreased slightly in Az2 by 7 days, while they remained normal in Az3. The levels of uric acid and creatine in the Az1 and Az2 groups increased from 8 h to 3 days and subsequently decreased in Az2 by the 7th day. Az1 group showed the highest increase in MDA levels within 7 days. With higher Az doses, SOD and CAT levels showed a more significant decrease post-treatment. 9.1 μg/kg Az1 liver had the highest residues, whereas none were detected in muscle.
Conclusion
At higher doses, Az caused significant liver and kidney damage, whereas lower doses had negligible effects. Muscle tissue contains fewer Az residues than liver. Assessing risks and ensuring compliance with regulations necessitate constant surveillance of Az residues in food. The health implications and risk management insights necessitate further investigation into the long-term effects of Az residues.
Collapse